Skip to main content

Graphene-Based Nanocomposites as Promising Options for Hard Tissue Regeneration

  • Chapter
  • First Online:
Cutting-Edge Enabling Technologies for Regenerative Medicine

Abstract

Tissues are often damaged by physical trauma, infection or tumors. A slight injury heals naturally through the normal healing process, while severe injury causes serious health implications. Therefore, many efforts have been devoted to treat and repair various tissue defects. Recently, tissue engineering approaches have attracted a rapidly growing interest in biomedical fields to promote and enhance healing and regeneration of large-scale tissue defects. On the other hand, with the recent advances in nanoscience and nanotechnology, various nanomaterials have been suggested as novel biomaterials. Graphene, a two-dimensional atomic layer of graphite, and its derivatives have recently been found to possess promoting effects on various types of cells. In addition, their unique properties, such as outstanding mechanical and biological properties, allow them to be a promising option for hard tissue regeneration. Herein, we summarized recent research advances in graphene-based nanocomposites for hard tissue regeneration, and highlighted their promising potentials in biomedical and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abagnale G, Sechi A, Steger M, Zhou Q, Kuo C-C, Aydin G, Schalla C, Müller-Newen G, Zenke M, Costa IG (2017) Surface topography guides morphology and spatial patterning of induced pluripotent stem cell colonies. Stem Cell Rep 9(2):654–666

    Article  CAS  Google Scholar 

  2. Abbasi E, Akbarzadeh A, Kouhi M, Milani M (2016) Graphene: synthesis, bio-applications, and properties. Artif Cell Nanomed Biotechnol 44(1):150–156

    Article  CAS  Google Scholar 

  3. Afizah H, Yang Z, Hui JHP, Ouyang H-W, Lee E-H (2007) A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng 13(4):659–666

    Article  CAS  PubMed  Google Scholar 

  4. Akhavan O, Ghaderi E, Shahsavar M (2013) Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 59:200–211

    Article  CAS  Google Scholar 

  5. Asadi N, Alizadeh E, Salehi R, Khalandi B, Davaran S, Akbarzadeh A (2017) Nanocomposite hydrogels for cartilage tissue engineering: a review. Artif Cells Nanomed Biotechnol:1–7

    Google Scholar 

  6. Ayturk UM, Puttlitz CM (2011) Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Comput Methods Biomech Biomed Eng 14(8):695–705

    Article  Google Scholar 

  7. Basmanav FB, Kose GT, Hasirci V (2008) Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 29(31):4195–4204

    Article  PubMed  CAS  Google Scholar 

  8. Bedian L, Villalba-Rodríguez AM, Hernández-Vargas G, Parra-Saldivar R, Iqbal HMN (2017) Bio-based materials with novel characteristics for tissue engineering applications–a review. Int J Biol Macromol 98:837–846

    Article  CAS  PubMed  Google Scholar 

  9. Benoit DSW, Schwartz MP, Durney AR, Anseth KS (2008) Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7(10):816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boehm HP, Setton R, Stumpp E (1986) Nomenclature and terminology of graphite intercalation compounds. Carbon 24(2):241–245

    Article  CAS  Google Scholar 

  11. Boga JC, Miguel SP, de Melo-Diogo D, Mendonça AG, Louro RO, Correia IJ (2018) In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration. Colloids Surf B-Biointerfaces 165:207–218

    Article  CAS  PubMed  Google Scholar 

  12. Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17(2):137–146

    Article  CAS  PubMed  Google Scholar 

  13. Chen Z, Xu C, Ma C, Ren W, Cheng HM (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300

    Article  CAS  PubMed  Google Scholar 

  14. Choi YS, Vincent LG, Lee AR, Dobke MK, Engler AJ (2012) Mechanical derivation of functional myotubes from adipose-derived stem cells. Biomaterials 33(8):2482–2491

    Article  CAS  PubMed  Google Scholar 

  15. Chua P-H, Neoh K-G, Kang E-T, Wang W (2008) Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials 29(10):1412–1421

    Article  CAS  PubMed  Google Scholar 

  16. Cong H-P, Wang P, Yu S-H (2013) Stretchable and self-healing graphene oxide–polymer composite hydrogels: a dual-network design. Chem Mater 25(16):3357–3362

    Article  CAS  Google Scholar 

  17. Crowder SW, Prasai D, Rath R, Balikov DA, Bae H, Bolotin KI, Sung H-J (2013) Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2(3):187–208

