Skip to main content

Age Estimation Using Sound Stimulation as a Hidden Biometrics Approach

  • Chapter
  • First Online:
Hidden Biometrics

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

In this chapter, it will be introduced a new hidden biometrics approach of age estimation requiring the stimulation of the auditory system by an acoustical modulated sine wave signal. After a quick review on different common approaches used in the field of age estimation, and after presenting some generalities on the auditory system, age estimation and age classification protocols will be considered. This chapter describes also the concept of a simple identification/verification, as an application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moyse, E.: Age estimation from faces and voices: a review. Psychol. Belgica 54(3) (2014)

    Google Scholar 

  2. Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 9(12), 2170–2179 (2014)

    Article  Google Scholar 

  3. Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(1), 621–628 (2004)

    Article  Google Scholar 

  4. Freire-Aradas, A., Phillips, C., Lareu, M.V.: Forensic individual age estimation with DNA: from initial approaches to methylation tests. Forensic Sci. Rev. 29(2) (2017)

    Google Scholar 

  5. Williams, G.: A review of the most commonly used dental age estimation techniques. J. Forensic Odontostomatol. 19(1), 9–17 (2001)

    MathSciNet  Google Scholar 

  6. Shafran, I., Riley, M., Mohri, M.: Voice signatures. In: 2003 IEEE Workshop on Automatic Speech Recognition and Understanding, 2003. ASRU’03, pp. 31–36. IEEE (2003)

    Google Scholar 

  7. Metze, F., Ajmera, J., Englert, R., Bub, U., Burkhardt, F., Stegmann, J., Muller, C., Huber, R., Andrassy, B., Bauer, J.G., Littel, B.: Comparison of four approaches to age and gender recognition for telephone applications. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2007. ICASSP 2007, vol. 4, pp. IV-108. IEEE (2007)

    Google Scholar 

  8. Dobry, G., Hecht, R.M., Avigal, M., Zigel, Y.: Supervector dimension reduction for efficient speaker age estimation based on the acoustic speech signal. IEEE Trans. Audio Speech Lang. Process. 19(7), 1975–1985 (2011)

    Article  Google Scholar 

  9. Lu, J., Tan, Y.P.: Gait-based human age estimation. IEEE Trans. Inf. Forensics Secur. 5(4), 761–770 (2010)

    Article  Google Scholar 

  10. Makihara, Y., Okumura, M., Iwama, H., Yagi, Y.: Gait-based age estimation using a whole-generation gait database. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–6. IEEE (2011)

    Google Scholar 

  11. Tsimperidis, G., Katos, V., Rostami, S.: Age detection through keystroke dynamics from user authentication failures. Int. J. Dig. Crime Forensics (IJDCF) 9(1), 1–16 (2017)

    Article  Google Scholar 

  12. Uzun, Y., Bicakci, K., Uzunay, Y.: Could We Distinguish Child Users from Adults Using Keystroke Dynamics? (2015). arXiv preprint arXiv:1511.05672

  13. Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal Processing, p. 35 (1997)

    Google Scholar 

  14. Zwicker, E.: Subdivision of the audible frequency range into critical bands (frequenzgruppen). J. Acoust. Soc. Am. 33, 248 (1961)

    Article  Google Scholar 

  15. Stuart, R., Howell, P.: Signals and Systems for Speech and Hearing. 2nd edn., pp. 163. BRILL (2011)

    Google Scholar 

  16. Rossing, T.: Springer Handbook of Acoustics, 1st edn., pp. 747–748. Springer (2007)

    Google Scholar 

  17. Ilyas, M., Othmani, A., Nait-Ali, A.: Human age estimation using auditory system through dynamic frequency sound. In: IEEE 2nd International Conference on Bio-engineering for Smart Technologies (BioSMART) (2017)

    Google Scholar 

  18. Stockwell, C.W., Ades, H.W., Engström, H.: XCVII patterns of hair cell damage after intense auditory stimulation. Ann. Otol. Rhinol. Laryngol. Suppl. 78, 1144–1168 (2017)

    Article  Google Scholar 

  19. Manley, G.A., van Dijk, P.: Frequency selectivity of the human cochlea: suppression tuning of spontaneous otoacoustic emissions. Hear Res. 336, 53–62 (2016)

    Article  Google Scholar 

  20. Paolis, A.D., Bikson, M., Nelson, J.T., de Ru, J.A., Packe, M., Cardoso, L.: Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage. Hear. Res. 349, 111–128 (2017)

    Article  Google Scholar 

  21. Barbosa de Sá, L.C., Lima, M.A.M.T., Tomita, S., Frota, S.M.M.C., Santos, G.A., Garcia, T.R.: Analysis of high frequency auditory thresholds in individuals aged between 18 and 29 years with no ontological complaints. Rev. Bras. Otorrinolaringol. 73, 2 (2007)

    Google Scholar 

  22. Breiman, L.: Random forests. Mach. Learn. 45, 123–140 (2011)

    Google Scholar 

  23. Guyon, I., Saffari, A., Dror, G., Cawley, G.: Model selection: beyond the bayesian–frequentist divide. JMLR 11, 61–87 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Anguita, D., Ghio, A., Ridella, S., Sterpi, D.: K-fold cross validation for error rate estimate in support vector machines. In: Proceedings of the International Conference on Data Mining, USA, pp. 291–297 (2009)

    Google Scholar 

  25. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)

    Article  Google Scholar 

  26. Statnikov, A., Tsamardinos, I., Dosbayev, Y., Aliferis, C.F.: GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int. J. Med. Inform 74, 491–503 (2005)

    Article  Google Scholar 

  27. Scheffer, T.: Error estimation and model selection. Ph.D. Thesis, Technischen Universität Berlin, School of Computer Science (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Nait-ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ilyas, M., Othmani, A., Nait-ali, A. (2020). Age Estimation Using Sound Stimulation as a Hidden Biometrics Approach. In: Nait-ali, A. (eds) Hidden Biometrics. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0956-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0956-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0955-7

  • Online ISBN: 978-981-13-0956-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics