Hidden Biometrics pp 113-125 | Cite as
Age Estimation Using Sound Stimulation as a Hidden Biometrics Approach
Chapter
First Online:
- 252 Downloads
Abstract
In this chapter, it will be introduced a new hidden biometrics approach of age estimation requiring the stimulation of the auditory system by an acoustical modulated sine wave signal. After a quick review on different common approaches used in the field of age estimation, and after presenting some generalities on the auditory system, age estimation and age classification protocols will be considered. This chapter describes also the concept of a simple identification/verification, as an application.
References
- 1.Moyse, E.: Age estimation from faces and voices: a review. Psychol. Belgica 54(3) (2014)Google Scholar
- 2.Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 9(12), 2170–2179 (2014)CrossRefGoogle Scholar
- 3.Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(1), 621–628 (2004)CrossRefGoogle Scholar
- 4.Freire-Aradas, A., Phillips, C., Lareu, M.V.: Forensic individual age estimation with DNA: from initial approaches to methylation tests. Forensic Sci. Rev. 29(2) (2017)Google Scholar
- 5.Williams, G.: A review of the most commonly used dental age estimation techniques. J. Forensic Odontostomatol. 19(1), 9–17 (2001)MathSciNetGoogle Scholar
- 6.Shafran, I., Riley, M., Mohri, M.: Voice signatures. In: 2003 IEEE Workshop on Automatic Speech Recognition and Understanding, 2003. ASRU’03, pp. 31–36. IEEE (2003)Google Scholar
- 7.Metze, F., Ajmera, J., Englert, R., Bub, U., Burkhardt, F., Stegmann, J., Muller, C., Huber, R., Andrassy, B., Bauer, J.G., Littel, B.: Comparison of four approaches to age and gender recognition for telephone applications. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2007. ICASSP 2007, vol. 4, pp. IV-108. IEEE (2007)Google Scholar
- 8.Dobry, G., Hecht, R.M., Avigal, M., Zigel, Y.: Supervector dimension reduction for efficient speaker age estimation based on the acoustic speech signal. IEEE Trans. Audio Speech Lang. Process. 19(7), 1975–1985 (2011)CrossRefGoogle Scholar
- 9.Lu, J., Tan, Y.P.: Gait-based human age estimation. IEEE Trans. Inf. Forensics Secur. 5(4), 761–770 (2010)CrossRefGoogle Scholar
- 10.Makihara, Y., Okumura, M., Iwama, H., Yagi, Y.: Gait-based age estimation using a whole-generation gait database. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–6. IEEE (2011)Google Scholar
- 11.Tsimperidis, G., Katos, V., Rostami, S.: Age detection through keystroke dynamics from user authentication failures. Int. J. Dig. Crime Forensics (IJDCF) 9(1), 1–16 (2017)CrossRefGoogle Scholar
- 12.Uzun, Y., Bicakci, K., Uzunay, Y.: Could We Distinguish Child Users from Adults Using Keystroke Dynamics? (2015). arXiv preprint arXiv:1511.05672
- 13.Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal Processing, p. 35 (1997)Google Scholar
- 14.Zwicker, E.: Subdivision of the audible frequency range into critical bands (frequenzgruppen). J. Acoust. Soc. Am. 33, 248 (1961)CrossRefGoogle Scholar
- 15.Stuart, R., Howell, P.: Signals and Systems for Speech and Hearing. 2nd edn., pp. 163. BRILL (2011)Google Scholar
- 16.Rossing, T.: Springer Handbook of Acoustics, 1st edn., pp. 747–748. Springer (2007)Google Scholar
- 17.Ilyas, M., Othmani, A., Nait-Ali, A.: Human age estimation using auditory system through dynamic frequency sound. In: IEEE 2nd International Conference on Bio-engineering for Smart Technologies (BioSMART) (2017)Google Scholar
- 18.Stockwell, C.W., Ades, H.W., Engström, H.: XCVII patterns of hair cell damage after intense auditory stimulation. Ann. Otol. Rhinol. Laryngol. Suppl. 78, 1144–1168 (2017)CrossRefGoogle Scholar
- 19.Manley, G.A., van Dijk, P.: Frequency selectivity of the human cochlea: suppression tuning of spontaneous otoacoustic emissions. Hear Res. 336, 53–62 (2016)CrossRefGoogle Scholar
- 20.Paolis, A.D., Bikson, M., Nelson, J.T., de Ru, J.A., Packe, M., Cardoso, L.: Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage. Hear. Res. 349, 111–128 (2017)CrossRefGoogle Scholar
- 21.Barbosa de Sá, L.C., Lima, M.A.M.T., Tomita, S., Frota, S.M.M.C., Santos, G.A., Garcia, T.R.: Analysis of high frequency auditory thresholds in individuals aged between 18 and 29 years with no ontological complaints. Rev. Bras. Otorrinolaringol. 73, 2 (2007)Google Scholar
- 22.Breiman, L.: Random forests. Mach. Learn. 45, 123–140 (2011)Google Scholar
- 23.Guyon, I., Saffari, A., Dror, G., Cawley, G.: Model selection: beyond the bayesian–frequentist divide. JMLR 11, 61–87 (2010)MathSciNetzbMATHGoogle Scholar
- 24.Anguita, D., Ghio, A., Ridella, S., Sterpi, D.: K-fold cross validation for error rate estimate in support vector machines. In: Proceedings of the International Conference on Data Mining, USA, pp. 291–297 (2009)Google Scholar
- 25.Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)CrossRefGoogle Scholar
- 26.Statnikov, A., Tsamardinos, I., Dosbayev, Y., Aliferis, C.F.: GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int. J. Med. Inform 74, 491–503 (2005)CrossRefGoogle Scholar
- 27.Scheffer, T.: Error estimation and model selection. Ph.D. Thesis, Technischen Universität Berlin, School of Computer Science (1999)Google Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2020