Hidden Biometrics pp 185-202 | Cite as
From Motion to Emotion Prediction: A Hidden Biometrics Approach
Chapter
First Online:
- 317 Downloads
Abstract
In this chapter it will be discussed the capability of using motion recognition in order to predict the human emotion. Considered as a behavioral hidden biometrics approach, a specific system has been developed for this purpose wherein, several Machine-Learning approaches are considered, such as SVM, RF, MLP and KNN for classification and SVR, RFR, MLPR and KNNR for regression. The study highlights promising results in comparison to the state of the art.
References
- 1.Russell, J.A., Mehrabian, A.: Evidence for a three-factor theory of emotions. J. Res. Pers. 11(3), 273–294 (1977)CrossRefGoogle Scholar
- 2.Luengo, I., Navas, E., Hernáez, I.: Feature analysis and evaluation for automatic emotion identification in speech. IEEE Trans. Multimed. 12(6), 490–501 (2010)CrossRefGoogle Scholar
- 3.Baron, R.A., Branscombe, N.R., Mynhardt, J.C.: Social Psychology. Pearson (2014)Google Scholar
- 4.Liebal, K., Carpenter, M., Tomasello, M.: Young children’s understanding of markedness in non-verbal communication. J. Child Lang. 38(4), 888–903 (2011)CrossRefGoogle Scholar
- 5.Aloui K., Nait-Ali, A., Saber, N.M.: 2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 91–95Google Scholar
- 6.Kabbara, Y., Shahin, A., Nait-Ali, A., Khalil, M.: An automatic algorithm for human identification using hand X-ray images. In: 2013 2nd International Conference on Advances in Biomedical Engineering (ICABME), pp. 167–170 (2013)Google Scholar
- 7.Kabbara, Y., Nait-Ali, A., Shahin, A., Khalil, M.: Hidden Biometric Identification/Authentication based on Phalanx Selection from Hand XRay Images with Safety considerations. In: The fifth International Conference on Image Processing Theory, Tools and Applications, Orleans (2015)Google Scholar
- 8.Noroozi, F., et al.: Survey on emotional body gesture recognition. arXiv preprint arXiv:1801.07481 (2018)
- 9.Ekman, P.: Psychol. Rev. 99(3), 550–553 (1992)Google Scholar
- 10.Plutchik, R.: The nature of emotions: human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 89(4), 344–350 (2001)CrossRefGoogle Scholar
- 11.Dornaika, F., Moujahid, A., Raducanu, B.: Facial expression recognition using tracked facial actions: classifier performance analysis. Eng. Appl. Artif. Intell. 26(1), 467–477 (2013)CrossRefGoogle Scholar
- 12.Raheja, J.L., Kumar, U.: Human Facial Expression Detection from Detected in Captured Image Using Back Propagation Neural Network (2010)Google Scholar
- 13.Su, M.-C., Hsieh, Y., Huang, D.-Y.: A simple approach to facial expression recognition. In: Proceeding WSEAS 2007 (2007)Google Scholar
- 14.Zhang, L., Tjondronegoro, D.: Facial expression recognition using facial movement features. IEEE Trans. Affect. Comput. 2(4), 219–229 (2011)CrossRefGoogle Scholar
- 15.Gamage, K.W., Dang, T., Sethu, V., Epps, J.: Speech-Based Continuous Emotion Prediction by Learning Perception Responses Related to Salient Events: A Study Based on Vocal Affect Bursts and Cross-Cultural AffectGoogle Scholar
- 16.Han, J., Zhang, Z., Ringeval, F., Schuller, B.: Prediction-Based Learning for Continuous Emotion Recognition in SpeechGoogle Scholar
- 17.Baveye, Y., Dellandréa, E., Chamaret, C., Chen, L.: Deep Learning vs. Kernel Methods: Performance for Emotion Prediction in VideosGoogle Scholar
- 18.Gunes, H., Piccardi, M.: Automatic temporal segment detection and affect recognition from face and body display. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(1), 64–84 (2009)CrossRefGoogle Scholar
- 19.Nicolaou, M.A., Gunes, H., Pantic, M.: Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space. IEEE Trans. Affect. Comput. 2(2), 92–105 (2011)CrossRefGoogle Scholar
- 20.Friesen, E., Ekman, P.: Facial action coding system: a technique for the measurement of facial movement. In: Palo Alto (1978)Google Scholar
- 21.Hjortsjö, C.-H.: Man’s face and mimic language. Studen litteratur (1969)Google Scholar
- 22.Dornaika, F., Davoine, F.: Simultaneous facial action tracking and expression recognition in the presence of head motion. Int. J. Comput. Vis. 76(3), 257–281 (2008)CrossRefGoogle Scholar