    Article  CAS  PubMed  Google Scholar 

  19. de Groot K (1980) Bioceramics consisting of calcium phosphate salts. Biomaterials 1(1):47–50

    Article  PubMed  Google Scholar 

  20. Discher DE, Janmey P, Wang Y-l (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  CAS  PubMed  Google Scholar 

  21. Dong W, Hou L, Li T, Gong Z, Huang H, Wang G, Chen X, Li X (2015) A dual role of graphene oxide sheet deposition on titanate nanowire scaffolds for osteo-implantation: mechanical hardener and surface activity regulator. Sci Rep 5:18266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dubey N, Bentini R, Islam I, Cao T, Castro Neto AH, Rosa V (2015) Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int 2015:804213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6(1):13–22

    Article  CAS  PubMed  Google Scholar 

  24. Eleftheriadis E, Leventis MD, Tosios KI, Faratzis G, Titsinidis S, Eleftheriadi I, Dontas I (2010) Osteogenic activity of β-tricalcium phosphate in a hydroxyl sulphate matrix and demineralized bone matrix: a histological study in rabbit mandible. J Oral Sci 52(3):377–384

    Article  CAS  PubMed  Google Scholar 

  25. Elkhenany H, Amelse L, Lafont A, Bourdo S, Caldwell M, Neilsen N, Dervishi E, Derek O, Biris AS, Anderson D (2015) Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J Appl Toxicol 35(4):367–374

    Article  CAS  PubMed  Google Scholar 

  26. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  27. Fan Z, Wang J, Wang Z, Ran H, Li Y, Niu L, Gong P, Liu B, Yang S (2014) One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon 66:407–416

    Article  CAS  Google Scholar 

  28. Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, Zych GA, Calhoun JH, LaForte AJ, Yin S (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions: a prospective, randomized clinical trial comparing rhOP-1 with fresh bone autograft. J Bone Joint Surg Am 83(Pt 2):S151

    PubMed  Google Scholar 

  29. Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8(7):2045–2049

    Article  PubMed  CAS  Google Scholar 

  30. Gao C, Liu T, Shuai C, Peng S (2014) Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance. Sci Rep 4:4712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  CAS  PubMed  Google Scholar 

  32. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  PubMed  Google Scholar 

  33. Gonçalves G, Cruz SMA, Ramalho A, Grácio J, Marques PAAP (2012) Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Nanoscale 4(9):2937–2945

    Article  PubMed  CAS  Google Scholar 

  34. Gu M, Liu Y, Chen T, Du F, Zhao X, Xiong C, Zhou Y (2014) Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering? Tissue Eng Part B Rev 20(5):477–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gunn J, Zhang M (2010) Polyblend nanofibers for biomedical applications: perspectives and challenges. Trends Biotechnol 28(4):189–197

    Article  CAS  PubMed  Google Scholar 

  36. Hadden WJ, Young JL, Holle AW, McFetridge ML, Kim DY, Wijesinghe P, Taylor-Weiner H, Wen JH, Lee AR, Bieback K (2017) Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc Natl Acad Sci U S A 114(22):5647–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He J, Zhou W, Zhou X, Zhong X, Zhang X, Wan P, Zhu B, Chen W (2008) The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J Mater Sci-Mater Med 19(11):3465–3472

    Article  CAS  PubMed  Google Scholar 

  38. Hoon JL, Tan MH, Koh C-G (2016) The regulation of cellular responses to mechanical cues by rho GTPases. Cell 5(2):17

    Article  CAS  Google Scholar 

  39. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275(13):9645–9652

    Article  CAS  PubMed  Google Scholar 

  40. Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN (2015) Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4):4636–4648

    Article  CAS  PubMed  Google Scholar 

  41. Jakus AE, Shah R (2017) Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J Biomed Mater Res A 105(1):274–283

    Article  CAS  PubMed  Google Scholar 

  42. Jin L, Lee JH, Jin OS, Shin YC, Kim MJ, Hong SW, Lee MH, Park J-C, Han D-W (2015) Stimulated osteogenic differentiation of human mesenchymal stem cells by reduced graphene oxide. J Nanosci Nanotechnol 15(10):7966–7970

