Hidden Biometrics pp 127-153 | Cite as
Multi-, Hyper-Spectral Biometrics Modalities
Chapter
First Online:
- 269 Downloads
Abstract
In this chapter, it will be introduced the different categories of multi-hyper-spectral imaging approaches for biometric modalities. Afterwards, indirect approach will be considered, namely: prerequisites concepts on physics and computer graphics, physical theory for the light-skin interaction models and finally the related applications of multi-hyper-spectral imaging.
References
- 1.Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 010901 (2014)CrossRefGoogle Scholar
- 2.Hagen, N., Kudenov, M.W.: Review of snapshot spectral imaging technologies. Opt. Eng. 52(9), 090901 (2013)CrossRefGoogle Scholar
- 3.Gat, N.: Imaging spectroscopy using tunable filters: a review. Proc. SPIE 4056, 50–64 (2000)CrossRefGoogle Scholar
- 4.Lyot, B.: Optical apparatus with wide field using interference of polarized light. C. R. Acad. Sci. (Paris) 197, 1593 (1933)Google Scholar
- 5.Šolc, I.: Birefringent chain filters. J. Opt. Soc. Am. 55(6), 621–625 (1965)CrossRefGoogle Scholar
- 6.Shriyan, S.K.: Tunable electro-optic thin film stack for hyperspectral imaging. Ph.D. Thesis, Drexel University (2011)Google Scholar
- 7.Shriyan, S.K., Schundler, E., Schwarze, C., Fontecchio, A.K.: Electro-optic polymer liquid crystal thin films for hyperspectral imaging. J. Appl. Remote Sens. 6(1), 063549 (2012)CrossRefGoogle Scholar
- 8.Golub, M., Menachem, N., Amir, A., Kagan, A., Zheludev, V., Malinsky, R.: Snapshot spectral imaging based on digital cameras. U.S. patent US 20130194481 A1 (2013)Google Scholar
- 9.Gehm, M.E., John, R., Brady, D.J., Willett, R.M., Schulz, T.J.: Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15(21), 14013–14027 (2007)CrossRefGoogle Scholar
- 10.Golub, M.A., Nathan, M., Averbuch, A., Lavi, E., Zheludev, V.A., Schclar, A.: Spectral multiplexing method for digital snapshot spectral imaging. Appl. Opt. 48(8), 1520–1526 (2009)CrossRefGoogle Scholar
- 11.Habel, R., Kudenov, M., Wimmer, M.: Practical spectral photography. EUROGRAPHICS 31(2) pt2, 449–458 (2012)CrossRefGoogle Scholar
- 12.Hegyi, A., Martini, J.: Hyperspectral imaging with a liquid crystal polarization interferometer. Opt. Express 3(22), 28742–28754 (2015)CrossRefGoogle Scholar
- 13.Baranoski, G.V.G., Krishnaswamy, A.: Light & Skin Interactions, Simulations for Computer Graphics Applications. Morgan Kaufmann (2010)Google Scholar
- 14.Chandrasekhar, S.: Radiative Transfer. Courier Corporation (2013)Google Scholar
- 15.Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. SIGGRAPH, 511–518 (2001)Google Scholar
- 16.Lambert, J.H., Anding, E.: Ostwalds Klassiker der exakten Wissenschaften. Lamberts Photometrie (Photometria, sive De mensura et gradibus luminis, colorum et umbrae) (1760). W. Engelmann, 1892Google Scholar
- 17.Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18, 311–317 (1975)CrossRefGoogle Scholar
- 18.Torrance, K.E., Sparrow, E.M.: Off-specular peaks in the directional distribution of reflected thermal radiation. J. Heat Trans. 88, 223–230 (1966)CrossRefGoogle Scholar
- 19.Sparrow, E.M., Torrance, K.E.: Theory for off-specular reflection from roughened surfaces. JOSA 57, 1105–1112 (1967)Google Scholar