- 23.Busso, C., et al.: Iterative feature normalization scheme for automatic emotion detection from speech. IEEE Trans. Affect. Comput. 4(4), 386–397 (2013)CrossRefGoogle Scholar
- 24.Mao, Q., et al.: Learning salient features for speech emotion recognition using convolutional neural networks. IEEE Trans. Multimed. 16(8), 2203–2213 (2014)CrossRefGoogle Scholar
- 25.Gangeh, M.J., et al.: Multiview supervised dictionary learning in speech emotion recognition. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 22(6), 1056–1068CrossRefGoogle Scholar
- 26.Lu, K., Jia, Y.: Audio-visual emotion recognition using boltzmann zippers. In: 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 2589–2592. IEEE (2012)Google Scholar
- 27.Rozgíc, V, Vitaladevuni, S.N., Prasad, R.: Robust EEG emotion classification using segment level decision fusion. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1286–1290. IEEE (2013)Google Scholar
- 28.Lakens, D.: Using a smartphone to measure heart rate changes during relived happiness and anger. IEEE Trans. Affect. Comput. 4(2), 238–241 (2013)CrossRefGoogle Scholar
- 29.Vinola, C., Vimaladevi, K.: A survey on human emotion recognition approaches, databases and applications. ELCVIA Electr. Lett. Comput. Vis. Image Anal. 14(2), 24–44 (2015)CrossRefGoogle Scholar
- 30.MIT Technology Review. Sensor detects emotions through the skin. https://www.technologyreview.com/s/421316/sensor-detects-emotions-throughthe-skin/. Last accessed on Web. 8 Aug. 2018
- 31.Kapur, A., et al.: Gesture-based affective computing on motion capture data. In: International Conference on Affective Computing and Intelligent Interaction, pp. 1–7. Springer (2005)Google Scholar
- 32.Ekman, P., Friesen, W.V.: Detecting deception from the body or face. J. Pers. Soc. Psychol. 29(3), 288 (1974)CrossRefGoogle Scholar
- 33.Aviezer, H., Trope, Y., Todorov, A.: Body cues, not facial expressions, discriminate between intense positive and negative emotions. Science 338(6111), 1225–1229 (2012)CrossRefGoogle Scholar
- 34.Ravindra De Silva, P., et al.: Towards recognizing emotion with affective dimensions through body gestures. In: 7th International Conference on Automatic Face and Gesture Recognition, 2006. FGR 2006, pp. 269–274. IEEE (2006)Google Scholar
- 35.Shan, C., Gong, S., McOwan, P.W.: Beyond facial expressions: learning human emotion from body gestures. In: BMVC, pp. 1–10 (2007)Google Scholar
- 36.Ma, Y., Paterson, H.M., Pollick, F.E.: A motion capture library for the study of identity, gender, and emotion perception from biological motion. Behav. Res. Methods 38(1), 134–141 (2006)CrossRefGoogle Scholar
- 37.Venture, G., et al.: Recognizing emotions conveyed by human gait. Int. J. Soc. Robot. 6(4), 621–632 (2014)CrossRefGoogle Scholar
- 38.Karg, M., Kuhnlenz, K., Buss, M.: Recognition of affect based on gait patterns. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 40(4), 1050–1061 (2010)CrossRefGoogle Scholar
- 39.Bernhardt, D., Robinson, P.: Detecting affect from non-stylised body motions. In: International Conference on Affective Computing and Intelligent Interaction, pp. 59–70. Springer (2007)Google Scholar
- 40.Pollick, F.E., et al.: Estimating the efficiency of recognizing gender and affect from biological motion. Vis. Res. 42(20), 2345–2355 (2002)CrossRefGoogle Scholar
- 41.Camurri, A., Mazzarino, B., Volpe, G.: Expressive interfaces. Cognit. Technol. Work 6(1), 15–22 (2004)CrossRefGoogle Scholar
- 42.Park, H., et al.: Emotion recognition from dance image sequences using contour approximation. In: Joint IAPR InternationalWorkshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp. 547–555. Springer (2004)Google Scholar
- 43.Camurri, A., Lagerlöf, I., Volpe, G.: Recognizing emotion from dance movement: comparison of spectator recognition and automated techniques. Int. J. Hum Comput Stud. 59(1–2), 213–225 (2003)CrossRefGoogle Scholar
- 44.Camurri, A., et al.: Multimodal analysis of expressive gesture in music and dance performances. In: International Gesture Workshop, pp. 20–39. Springer (2003)Google Scholar