    Article  CAS  PubMed  Google Scholar 

  43. Jung HS, Lee T, Kwon IK, Kim HS, Hahn SK, Lee CS (2015) Surface modification of multipass caliber-rolled Ti alloy with dexamethasone-loaded graphene for dental applications. ACS Appl Mater Interfaces 7(18):9598–9607

    Article  CAS  PubMed  Google Scholar 

  44. Kapoor H, Agarwal A, Dhaon BK (2000) Displaced intra-articular fractures of distal radius: a comparative evaluation of results following closed reduction, external fixation and open reduction with internal fixation. Injury 31(2):75–79

    Article  CAS  PubMed  Google Scholar 

  45. Khatiwala CB, Peyton SR, Metzke M, Putnam AJ (2007) The regulation of osteogenesis by ECM rigidity in MC3T3-E1 cells requires MAPK activation. J Cell Physiol 211(3):661–672

    Article  CAS  PubMed  Google Scholar 

  46. Kim J-W, Shin YC, Lee J-J, Bae E-B, Jeon Y-C, Jeong C-M, Yun M-J, Lee S-H, Han D-W, Huh J-B (2017) The effect of reduced graphene oxide-coated biphasic calcium phosphate bone graft material on osteogenesis. Int J Mol Sci 18(8):1725

    Article  PubMed Central  Google Scholar 

  47. Ku SH, Park CB (2013) Myoblast differentiation on graphene oxide. Biomaterials 34(8):2017–2023

    Article  CAS  PubMed  Google Scholar 

  48. Kumar S, Chatterjee K (2015) Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold. Nanoscale 7(5):2023–2033

    Article  CAS  PubMed  Google Scholar 

  49. Kumazawa R, Watari F, Takashi N, Tanimura Y, Uo M, Totsuka Y (2002) Effects of Ti ions and particles on neutrophil function and morphology. Biomaterials 23(17):3757–3764

    Article  CAS  PubMed  Google Scholar 

  50. La W-G, Jin M, Park S, Yoon H-H, Jeong G-J, Bhang SH, Park H, Char K, Kim B-S (2014) Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. Int J Nanomedicine 9(Suppl 1):107

    PubMed  PubMed Central  Google Scholar 

  51. La WG, Park S, Yoon HH, Jeong GJ, Lee TJ, Bhang SH, Han JY, Char K, Kim BS (2013) Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small 9(23):4051–4060

    Article  CAS  PubMed  Google Scholar 

  52. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  PubMed  Google Scholar 

  53. Lee JH, Lee S-M, Shin YC, Park JH, Hong SW, Kim B, Lee JJ, Lim D, Lim Y-J, Huh JB (2016) Spontaneous osteodifferentiation of bone marrow-derived mesenchymal stem cells by hydroxyapatite covered with graphene nanosheets. J Biomater Tissue Eng 6(10):818–825

    Article  Google Scholar 

  54. Lee JH, Shin YC, Jin OS, Kang SH, Hwang Y-S, Park J-C, Hong SW, Han D-W (2015a) Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale 7(27):11642–11651

    Article  CAS  PubMed  Google Scholar 

  55. Lee JH, Shin YC, Lee S-M, Jin OS, Kang SH, Hong SW, Jeong C-M, Huh JB, Han D-W (2015b) Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep 5:18833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee JJ, Shin YC, Song S-J, Cha JM, Hong SW, Lim Y-J, Jeong SJ, Han D-W, Kim B (2017) Dicalcium phosphate coated with graphene synergistically increases osteogenic differentiation in vitro. Coatings 8(1):13

    Article  CAS  Google Scholar 

  57. Lee SH, Jung JH, Oh IK (2014) 3D networked graphene-ferromagnetic hybrids for fast shape memory polymers with enhanced mechanical stiffness and thermal conductivity. Small 10(19):3880–3886

    Article  CAS  PubMed  Google Scholar 

  58. Lee WC, Lim CH, Su C, Loh KP, Lim CT (2015c) Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 11(8):963–969

    Article  CAS  PubMed  Google Scholar 

  59. Lee WC, Lim CHY, Shi H, Tang LA, Wang Y, Lim CT, Loh KP (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9):7334–7341

    Article  CAS  PubMed  Google Scholar 

  60. Li D, Liu T, Yu X, Wu D, Su Z (2017) Fabrication of graphene–biomacromolecule hybrid materials for tissue engineering application. Polym Chem 8(30):4309–4321

