Skip to main content

Intrinsically Conductive Polymer Nanocomposites for Cellular Applications

  • Chapter
  • First Online:
Cutting-Edge Enabling Technologies for Regenerative Medicine

Abstract

Intrinsically conductive polymer nanocomposites have a remarkable potential for cellular applications such as biosensors, drug delivery systems, cell culture systems and tissue engineering biomaterials. Intrinsically conductive polymers transmit electrical stimuli between cells, and induce regeneration of electroactive tissues such as muscle, nerve, bone and heart. However, biocompatibility and processability are common issues for intrinsically conductive polymers. Conductive polymer composites are gaining importance for tissue engineering applications due to their excellent mechanical, electrical, optical and chemical functionalities. Here, we summarize the different types of intrinsically conductive polymers containing electroactive nanocomposite systems. Cellular applications of conductive polymer nanocomposites are also discussed focusing mainly on poly(aniline), poly(pyrrole), poly(3,4-ethylene dioxythiophene) and poly(thiophene).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assaf K, Leal CV, Derami MS, Rezende-Duek EA, Ceragioli HJ, Oliveira ALR (2017) Sciatic nerve repair using poly (ε-caprolactone) tubular prosthesis associated with nanoparticles of carbon and graphene. Brain Behav 7(8):e00755. https://doi.org/10.1002/brb3.755

    Article  PubMed  PubMed Central  Google Scholar 

  2. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  3. Behari J, Behari J (2009) Changes in bone histology due to capacitive electric field stimulation of ovariectomized rat. Indian J Med Res 130(6):720–725 ISSN: 0971-5916

    PubMed  Google Scholar 

  4. Beregoi M, Busuioc C, Evanghelidis A, Matei E, Iordache F, Radu M, Dinischiotu A, Enculescu I (2016) Electrochromic properties of polyaniline-coated fiber webs for tissue engineering applications. Int J Pharm 510(2):465–473. https://doi.org/10.1016/j.ijpharm.2015.11.055

    Article  CAS  PubMed  Google Scholar 

  5. Bhat NV, Gadre AP, Bambole VA (2001) Structural, mechanical, and electrical properties of electropolymerized polypyrrole composite films. J Appl Polym Sci 80(13):2511–2517. https://doi.org/10.1002/app.1359

    Article  CAS  Google Scholar 

  6. Björninen M, Gilmore K, Pelto J, Seppänen-Kaijansinkko R, Kellomäki M, Miettinen S, Wallace G, Grupma D, Haimi S (2017) Electrically stimulated adipose stem cells on polypyrrole-coated scaffolds for smooth muscle tissue engineering. Ann Biomed Eng 45(4):1015–1026. https://doi.org/10.1007/s10439-016-1755-7

    Article  PubMed  Google Scholar 

  7. Bongo M, Winther-Jensen O, Himmelberger S, Strakosas X, Ramuz M, Hama A, Owens RM (2013) PEDOT: gelatin composites mediate brain endothelial cell adhesion. J Mater Chem B 1(31):3860–3867. https://doi.org/10.1039/C3TB20374C

    Article  CAS  Google Scholar 

  8. Broda CR, Lee JY, Sirivisoot S, Schmidt CE, Harrison BS (2011) A chemically polymerized electrically conducting composite of polypyrrole nanoparticles and polyurethane for tissue engineering. J Biomed Mater Res A 98(4):509–516. https://doi.org/10.1002/jbm.a.33128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bueno VB, Takahashi SH, Catalani LH, De Torresi SIC, Petri DFS (2015) Biocompatible xanthan/polypyrrole scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl 52:121–128. https://doi.org/10.1016/j.msec.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  10. Chen CH, LaRue JC, Nelson RD, Kulinsky L, Madou MJ (2012) Electrical conductivity of polymer blends of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate): N-methyl-2-pyrrolidinone and polyvinyl alcohol. J Appl Polym Sci 125(4):3134–3141. https://doi.org/10.1002/app.36474

    Article  CAS  Google Scholar 

  11. Chen CH, Torrents A, Kulinsky L, Nelson RD, Madou MJ, Valdevit L, LaRue JC (2011) Mechanical characterizations of cast poly(3, 4-ethylenedioxythiophene): poly (styrenesulfonate)/polyvinyl alcohol thin films. Synth Met 161(21):2259–2267. https://doi.org/10.1016/j.synthmet.2011.08.031

    Article  CAS  Google Scholar 

  12. Chen MC, Sun YC, Chen YH (2013) Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomater 9(3):5562–5572. https://doi.org/10.1016/j.actbio.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Li C, Hou Z, Huang S, Liu B, He F, Luo L, Lin J (2015) Polyaniline electrospinning composite fibers for orthotopic photothermal treatment of tumors in vivo. New J Chem 39(6):4987–4993. https://doi.org/10.1039/c5nj00327j

    Article  CAS  Google Scholar 

  14. Creecy CM, O'Neill CF, Arulanandam BP, Sylvia VL, Navara CS, Bizios R (2013) Mesenchymal stem cell osteodifferentiation in response to alternating electric current. Tissue Eng Part A 19(3–4):467–474. https://doi.org/10.1089/ten.TEA.2012.0091

    Article  CAS  PubMed  Google Scholar 

  15. Dan D, Sun L, Guo Y, Cheng W (2015) Study on the mechanical properties of stay cable HDPE sheathing fatigue in dynamic bridge environments. Polymers 7(8):1564–1576. https://doi.org/10.3390/polym7081470

    Article  CAS  Google Scholar 

  16. De Volder R, Kong H (2011) Biomaterials for studies in cellular mechanotransduction. Mechanobiol Cell-Cell Cell-Matrix Interact:267–277. https://doi.org/10.1007/978-1-4419-8083-0_12

    Chapter  Google Scholar 

  17. Diniz P, Shomura K, Soejima K, Ito G (2002) Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 23(5):398–405. https://doi.org/10.1002/bem.10032

    Article  PubMed  Google Scholar 

  18. Dogan A, Parmaksız M, Elçin AE, Elçin YM (2016) Extracellular matrix and regenerative therapies from the cardiac perspective. Stem Cell Rev Rep 12(2):202–213. https://doi.org/10.1007/s12015-015-9641-5

    Article  CAS  Google Scholar 

  19. Dogan A, Elçin AE, Elçin YM (2017) Translational applications of tissue engineering in cardiovascular medicine. Curr Pharm Des 23(6):903–914. https://doi.org/10.2174/1381612823666161111141954

    Article  CAS  PubMed  Google Scholar 

  20. Elçin YM (2004) Stem cells and tissue engineering. Biomaterials:301–316. https://doi.org/10.1007/978-0-306-48584-8_23

    Google Scholar 

  21. Fang L, Liang B, Yang G, Hu Y, Zhu Q, Ye X (2017) A needle-type glucose biosensor based on PANI nanofibers and PU/E-PU membrane for long-term invasive continuous monitoring. Biosens Bioelectron 97:196–202. https://doi.org/10.1016/j.bios.2017.04.043

    Article  CAS  PubMed  Google Scholar 

  22. Gairola P, Gairola SP, Kumar V, Singh K, Dhawan SK (2016) Barium ferrite and graphite integrated with polyaniline as effective shield against electromagnetic interference. Synth Met 221:326–331. https://doi.org/10.1016/j.synthmet.2016.09.023

    Article  CAS  Google Scholar 

  23. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2009) Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng Part A 15(11):3605–3619. https://doi.org/10.1089/ten.TEA.2008.0689

    Article  CAS  PubMed  Google Scholar 

  24. Guarino V, Alvarez-Perez MA, Borriello A, Napolitano T, Ambrosio L (2013) Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Adv Healthc Mater 2(1):218–227. https://doi.org/10.1002/adhm.201200152

    Article  CAS  PubMed  Google Scholar 

  25. Guex AG, Puetzer JL, Armgarth A, Littmann E, Stavrinidou E, Giannelis EP, Malliaras GG, Stevens MM (2017) Highly porous scaffolds of PEDOT: PSS for bone tissue engineering. Acta Biomater 62:91–101. https://doi.org/10.1016/j.actbio.2017.08.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hosseini-Nassab N, Samanta D, Abdolazimi Y, Annes JP, Zare RN (2017) Electrically controlled release of insulin using polypyrrole nanoparticles. Nanoscale 9(1):143–149. https://doi.org/10.1039/C6NR08288B