- 45.Castellano, G., Villalba, S.D., Camurri, A.: Recognising human emotions from body movement and gesture dynamics. In: International Conference on Affective Computing and Intelligent Interaction, pp. 71–82. Springer, Berlin (2007)Google Scholar
- 46.Tracy,J.L., Randles, D.: Four models of basic emotions: a review of Ekman and Cordaro, Izard, Levenson, and Panksepp and Watt. Emot. Rev. 3(4), 397–405 (2011)CrossRefGoogle Scholar
- 47.Ekman, P., Friesen, W.V.: A new pan-cultural facial expression of emotion. Motiv. Emot. 10(2), 159–168 (1986)CrossRefGoogle Scholar
- 48.Ratneshwar, S., Mick, D.G., Huffman, C.: Introduction: the “why” of consumption. In: The Why of Consumption, pp. 21–28. Routledge (2003)Google Scholar
- 49.Havlena, W.J., Holbrook, M.B.: The varieties of consumption experience: comparing two typologies of emotion in consumer behavior. J. Consum. Res. 13(3), 394–404 (1986)CrossRefGoogle Scholar
- 50.Mikels, J.A., et al.: Emotional category data on images from the international affective picture system. Behav. Res. Methods 37(4), 626–630 (2005)CrossRefGoogle Scholar
- 51.Barrett, L.F.: Solving the emotion paradox: categorization and the experience of emotion. Pers. Soc. Psychol. Rev. 10(1), 20–46 (2006)CrossRefGoogle Scholar
- 52.Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav Ther. Exp. Psychiatr. 25(1), 49–59 (1994)CrossRefGoogle Scholar
- 53.Clark, R.A., et al.: Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 31(3), 307–310 (2010)CrossRefGoogle Scholar
- 54.Shih, C.-H., Shih, C.-T., Chu, C.-L.: Assisting people with multiple disabilities actively correct abnormal standing posture with a Nintendo Wii balance board through controlling environmental stimulation. Res. Dev. Disabil. 31(4), 936–942 (2010)CrossRefGoogle Scholar
- 55.Venture, G., Yabuki, T., Kinase, Y., Berthoz, A., Abe, N.: Using Dynamics to Recognize Human Motion (2016)Google Scholar
- 56.Yabuki, T., Venture, G.: Motion classification and recognition using only contact force. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4251–4256. Hamburg, Germany (2015)Google Scholar
- 57.Web Site: Wii Balance Board. http://www.mdpi.com/1424-8220/14/10/18244. Last accessed on Sun. 12 Aug 2018
- 58.Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over streaming data. In: Proceedings of the Thirteenth Annual ACMSIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 17 Aug 2018, pp. 633–634 (2002)Google Scholar
- 59.Scikit-learn: Scikit-Learn—Machine Learning in Python. http://scikit-learn.org/. Last accessed on Sat. 18 Aug 2018
- 60.Gong, L., et al.: Recognizing affect from non-stylized body motion using shape of Gaussian descriptors. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1203–1206. ACM (2010)Google Scholar
- 61.Izui, T., et al.: Expressing emotions using gait of humanoid robot. In: 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 241–245. IEEE (2015)Google Scholar
- 62.Karg, M., et al.: Body movements for affective expression: a survey of automatic recognition and generation. IEEE Trans. Affect. Comput. 4(4), 341–359 (2013)CrossRefGoogle Scholar
- 63.Mayer, J.D., DiPaolo, M., Salovey, P.: Perceiving affective content in ambiguous visual stimuli: A component of emotional intelligence. J. Pers. Assess. 54(3–4), 772–781 (1990)CrossRefGoogle Scholar
- 64.Mehrabian, A.: Nonverbal Communication. Routledge, 2017Google Scholar
- 65.Mehrabian, A.: Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr. Psychol. 14(4), 261–292 (1996)MathSciNetCrossRefGoogle Scholar
- 66.Ng, A.: Online Lecture Notes-Machine Learning. Stanford UniversityGoogle Scholar
- 67.Oldfield, R.C.: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1), 97–113 (1971)CrossRefGoogle Scholar
- 69.Thorndike, R.L., Stein, S.: An evaluation of the attempts to measure social intelligence. Psychol. Bull. 34(5), p. 275 (1937)CrossRefGoogle Scholar
- 70.Walk, R.D., Walters, K.L.: Perception of the Smile and other Emotions of the Body and Face at Different Distances (1988)Google Scholar
- 71.ZeroMQ: Zeromq—distributed messaging. http://zeromq.org/. Last accessed
Copyright information
© Springer Nature Singapore Pte Ltd. 2020