Hidden Biometrics pp 1-15 | Cite as
DNA Based Identification
Chapter
First Online:
- 278 Downloads
Abstract
In this first chapter of the book, DNA will be investigated as a deepest Hidden Biometrics modality. After presenting some basic ideas, techniques, and some major applications, a special interest will be addressed to recent research topics related to prediction of visible physical traits.
References
- 1.International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)CrossRefGoogle Scholar
- 2.Venter J.C., et al.: The sequence of the human genome. Science (80-.) 291(5507), 1304–1351 (2001)Google Scholar
- 3.Debrauwere, H., Gendrel, C.G., Lechat, S., Dutreix, M.: Differences and similarities between various tandem repeat sequences: minisatellites and microsatellites. Biochimie 79(9–10), 577–586 (1997)CrossRefGoogle Scholar
- 4.Ramel, C.: Mini- and microsatellites. Environ. Health Perspect. 105(Suppl 4), 781–9 (1997)CrossRefGoogle Scholar
- 5.Mirkin, S.M.: Expandable DNA repeats and human disease. Nature 447(7147), 932–940 (2007)CrossRefGoogle Scholar
- 6.Doi, K., et al.: Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing. Bioinformatics 30(6), 815–22 (2014)CrossRefGoogle Scholar
- 7.Fan, H., Chu, J.-Y.: A brief review of short tandem repeat mutation. Genomics. Proteomics Bioinform. 5(1), 7–14 (2007)CrossRefGoogle Scholar
- 8.Sanger, F., Coulson, A.R.: A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94(3), 441–448 (1975)CrossRefGoogle Scholar
- 9.Bentley, D.R., et al.: Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218), 53–59 (2008)CrossRefGoogle Scholar
- 10.Merriman, B., I.T. R&D Team, Rothberg, J.M.: Progress in Ion Torrent semiconductor chip based sequencing. Electrophoresis 33(23), 3397–3417 (2012)Google Scholar
- 11.Rothberg, J.M., et al.: An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356), 348–352 (2011)CrossRefGoogle Scholar
- 12.Armour, J.A.L., et al.: Minisatellite diversity supports a recent African origin for modern humans. Nat. Genet. 13(2), 154–160 (1996)CrossRefGoogle Scholar
- 13.Jobling, M.A., Bouzekri, N., Taylor, P.G.: Hypervariable digital DNA codes for human paternal lineages: MVR-PCR at the Y-specific minisatellite, MSY1 (DYF155S1). Hum. Mol. Genet. 7(4), 643–653 (1998)CrossRefGoogle Scholar
- 14.Gibbs, R.A., et al.: A global reference for human genetic variation. Nature 526(7571), 68–74 (2015)CrossRefGoogle Scholar
- 15.Durbin, R.M., et al.: A map of human genome variation from population-scale sequencing. Nature 467(7319), 1061–1073 (2010)CrossRefGoogle Scholar
- 16.Gettings, K.B., et al.: A 50-SNP assay for biogeographic ancestry and phenotype prediction in the U.S. population. Forensic Sci. Int. Genet. 8(1), 101–108 (2014)CrossRefGoogle Scholar
- 17.Gudbjartsson, D.F., et al.: Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47(5), 435–444 (2015)CrossRefGoogle Scholar
- 18.Chen, H.: Population genetic studies in the genomic sequencing era. Dong wu xue yan jiu = Zool. Res. 36(4), 223–32 (2015)Google Scholar
- 19.Carrasco-Ramiro, F., Peiró-Pastor, R., Aguado, B.: Human genomics projects and precision medicine. Gene Ther. 24(9), 551–561 (2017)CrossRefGoogle Scholar
- 20.Roewer, L.: DNA fingerprinting in forensics: past, present, future. Investig. Genet. 4(1), 22 (2013)CrossRefGoogle Scholar
- 21.Saad, R.: Discovery, development, and current applications of DNA identity testing. Bayl. Univ. Med. Cent. Proc. 18(2), 130–3 (2005)CrossRefGoogle Scholar
- 22.Jeffreys, A.J., Brookfield, J.F.Y., Semeonoff, R.: Positive identification of an immigration test-case using human DNA fingerprints. Nature 317(6040), 818–819 (1985)CrossRefGoogle Scholar
- 23.Alonso, S., Armour, J.A.: MS205 minisatellite diversity in Basques: evidence for a pre-Neolithic component. Genome Res. 8(12), 1289–1298 (1998)CrossRefGoogle Scholar