    Article  CAS  PubMed  Google Scholar 

  27. Hosseinzadeh S, Mahmoudifard M, Mohamadyar-Toupkanlou F, Dodel M, Hajarizadeh A, Adabi M, Soleimani M (2016) The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells. Bioprocess Biosyst Eng 39(7):1163–1172. https://doi.org/10.1007/s00449-016-1592-y

    Article  CAS  PubMed  Google Scholar 

  28. Hsiao CW, Bai MY, Chang Y, Chung MF, Lee TY, Wu CT, Maiti B, Liao ZX, Li RK, Sung HW (2013) Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 34(4):1063–1072. https://doi.org/10.1016/j.biomaterials.2012.10.065

    Article  CAS  PubMed  Google Scholar 

  29. Hu M, Ma M, Zhao Z, Yu D, He J (2016) Superhard sp2–sp3 hybrid carbon allotropes with tunable electronic properties. AIP Adv 6(5):055020. https://doi.org/10.1063/1.4952426

    Article  CAS  Google Scholar 

  30. Hui N, Sun X, Niu S, Luo X (2017) PEGylated polyaniline nanofibers: antifouling and conducting biomaterial for electrochemical DNA sensing. ACS Appl Mater Interfaces 9(3):2914–2923. https://doi.org/10.1021/acsami.6b11682

    Article  CAS  PubMed  Google Scholar 

  31. Humpolíček P, Kasparkova V, Saha P, Stejskal J (2012) Biocompatibility of polyaniline. Synth Met 162(7):722–727. https://doi.org/10.1016/j.synthmet.2012.02.024

    Article  CAS  Google Scholar 

  32. Humpolíček P, Radaszkiewicz KA, Kašpárková V, Stejskal J, Trchová M, Kuceková Z, Vičarová H, Pacherník J, Lehocky M, Minařík A (2015) Stem cell differentiation on conducting polyaniline. RSC Adv 5(84):68796–68805. https://doi.org/10.1039/C5RA12218J

    Article  CAS  Google Scholar 

  33. Jang J, Ha J, Kim K (2008) Organic light-emitting diode with polyaniline-poly (styrene sulfonate) as a hole injection layer. Thin Solid Films 516(10):3152–3156. https://doi.org/10.1016/j.tsf.2007.08.088

    Article  CAS  Google Scholar 

  34. Jasim A, Ullah MW, Shi Z, Lin X, Yang G (2017) Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr Polym 163:62–69. https://doi.org/10.1016/j.carbpol.2017.01.056

    Article  CAS  PubMed  Google Scholar 

  35. Jaymand M, Sarvari R, Abbaszadeh P, Massoumi B, Eskandani M, Beygi-Khosrowshahi Y (2016) Development of novel electrically conductive scaffold based on hyperbranched polyester and polythiophene for tissue engineering applications. J Biomed Mater Res A 104(11):2673–2684. https://doi.org/10.1002/jbm.a.35811

    Article  CAS  PubMed  Google Scholar 

  36. Jin J, Huang Z, Yin G, Yang A, Tang S (2015) Fabrication of polypyrrole/proteins composite film and their electro-controlled release for axons outgrowth. Electrochim Acta 185:172–177. https://doi.org/10.1016/j.electacta.2015.10.123

    Article  CAS  Google Scholar 

  37. Jun I, Jeong S, Shin H (2009) The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Biomaterials 30(11):2038–2047. https://doi.org/10.1016/j.biomaterials.2008.12.063

    Article  CAS  PubMed  Google Scholar 

  38. Kabiri M, Oraee-Yazdani S, Shafiee A, Hanaee-Ahvaz H, Dodel M, Vaseei M, Soleimani M (2015) Neuroregenerative effects of olfactory ensheathing cells transplanted in a multi-layered conductive nanofibrous conduit in peripheral nerve repair in rats. J Biomed Sci Eng 22(1):35. https://doi.org/10.1186/s12929-015-0144-0

    Article  CAS  Google Scholar 

  39. Kepić DP, Marković ZM, Jovanović SP, Peruško DB, Budimir MD, Holclajtner-Antunović ID, Pavlović VB, Marković BMT (2014) Preparation of PEDOT: PSS thin films doped with graphene and graphene quantum dots. Synth Met 198:150–154. https://doi.org/10.1016/j.synthmet.2014.10.017