    Article  CAS  Google Scholar 

  61. Li J, Wang G, Geng H, Zhu H, Zhang M, Di Z, Liu X, Chu PK, Wang X (2015) CVD growth of graphene on NiTi alloy for enhanced biological activity. ACS Appl Mater Interfaces 7(36):19876–19881

    Article  CAS  PubMed  Google Scholar 

  62. Li M-j, Liu C-m, Xie Y-b, Cao H-b, Zhao H, Zhang Y (2014a) The evolution of surface charge on graphene oxide during the reduction and its application in electroanalysis. Carbon 66:302–311

    Article  CAS  Google Scholar 

  63. Li M, Liu Q, Jia Z, Xu X, Cheng Y, Zheng Y, Xi T, Wei S (2014b) Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 67:185–197

    Article  CAS  Google Scholar 

  64. Li M, Xiong P, Yan F, Li S, Ren C, Yin Z, Li A, Li H, Ji X, Zheng Y (2018) An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioact Mater 3(1):1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, Liu L, Dai J, Tang M, Cheng G (2013) Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 3:1604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Li Y, Wu Y (2009) Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J Am Chem Soc 131(16):5851–5857

    Article  CAS  PubMed  Google Scholar 

  67. Liu H, Cheng J, Chen F, Hou F, Bai D, Xi P, Zeng Z (2014a) Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide. ACS Appl Mater Interfaces 6(5):3132–3140

    Article  CAS  PubMed  Google Scholar 

  68. Liu X, Shen H, Song S, Chen W, Zhang Z (2017) Accelerated biomineralization of graphene oxide–incorporated cellulose acetate nanofibrous scaffolds for mesenchymal stem cell osteogenesis. Colloids Surf B-Biointerfaces 159:251–258

    Article  CAS  PubMed  Google Scholar 

  69. Liu Y, Dang Z, Wang Y, Huang J, Li H (2014b) Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: inherited nanostructures and enhanced properties. Carbon 67:250–259

    Article  CAS  Google Scholar 

  70. Lobo AO, Corat MAF, Ramos SC, Matsushima JT, Granato AEC, Pacheco-Soares C, Corat EJ (2010) Fast preparation of hydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube composites for bioactive application. Langmuir 26(23):18308–18314

    Article  CAS  PubMed  Google Scholar 

  71. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  72. Mehrali M, Moghaddam E, Shirazi SFS, Baradaran S, Mehrali M, Latibari ST, Metselaar HSC, Kadri NA, Zandi K, Osman NAA (2014) Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. ACS Appl Mater Interfaces 6(6):3947–3962

    Article  CAS  PubMed  Google Scholar 

  73. Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 164(2):192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mellati A, Fan CM, Tamayol A, Annabi N, Dai S, Bi J, Jin B, Xian C, Khademhosseini A, Zhang H (2017) Microengineered 3D cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnol Bioeng 114(1):217–231

    Article  CAS  PubMed  Google Scholar 

  75. Menaa F, Abdelghani A, Menaa B (2015) Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. J Tissue Eng Regen Med 9(12):1321–1338

    Article  CAS  PubMed  Google Scholar 

  76. Mohammadi S, Shafiei SS, Asadi-Eydivand M, Ardeshir M, Solati-Hashjin M (2017) Graphene oxide-enriched poly (ε-caprolactone) electrospun nanocomposite scaffold for bone tissue engineering applications. J Bioact Compat Polym 32(3):325–342

    Article  CAS  Google Scholar 

  77. Moon YS, Kim D, Lee G, Hong SY, Kim KK, Park SM, Ha JS (2015) Fabrication of flexible micro-supercapacitor array with patterned graphene foam/MWNT-COOH/MnOx electrodes and its application. Carbon 81:29–37

    Article  CAS  Google Scholar 

  78. Murphy CM, Matsiko A, Haugh MG, Gleeson JP, O’Brien FJ (2012) Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. J Mech Behav Biomed Mater 11:53–62

    Article  CAS  PubMed  Google Scholar 

  79. Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee P-LR, Ahn J-H, Hong BH, Pastorin G (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678

    Article  CAS  PubMed  Google Scholar 

  80. Nie W, Peng C, Zhou X, Chen L, Wang W, Zhang Y, Ma PX, He C (2017) Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon 116:325–337

    Article  CAS  Google Scholar 

  81. Nieto A, Dua R, Zhang C, Boesl B, Ramaswamy S, Agarwal A (2015) Three dimensional graphene foam/polymer hybrid as a high strength biocompatible scaffold. Adv Funct Mater 25(25):3916–3924

    Article  CAS  Google Scholar 

  82. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  83. Park C, Park S, Lee D, Choi KS, Lim H-P, Kim J (2017) Graphene as an enabling strategy for dental implant and tissue regeneration. J Tissue Eng Regen Med 14(5):481–493

    Article  CAS  Google Scholar 

  84. Park J, Kim IY, Patel M, Moon HJ, Hwang SJ, Jeong B (2015) 2D and 3D hybrid systems for enhancement of chondrogenic differentiation of tonsil-derived mesenchymal stem cells. Adv Funct Mater 25(17):2573–2582

    Article  CAS  Google Scholar 

  85. Park KO, Lee JH, Park JH, Shin YC, Huh JB, Bae J-H, Kang SH, Hong SW, Kim B, Yang DJ (2016) Graphene oxide-coated guided bone regeneration membranes with enhanced osteogenesis: spectroscopic analysis and animal study. Appl Spectrosc Rev 51(7–9):540–551

    Article  CAS  Google Scholar 

  86. Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S (2011) Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 23(36):H263–H267

    Article  CAS  PubMed  Google Scholar 

  87. Patel M, Moon HJ, Ko DY, Jeong B (2016) Composite system of graphene oxide and polypeptide thermogel as an injectable 3D scaffold for adipogenic differentiation of tonsil-derived mesenchymal stem cells. ACS Appl Mater Interfaces 8(8):5160–5169

    Article  CAS  PubMed  Google Scholar 

  88. Perren SM (2002) Evolution of the internal fixation of long bone fractures: the scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br vol 84(8):1093–1110

    Article  Google Scholar 

  89. Phieffer LS, Goulet JA (2006) Delayed unions of the tibia. J Bone Joint Surg Am 88(1):205–216

    Article  Google Scholar 

  90. Qiao F, Li D, Jin Z, Gao Y, Zhou T, He J, Cheng L (2015) Application of 3D printed customized external fixator in fracture reduction. Injury 46(6):1150–1155

    Article  PubMed  Google Scholar 

  91. Rosa V, Xie H, Dubey N, Madanagopal TT, Rajan SS, Morin JLP, Islam I, Neto AHC (2016) Graphene oxide-based substrate: physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells. Dent Mater 32(8):1019–1025

    Article  CAS  PubMed  Google Scholar 

  92. Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295(4):C1037–C1044

    Article  CAS  PubMed  Google Scholar 

  93. Sayyar S, Murray E, Thompson BC, Gambhir S, Officer DL, Wallace GG (2013) Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 52:296–304

    Article  CAS  Google Scholar 

  94. Shadjou N, Hasanzadeh M (2016) Graphene and its nanostructure derivatives for use in bone tissue engineering: recent advances. J Biomed Mater Res A 104(5):1250–1275

    Article  CAS  PubMed  Google Scholar 

  95. Shih YRV, Tseng KF, Lai HY, Lin CH, Lee OK (2011) Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 26(4):730–738

    Article  CAS  PubMed  Google Scholar 

  96. Shin SR, Li Y-C, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, Zhang YS, Tamayol A, Khademhosseini A (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105:255–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shin YC, Jin L, Lee JH, Jun S, Hong SW, Kim C-S, Kim Y-J, Hyun JK, Han D-W (2017a) Graphene oxide-incorporated PLGA-collagen fibrous matrices as biomimetic scaffolds for vascular smooth muscle cells. Sci Adv Mater 9(2):232–237

    Article  CAS  Google Scholar 

  98. Shin YC, Kang SH, Lee JH, Kim B, Hong SW, Han D-W (2017b) Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis. J Biomater Sci Polym Ed. https://doi.org/10.1080/09205063.09202017.01348738

  99. Shin YC, Lee JH, Jin L, Kim MJ, Kim YJ, Hyun JK, Jung TG, Hong SW, Han DW (2015a) Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. J Nanobiotechnol 13:21

    Article  CAS  Google Scholar 

  100. Shin YC, Lee JH, Jin OS, Kang SH, Hong SW, Kim B, Park J-C, Han D-W (2015b) Synergistic effects of reduced graphene oxide and hydroxyapatite on osteogenic differentiation of MC3T3-E1 preosteoblasts. Carbon 95:1051–1060