- 20.Kubelka, P., Munk, F.: Ein beitrag ztlr optik der farbanstriche. Z. Teeh. Phys. 12, 593–601 (193l)Google Scholar
- 21.Wang, L., Jacques, S.L., Zheng, L.: MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Progr. Biomed. 47, 131–146 (1995)CrossRefGoogle Scholar
- 22.Wang, L., Jacques, S.L.: Optimized radial and angular positions in Monte Carlo modeling. Med. Phys. 21, 1081–1083 (1994)CrossRefGoogle Scholar
- 23.Shirley, P.: Nonuniform random point sets via warping. In: Graphics Gems III, pp. 80–83. Academic Press Professional Inc. (1992)Google Scholar
- 24.Donner, C., Jensen, H.W.: Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24, 1032–1039 (2005)CrossRefGoogle Scholar
- 25.Akhloufi, M., Bendada, A.: Multispectral infrared face recognition: a comparative study. In: 10th International Conference on Quantitative InfraRed Thermography, pp. 27–30. Québec (Canada) (2010)Google Scholar
- 26.Click, R., Dahl-Smith, J., Fowler, L., DuBose, J., Deneau-Saxton, M., Herbert, J.: An osteopathic approach to reduction of readmissions for neonatal jaundice. Osteopath. Family Phys. 5, 17–23 (2013)CrossRefGoogle Scholar
- 27.Arya, V., Grzybowski, J., Schwartz, R.A.: Carotenemia. Cutis 71(6), 441–2, 448 (2003)Google Scholar
- 28.Pavlova, P., Borisova, E., Petkova, E., Avramov, Troyanova, P.: Investigation of Relations Between Skin Cancer Lesions’ Images and Their Reflectance and Fluorescent Spectra (2011)Google Scholar
- 29.Pan, Z., et al.: Face recognition in hyperspectral images. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003)MathSciNetCrossRefGoogle Scholar
- 30.Huang, D., Shan, C., Ardabilian, M., Wang, Y. Chen, L.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man. Cybern. Part C (Appl. Rev.) 41, 765–781CrossRefGoogle Scholar
- 31.Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)CrossRefGoogle Scholar
- 32.Malskies, C.R., Eibenberger, E., Angelopoulou, E.: The recognition of ethnic groups based on histological skin properties. In: Proceedings of Vision, Modeling, and Visualization, pp. 353–360 (2011)Google Scholar
- 33.Chen, W., Ardabilian, M., Zahouani, H., Zine, A.: Gender, skin type and age classifications using skin reflectance-based descriptor. Rap. Tech. (2014)Google Scholar
- 34.Nixon, K.A., Aimale, V., Rowe, R.K.: Spoof detection schemes. In: Handbook of Biometrics. Springer US, Boston, MA, pp. 403–423 (2008)Google Scholar
- 35.Kim, Y., Na, J., Yoon, S., Yi, J.: Masked fake face detection using radiance measurements. JOSA A (2009)Google Scholar
- 36.Zhang, Z., Yi, D., Lei, Z., Li, S.Z.: Face liveness detection by learning multispectral reflectance distributions. In: Face and Gesture, pp. 436–441(2011)Google Scholar
- 37.Chen, W., Ardabilian, M., Zin, A., Zahouani, H.: Reflectance spectra based skin and non-skin classification. Proc. ICIP 2015, 755–759 (2015)Google Scholar
- 38.Ardabilian, M., Zine, M., Chen, W.: Procédé pour distinguer automatiquement une peau d’un être humain d’un leurre inanimé de peau humaine, Patent, WO2017051116A1Google Scholar
- 39.Vrhel, M.J., Gershon, R., Iwan, L.S.: Measurement and analysis of object reflectance spectra. Color Res. Appl. 19(1), 4–9 (1994)CrossRefGoogle Scholar
- 40.Hecht, E.: Optics. Addison-Wesley Longman (2002)Google Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2020