    Article  CAS  Google Scholar 

  40. Ketabat F, Karkhaneh A, Mehdinavaz Aghdam R, HosseinAhmadi-Tafti S (2017) Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications. J Biomat Sci-Polym Ed 28(8):794–805. https://doi.org/10.1080/09205063.2017.1302314

    Article  CAS  Google Scholar 

  41. Kumar R, Oves M, Almeelbi T, Al-Makishah NH, Barakat MA (2017) Hybrid chitosan/polyaniline-polypyrrole biomaterial for enhanced adsorption and antimicrobial activity. J Colloid Interface Sci 490:488–496. https://doi.org/10.1016/j.jcis.2016.11.082

    Article  CAS  PubMed  Google Scholar 

  42. Lai J, Yi Y, Zhu P, Shen J, Wu K, Zhang L, Liu J (2016) Polyaniline-based glucose biosensor: a review. J Electroanal Chem 782:138–153. https://doi.org/10.1016/j.jelechem.2016.10.033

    Article  CAS  Google Scholar 

  43. Lari A, Sun T, Sultana N (2016) PEDOT:PSS-containing nanohydroxyapatite/chitosan conductive bionanocomposite scaffold: fabrication and evaluation. J Nanomater. https://doi.org/10.1155/2016/9421203

    Article  Google Scholar 

  44. Lee JY, Lee JW, Schmidt CE (2009) Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole. J R Soc Interface 6(38):801–810. https://doi.org/10.1098/rsif.2008.0403

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Liu L, Zhang D, Yang D, Guo J, Wei J (2014) Fabrication of polyaniline/silver nanoparticles/multi-walled carbon nanotubes composites for flexible microelectronic circuits. Synth Met 192:15–22. https://doi.org/10.1016/j.synthmet.2014.02.026

    Article  CAS  Google Scholar 

  46. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27(13):2705–2715. https://doi.org/10.1016/j.biomaterials.2005.11.037

    Article  CAS  PubMed  Google Scholar 

  47. Li Y, Li X, Zhao R, Wang C, Qiu F, Sun B, Ji H, Qiu J, Wang C (2017) Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation. Mater Sci Eng C 72:106–112. https://doi.org/10.1016/j.msec.2016.11.052

    Article  CAS  Google Scholar 

  48. Liu J, Tian S, Knoll W (2005) Properties of polyaniline/carbon nanotube multilayer films in neutral solution and their application for stable low-potential detection of reduced β-nicotinamide adenine dinucleotide. Langmuir 21(12):5596–5599. https://doi.org/10.1021/la0501233

    Article  CAS  PubMed  Google Scholar 

  49. MacDiarmid AG, Mammone RJ, Kaner RB, Porter SJ, Pethig R, Heeger AJ, Rosseinsky DR (1985) The concept of doping of conducting polymers: the role of reduction potentials. Philos Trans R Soc A 314(1528):3–15. https://doi.org/10.1098/rsta.1985.0004

    Article  Google Scholar 

  50. Mahato N, Cho MH (2016) Graphene integrated polyaniline nanostructured composite coating for protecting steels from corrosion: synthesis, characterization, and protection mechanism of the coating material in acidic environment. Constr Build Mater 115:618–633. https://doi.org/10.1016/j.conbuildmat.2016.04.073

    Article  CAS  Google Scholar 

  51. Malmonge LF, Langiano SDC, Cordeiro JMM, Mattoso LHC, Malmonge JA (2010) Thermal and mechanical properties of PVDF/PANI blends. Mater Res 13(4):465–470. https://doi.org/10.1590/S1516-14392010000400007

    Article  CAS  Google Scholar 

  52. Maráková N, Humpolíček P, Kašpárková V, Capáková Z, Martinková L, Bober P, Trchovác M, Stejskal J (2017) Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Appl Surf Sci 396:169–176. https://doi.org/10.1016/j.apsusc.2016.11.024

    Article  CAS  Google Scholar 

  53. Matveeva ES (1996) Could the acid doping of polyaniline represent the charge transfer interaction? Synth Met 83(2):89–96. https://doi.org/10.1016/S0379-6779(97)80059-8

    Article  CAS  Google Scholar 

  54. McKeon KD, Lewis A, Freeman JW (2010) Electrospun poly (D, L-lactide) and polyaniline scaffold characterization. J Appl Polym Sci 115(3):1566–1572. https://doi.org/10.1002/app.31296

    Article  CAS  Google Scholar 

  55. Mihardja SS, Sievers RE, Lee RJ (2008) The effect of polypyrrole on arteriogenesis in an acute rat infarct model. Biomaterials 29(31):4205–4210. https://doi.org/10.1016/j.biomaterials.2008.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mihic A, Cui Z, Wu J, Vlacic G, Miyagi Y, Li SH, Lu S, Sung HW, Weisel D, Li RK (2015) A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct. Circulation 132(8):772–784. https://doi.org/10.1161/Circulationaha.114.014937

    Article  CAS  PubMed  Google Scholar 

  57. Miller JS (2000) The 2000 nobel prize in chemistry - a personal accolade. ChemPhysChem 1(4):229–230. https://doi.org/10.1002/1439-7641(20001215)1:4<229::AID-CPHC229>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  58. Mobini S, Leppik L, Parameswaran VT, Barker JH (2017) In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. Peer J 5:e2821. https://doi.org/10.7717/peerj.2821

    Article  CAS  PubMed  Google Scholar 

  59. Modak P, Kondawar SB, Nandanwar DV (2015) Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding. Proc Math Sci 10:588–594. https://doi.org/10.1016/j.mspro.2015.06.010

    Article  CAS  Google Scholar 

  60. Mondal S, Malik S (2016) Easy synthesis approach of Pt-nanoparticles on polyaniline surface: an efficient electro-catalyst for methanol oxidation reaction. J Power Sources 328:271–279. https://doi.org/10.1016/j.jpowsour.2016.08.026

    Article  CAS  Google Scholar 

  61. Oh WK, Kim S, Kwon O, Jang J (2011) Shape-dependent cytotoxicity of polyaniline nanomaterials in human fibroblast cells. J Nanosci Nanotechnol 11(5):4254–4260. https://doi.org/10.1166/jnn.2011.3662

    Article  CAS  PubMed  Google Scholar 

  62. Oh WK, Kim S, Yoon H, Jang J (2010) Shape-dependent cytotoxicity and proinflammatory response of poly (3, 4-ethylenedioxythiophene) nanomaterials. Small 6(7):872–879. https://doi.org/10.1002/smll.200902074

    Article  CAS  PubMed  Google Scholar 

  63. Park H, Bhalla R, Saigal R, Radisic M, Watson N, Langer R, Vunjak-Novakovic G (2008) Effects of electrical stimulation in C2C12 muscle constructs. J Tissue Eng Regen Med 2(5):279–287. https://doi.org/10.1002/term.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pelto J, Björninen M, Pälli A, Talvitie E, Hyttinen J, Mannerström B, Suuronen Seppanen R, Kellomäki M, Miettinen S, Haimi S (2013) Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Part A 19:882–892. https://doi.org/10.1089/ten.tea.2012.0111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Petrov P, Mokreva P, Kostov I, Uzunova V, Tzoneva R (2016) Novel electrically conducting 2-hydroxyethylcellulose/polyaniline nanocomposite cryogels: synthesis and application in tissue engineering. Carbohydr Polym 140:349–355. https://doi.org/10.1016/j.carbpol.2015.12.069

    Article  CAS  PubMed  Google Scholar 

  66. Pires F, Ferreira Q, Rodrigues CA, Morgado J, Ferreira FC (2015) Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. BBA-Gen Subjects 1850(6):1158–1168. https://doi.org/10.1016/j.bbagen.2015.01.020

    Article  CAS  Google Scholar 

  67. Pournaqi F, Ghiaee A, Vakilian S, Ardeshirylajimi A (2017) Improved proliferation and osteogenic differentiation of mesenchymal stem cells on polyaniline composited by polyethersulfone nanofibers. Biologicals 45:78–84. https://doi.org/10.1016/j.biologicals.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  68. Prabhakar PK, Raj S, Anuradha PR, Sawant SN, Doble M (2011) Biocompatibility studies on polyaniline and polyaniline–silver nanoparticle coated polyurethane composite. Colloid Surf B 86(1):146–153. https://doi.org/10.1016/j.colsurfb.2011.03.033

    Article  CAS  Google Scholar 

  69. Qazi TH, Rai R, Dippold D, Roether JE, Schubert DW, Rosellini E, Barbani N, Boccaccini AR (2014) Development and characterization of novel electrically conductive PANI–PGS composites for cardiac tissue engineering applications. Acta Biomater 10(6):2434–2445. https://doi.org/10.1016/j.actbio.2014.02.023

    Article  CAS  PubMed  Google Scholar 

  70. Rajzer I, Rom M, Menaszek E, Pasierb P (2015) Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering. Mater Lett 138:60–63. https://doi.org/10.1016/j.matlet.2014.09.077

    Article  CAS  Google Scholar 

  71. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J Roy Soc Interface rsif20100120. https://doi.org/10.1098/rsif.2010.0120.focus

    Article  CAS  Google Scholar 

  72. Saha S, Sarkar P, Sarkar M, Giri B (2015) Electroconductive smart polyacrylamide–polypyrrole (PAC–PPY) hydrogel: a device for controlled release of risperidone. RSC Adv 5(35):27665–27673. https://doi.org/10.1039/C5RA03535J

    Article  CAS  Google Scholar 

  73. Sajesh KM, Jayakumar R, Nair SV, Chennazhi KP (2013) Biocompatible conducting chitosan/polypyrrole–alginate composite scaffold for bone tissue engineering. Int J Biol Macromol 62:465–471. https://doi.org/10.1016/j.ijbiomac.2013.09.028

    Article  CAS  PubMed  Google Scholar 

  74. Sánchez-Palencia D, Rathan S, Ankeny CJ, Fogg R, Briceño JC, Yoganathan AP (2017) Mechanotransduction in small intestinal submucosa scaffolds: fabrication parameters potentially modulate the shear-induced expression of PECAM-1 and eNOS. J Tissue Eng Regen Med 11(5):1427–1434. https://doi.org/10.1002/term.2040

    Article  CAS  PubMed  Google Scholar 

  75. Setti L, Fraleoni-Morgera A, Ballarin B, Filippini A, Frascaro D, Piana C (2005) An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosens Bioelectron 20(10):2019–2026. https://doi.org/10.1016/j.bios.2004.09.022

    Article  CAS  PubMed  Google Scholar 

  76. Shafei S, Foroughi J, Stevens L, Wong CS, Zabihi O, Naebe M (2017) Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Res Chem Intermed 43(2):1235–1251. https://doi.org/10.1007/s11164-016-2695-4

    Article  CAS  Google Scholar 

  77. Sharma AK, Sharma Y, Duhan S (2015) Biocompatible smart matrices based on poly (3, 4-ethylenedioxythiophene)-poly (N-isopropylacrylamide) composite. Int J Polym Mater Polym 64(7):333–337. https://doi.org/10.1080/00914037.2014.945204

    Article  CAS  Google Scholar 

  78. Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture). Angew Chem Int Ed 40(14):2574–2580. https://doi.org/10.1002/1521-3773(20010716)40:14<2574::AID-ANIE2574>3.0.CO;2-N

    Article  Google Scholar 

  79. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. J Chem Soc Chem Commun 16:578–580. https://doi.org/10.1039/C39770000578

    Article  Google Scholar 

  80. Sirivisoot S, Pareta R, Harrison BS (2014) Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration. Interface Focus 4(1):20130050. https://doi.org/10.1098/rsfs.2013.0050

    Article  PubMed  PubMed Central  Google Scholar 

  81. Song B, Li L, Lin Z, Wu ZK, Moon KS, Wong CP (2015) Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities. Nano Energy 16:470–478. https://doi.org/10.1016/j.nanoen.2015.06.020

    Article  CAS  Google Scholar 

  82. Spearman BS, Hodge AJ, Porter JL, Hardy JG, Davis ZD, Xu T, Zhang X, Schmidt CE, Hamilton MC, Lipke EA (2015) Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells. Acta Biomater 28:109–120. https://doi.org/10.1016/j.actbio.2015.09.025

    Article  CAS  PubMed  Google Scholar 

  83. Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S (2015) Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloid Surface B 134:346–354. https://doi.org/10.1016/j.colsurfb.2015.07.019

