Skip to main content

Materials and Applications of Smart Diagnostic Contact Lens Systems

  • Chapter
  • First Online:
Book cover Cutting-Edge Enabling Technologies for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1078))

Abstract

Contact lenses were originally developed for the purpose of vision correction, but they have recently been used for various purposes. Because contact lenses are minimally invasive, they are used in diagnostic and drug delivery applications. In particular, interest in using contact lenses for the purpose of diagnosing diseases by fusing contact lenses with information technology (IT), nanotechnology (NT), and biotechnology (BT) is increasing. These contact lens-based platforms are getting more attention as Google and Novartis develop contact lenses for diabetes diagnosis. Therefore, this chapter introduces materials that can be used for contact lens materials and diagnostic contact lenses, and discusses future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badugu R, Lakowicz JR, Geddes CD (2005) A glucose-sensing contact lens: from bench top to patient. Curr Opin Biotechnol 16(1):100–107. https://doi.org/10.1016/j.copbio.2004.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bengani LC, Hsu KH, Gause S, Chauhan A (2013) Contact lenses as a platform for ocular drug delivery. Expert Opin Drug Deliv 10(11):1483–1496. https://doi.org/10.1517/17425247.2013.821462

    Article  CAS  PubMed  Google Scholar 

  3. Bennett ES, Weissman BA (2005) Clinical contact lens practice. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  4. Ding M, Sorescu DC, Star A (2013) Photoinduced charge transfer and acetone sensitivity of single-walled carbon nanotube-titanium dioxide hybrids. J Am Chem Soc 135(24):9015–9022. https://doi.org/10.1021/ja402887v

    Article  CAS  PubMed  Google Scholar 

  5. Google Press Release (2014) What is Google doing with a smart contact lens?

    Google Scholar 

  6. Grosvenor T, Grosvenor TP (2007) Primary care optometry. Butterworth-Heinemann/Elsevier, St. Louis

    Google Scholar 

  7. Liu Y, Zhang Y, Guan Y (2009) New polymerized crystalline colloidal array for glucose sensing. Chem Commun (Camb) 14:1867–1869. https://doi.org/10.1039/b821706h

    Article  CAS  Google Scholar 

  8. Liu C, Sheng Y, Sun Y, Feng J, Zhang J, Xu J, Jiang D (2015) A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva. Biosens Bioelectron 70:455–461. https://doi.org/10.1016/j.bios.2015.03.070

    Article  CAS  PubMed  Google Scholar 

  9. Nicolson P, Vogt J (2001) Soft contact lens polymers: an evolution. Biomaterials 22(24):3273–3283. https://doi.org/10.1016/S0142-9612(01)00165-X

    Article  CAS  PubMed  Google Scholar 

  10. Ruben M, Guillon M (1979) ‘Silicone ruvver’ lenses in aphakia. Br J Ophthalmol 63:471–474

    Article  CAS  Google Scholar 

  11. Sensimed AG (2013) “Sensimed triggerfish flyer”

    Google Scholar 

  12. Sinha R, Dada VK (2017) Textbook of contact lenses. Jaypee Brothers Medical Publishers, New Delhi/Philadelphia

    Book  Google Scholar 

  13. Song YW, Lee SY, Lee JY, Lim JA, Choi JW, Cheong BK, Kim JS, Jang HS, Yi HJ (2015) U.S. Patent No. 14/538,206. Korea Institute of Science and Technology, Seoul, Korea

    Google Scholar 

  14. Steinemann TL, Pinninti U, Szczotka LB, Eiferman RA, Price FW Jr (2003) Ocular complications associated with the use of cosmetic contact lenses from unlicensed vendors. Eye Contact Lens 29(4):196–200. https://doi.org/10.1097/00140068-200310000-00002

    Article  PubMed  Google Scholar 

  15. Wu W, Shen J, Li Y, Zhu H, Banerjee P, Zhou S (2012) Specific glucose-to-SPR signal transduction at physiological pH by molecularly imprinted responsive hybrid microgels. Biomaterials 33(29):7115–7125. https://doi.org/10.1016/j.biomaterials

    Article  CAS  PubMed  Google Scholar 

  16. Yao H, Shum AJ, Cowan M, Lahdesmaki I, Parviz BA (2011) A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron 26(7):3290–3296. https://doi.org/10.1016/j.bios.2010.12.042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015M3A9E2030125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Yun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, S., Lee, D.Y. (2018). Materials and Applications of Smart Diagnostic Contact Lens Systems. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_9

Download citation

Publish with us

Policies and ethics