- 24.Rogers, E.J., Shone, A.C., Alonso, S., May, C.A., Armour, J.A.: Integrated analysis of sequence evolution and population history using hypervariable compound haplotypes. Hum. Mol. Genet. 9(18), 2675–2681 (2000)CrossRefGoogle Scholar
- 25.Brión, M., Cao, R., Salas, A., Lareu, M.V., Carracedo, A.: New method to measure minisatellite variant repeat variation in population genetic studies. Am. J. Hum. Biol. 14(4), 421–428 (2002)CrossRefGoogle Scholar
- 26.Yuan, Q.-H., et al.: Minisatellite MS32 alleles show population specificity among Thai, Chinese, and Japanese. J. Mol. Evol. 68(2), 126–133 (2009)CrossRefGoogle Scholar
- 27.Foster, E.A., et al.: Jefferson fathered slave’s last child. Nature 396(6706), 27–28 (1998)CrossRefGoogle Scholar
- 28.Brace, S., et al.: Population replacement in early Neolithic Britain. bioRxiv, 267443 (2018)Google Scholar
- 29.Hoole, M., et al.: ‘Ava’: a Beaker-associated woman from a cist at Achavanich. Proc. Soc. Antiq. Scotl. 147, 73–118 (2018)Google Scholar
- 30.Abouelhoda, M., Giegerich, R., Behzadi, B., Steyaert, J.M.: Alignment of minisatellite maps based on run length encoding scheme. J. Bioinforma. Comput. Biol. 7(2), 287–308 (2009)CrossRefGoogle Scholar
- 31.Abouelhoda, M., El-Kalioby, M., Giegerich, R.: WAMI: a web server for the analysis of minisatellite maps. BMC Evol. Biol. 10, 167 (2010)CrossRefGoogle Scholar
- 32.Edwards, A., Civitello, A., Hammond, H.A., Caskey, C.T.: DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet. 49(4), 746–756 (1991)Google Scholar
- 33.Coble, M.D., Butler, J.M.: Characterization of new miniSTR loci to aid analysis of degraded DNA. J. Forensic Sci. 50(1), 43–53 (2005)CrossRefGoogle Scholar
- 34.Butler, J.M.: Forensic DNA Typing : Biology, Technology, and Genetics of STR Markers. Elsevier Academic Press (2005)Google Scholar
- 35.Butler, J.M.: Genetics and genomics of core short tandem repeat loci used in human identity testing. J. Forensic Sci. 51(2), 253–265 (2006)CrossRefGoogle Scholar
- 36.Hares, D.R.: Selection and implementation of expanded CODIS core loci in the United States. Forensic Sci. Int. Genet. 17, 33–34 (2015)CrossRefGoogle Scholar
- 37.Moretti, T.R., et al.: Population data on the expanded CODIS core STR loci for eleven populations of significance for forensic DNA analyses in the United States. Forensic Sci. Int. Genet. 25, 175–181 (2016)CrossRefGoogle Scholar
- 38.Chaitanya, L., et al.: The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. Forensic Sci. Int. Genet. 35, 123–135 (2018)CrossRefGoogle Scholar
- 39.Walsh, S., et al.: Developmental validation of the IrisPlex system: determination of blue and brown iris colour for forensic intelligence. Forensic Sci. Int. Genet. 5(5), 464–471 (2011)CrossRefGoogle Scholar
- 40.Pneuman, A. Budimlija, Z.M., Caragine, T., Prinz M., et al.: Verification of eye and skin color predictors in various populations. Leg. Med 14(2), 78–83 (2012)CrossRefGoogle Scholar
- 41.Walsh, S., et al.: The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci. Int. Genet. 7(1), 98–115 (2013)CrossRefGoogle Scholar
- 42.Shaffer, J.R., et al.: Genome-wide association study reveals multiple loci influencing normal human facial morphology. PLoS Genet. 12(8), e1006149 (2016)CrossRefGoogle Scholar
- 43.Claes, P., et al.: Modeling 3D facial shape from DNA. PLoS Genet. 10(3), e1004224 (2014)CrossRefGoogle Scholar
- 44.Claes, P., et al.: Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat. Genet. 50(3), 414–423 (2018)CrossRefGoogle Scholar
- 45.Lippert, C., et al.: Identification of individuals by trait prediction using whole-genome sequencing data. Proc. Natl. Acad. Sci. U. S. A. 114(38), 10166–10171 (2017)CrossRefGoogle Scholar
- 46.Erlich, Y.: Major flaws in “Identification of individuals by trait prediction using whole-genome”. bioRxiv, 185330 (2017)Google Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2020