    Article  CAS  Google Scholar 

  84. Srivastava N, Venugopalan V, Divya MS, Rasheed VA, James J, Narayan KS (2013) Neuronal differentiation of embryonic stem cell derived neuronal progenitors can be regulated by stretchable conducting polymers. Tissue Eng Part A 19(17–18):1984–1993. https://doi.org/10.1089/ten.TEA.2012.0626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stewart E, Kobayashi NR, Higgins MJ, Quigley AF, Jamali S, Moulton SE, Kapsa RM, Wallace GG, Crook JM (2015) Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering. Tissue Eng Part C Methods 21(4):385–393. https://doi.org/10.1089/ten.TEC.2014.0338

    Article  CAS  PubMed  Google Scholar 

  86. Sudwilai T, Ng JJ, Boonkrai C, Israsena N, Chuangchote S, Supaphol P (2014) Polypyrrole-coated electrospun poly (lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth. J Biomater Sci Polym Ed 25(12):1240–1252. https://doi.org/10.1080/09205063.2014.926578

    Article  CAS  PubMed  Google Scholar 

  87. Sun B, Wu T, Wang J, Li D, Wang J, Gao Q, Bhutto MA, El-Hamshary H, Al-Deyab SS, Mo X (2016) Polypyrrole-coated poly(L-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation. J Mater Chem B 4(41):6670–6679. https://doi.org/10.1039/C6TB01710J

    Article  CAS  Google Scholar 

  88. Teixeira-Dias B, del Valle LJ, Estrany F, Mano JF, Reis RL, Alemán C (2012) Dextrin- and conducting-polymer-containing biocomposites: properties and behavior as cellular matrix. Macromol Mater Eng 297(4):359–368. https://doi.org/10.1002/mame.201100180

    Article  CAS  Google Scholar 

  89. Vaitkuviene A, Ratautaite V, Mikoliunaite L, Kaseta V, Ramanauskaite G, Biziuleviciene G, Ramanaviciene A, Ramanavicius A (2014) Some biocompatibility aspects of conducting polymer polypyrrole evaluated with bone marrow-derived stem cells. Colloid Surf A 442:152–156. https://doi.org/10.1016/j.colsurfa.2013.06.030

    Article  CAS  Google Scholar 

  90. Wang H, Cai HH, Zhang L, Cai J, Yang PH, Chen ZW (2013) A novel gold nanoparticle-doped polyaniline nanofibers-based cytosensor confers simple and efficient evaluation of T-cell activation. Biosens Bioelectron 50:167–173. https://doi.org/10.1016/j.bios.2013.04.047

    Article  CAS  PubMed  Google Scholar 

  91. Wang J, Wang X, Tang H, Gao Z, He S, Li J, Han S (2018) Ultrasensitive electrochemical detection of tumor cells based on multiple layer CdS quantum dots-functionalized polystyrene microspheres and graphene oxide–polyaniline composite. Biosens Bioelectron 100:1–7. https://doi.org/10.1016/j.bios.2017.07.077

    Article  CAS  PubMed  Google Scholar 

  92. Wang L, Wu Y, Hu T, Guo B, Ma PX (2017a) Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomater 59:68–81. https://doi.org/10.1016/j.actbio.2017.06.036

    Article  CAS  PubMed  Google Scholar 

  93. Wang S, Sun C, Guan S, Li W, Xu J, Ge D, Zhuang M, Liu T, Ma X (2017b) Chitosan/gelatin porous scaffolds assembled with conductive poly (3, 4-ethylenedioxythiophene) nanoparticles for neural tissue engineering. J Mater Chem B 5:4774. https://doi.org/10.1039/C7TB00608J

    Article  CAS  Google Scholar 

  94. Whitehead MA, Fan D, Akkaraju GR, Canham LT, Coffer JL (2007) Accelerated calcification in electrically conductive polymer composites comprised of poly (ε-caprolactone), polyaniline, and bioactive mesoporous silicon. J Biomed Mater Res A 83(1):225–234. https://doi.org/10.1002/jbm.a.31547

    Article  CAS  PubMed  Google Scholar 

  95. Whulanza Y, Battini E, Vannozzi L, Vomero M, Ahluwalia A, Vozzi G (2013) Electrical and mechanical characterisation of single wall carbon nanotubes based composites for tissue engineering applications. J Nanosci Nanotechnol 13(1):188–197. https://doi.org/10.1166/jnn.2013.6708

    Article  CAS  PubMed  Google Scholar 

  96. Wu Y, Chen YX, Yan J, Quinn D, Dong P, Sawyer SW, Soman P (2016) Fabrication of conductive gelatin methacrylate–polyaniline hydrogels. Acta Biomater 33:122–130. https://doi.org/10.1016/j.actbio.2016.01.036

    Article  CAS  PubMed  Google Scholar 

  97. Xie A, Tao F, Hu L, Li Y, Sun W, Jiang C, Cheng F, Luo S, Yao C (2017) Synthesis and enhanced electrochemical performance of Pt-ag/porous polyaniline composites for glycerol oxidation. Electrochim Acta 231:502–510. https://doi.org/10.1016/j.electacta.2017.02.086

    Article  CAS  Google Scholar 

  98. Xu P, Hussain AM, Xu X, Cui J, Li W, Wang G (2010) Preparation and cytocompatibility of polyaniline/PLCL conductive nanofibers. Int Biomed Eng Inf 4:1719–1722. https://doi.org/10.1109/BMEI.2010.5639675

    Article  CAS  Google Scholar 

  99. Yang J, Choe G, Yang S, Jo H, Lee JY (2016) Polypyrrole-incorporated conductive hyaluronic acid hydrogels. Biomat Res 20(1):31. https://doi.org/10.1186/s40824-016-0078-y

    Article  CAS  Google Scholar 

  100. Yow SZ, Lim TH, Yim EK, Lim CT, Leong KW (2011) A 3D electroactive polypyrrole-collagen fibrous scaffold for tissue engineering. Polymers 3(1):527–544. https://doi.org/10.3390/polym3010527

    Article  CAS  Google Scholar 

  101. Zelikin AN, Lynn DM, Farhadi J, Martin I, Shastri V, Langer R (2002) Erodible conducting polymers for potential biomedical applications. Angew Chem Int Edit 41(1):141–144. https://doi.org/10.1002/1521-3773(20020104)41:1<141::AID-ANIE141>3.0.CO;2-V

    Article  CAS  Google Scholar 

  102. Zhang B, Xu Y, Zheng Y, Dai L, Zhang M, Yang J, Chen Y, Chen X, Zhou J (2011) A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells. Nanoscale Res Lett 6(1):431. https://doi.org/10.1186/1556-276X-6-431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang J, Qiu K, Sun B, Fang J, Zhang K, Hany EH, Al-Deyab SS, Mo X (2014) The aligned core–sheath nanofibers with electrical conductivity for neural tissue engineering. J Mater Chem B 2(45):7945–7954. https://doi.org/10.1039/C4TB01185F

    Article  CAS  Google Scholar 

  104. Zhang M, Guo B (2017) Electroactive 3D scaffolds based on silk fibroin and water-borne polyaniline for skeletal muscle tissue engineering. Macromol Biosci. https://doi.org/10.1002/mabi.201700147

    Article  Google Scholar 

  105. Zhou JF, Wang YG, Cheng L, Wu Z, Sun XD, Peng J (2016) Preparation of polypyrrole-embedded electrospun poly (lactic acid) nanofibrous scaffolds for nerve tissue engineering. Neural Regen Res 11(10):1644. https://doi.org/10.4103/1673-5374.193245

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhu J, Liu X, Wang X, Huo X, Yan R (2015) Preparation of polyaniline–TiO2 nanotube composite for the development of electrochemical biosensors. Sensor Actuators B-Chem 221:450–457. https://doi.org/10.1016/j.snb.2015.06.131

    Article  CAS  Google Scholar 

  107. Zimmermann WH, Didié M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, Boy O, Neuhuber WL, Weyand M, Eschenhagen T (2002) Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106:I151–I157. https://doi.org/10.1161/01.cir.0000032876.55215.10

    Article  PubMed  Google Scholar 

Download references

Competing Interests

Y.M.E. is the founder of Biovalda, Inc. (Ankara, Turkey). The authors declare no competing interests in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaşar Murat Elçin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lalegül-Ülker, Ö., Elçin, A.E., Elçin, Y.M. (2018). Intrinsically Conductive Polymer Nanocomposites for Cellular Applications. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_8

Download citation

Publish with us

Policies and ethics