    Article  CAS  Google Scholar 

  101. Shin YC, Song S-J, Hong SW, Jeong SJ, Chrzanowski W, Lee J-C, Han D-W (2017c) Multifaceted biomedical applications of functional graphene nanomaterials to coated substrates, patterned arrays and hybrid scaffolds. Nano 7(11):369

    Google Scholar 

  102. Shin YC, Song S-J, Shin D-M, Oh J-W, Hong SW, Choi YS, Hyon S-H, Han D-W (2017d) Nanocomposite scaffolds for myogenesis revisited: functionalization with carbon nanomaterials and spectroscopic analysis. Appl Spectrosc Rev. https://doi.org/10.1080/05704928.05702017.01323758

  103. Shukla AK, Balasubramaniam R (2006) Effect of surface treatment on electrochemical behavior of CP Ti, Ti–6Al–4V and Ti–13Nb–13Zr alloys in simulated human body fluid. Corros Sci 48(7):1696–1720

    Article  CAS  Google Scholar 

  104. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749

    Article  CAS  Google Scholar 

  105. Tan AR, Hung CT (2017) Concise review: mesenchymal stem cells for functional cartilage tissue engineering: taking cues from chondrocyte-based constructs. Stem Cells Transl Med 6(4):1295–1303

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19(17):2782–2789

    Article  CAS  Google Scholar 

  107. Vera-Sánchez M, Aznar-Cervantes S, Jover E, García-Bernal D, Onate-Sánchez RE, Hernández-Romero D, Moraleda JM, Collado-González M, Rodríguez-Lozano FJ, Cenis JL (2016) Silk-fibroin and graphene oxide composites promote human periodontal ligament stem cell spontaneous differentiation into osteo/cementoblast-like cells. Stem Cells Dev 25(22):1742–1754

    Article  PubMed  CAS  Google Scholar 

  108. Wang J, Zhang F, Tsang WP, Wan C, Wu C (2017) Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering. Biomaterials 120:11–21

    Article  CAS  PubMed  Google Scholar 

  109. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  110. Wei W, Qu X (2012) Extraordinary physical properties of functionalized graphene. Small 8(14):2138–2151

    Article  CAS  PubMed  Google Scholar 

  111. Wu C, Han P, Xu M, Zhang X, Zhou Y, Xue G, Chang J, Xiao Y (2013) Nagelschmidtite bioceramics with osteostimulation properties: material chemistry activating osteogenic genes and WNT signalling pathway of human bone marrow stromal cells. J Mater Chem B 1(6):876–885

    Article  CAS  PubMed  Google Scholar 

  112. Wu C, Xia L, Han P, Xu M, Fang B, Wang J, Chang J, Xiao Y (2015) Graphene-oxide-modified β-tricalcium phosphate bioceramics stimulate in vitro and in vivo osteogenesis. Carbon 93:116–129

    Article  CAS  Google Scholar 

  113. Wu X, Ding S-J, Lin K, Su J (2017) A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration. J Mater Chem B 5(17):3084–3102

    Article  CAS  PubMed  Google Scholar 

  114. Wu Y-C, Shaw S-Y, Lin H-R, Lee T-M, Yang C-Y (2006) Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds. Biomaterials 27(6):896–904

    Article  CAS  PubMed  Google Scholar 

  115. Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT (2002) Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res 17(1):101–110

    Article  CAS  PubMed  Google Scholar 

  116. Xie H, Cao T, Gomes JV, Neto AHC, Rosa V (2015) Two and three-dimensional graphene substrates to magnify osteogenic differentiation of periodontal ligament stem cells. Carbon 93:266–275

    Article  CAS  Google Scholar 

  117. Xie H, Cao T, Rodríguez-Lozano FJ, Luong-Van EK, Rosa V (2017) Graphene for the development of the next-generation of biocomposites for dental and medical applications. Dent Mater 33(7):765–774

    Article  CAS  PubMed  Google Scholar 

  118. Xie Y, Li H, Zhang C, Gu X, Zheng X, Huang L (2014) Graphene-reinforced calcium silicate coatings for load-bearing implants. Biomed Mater 9(2):025009

    Article  PubMed  CAS  Google Scholar 

  119. Xu B, Song G, Ju Y, Li X, Song Y, Watanabe S (2012) RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. J Cell Physiol 227(6):2722–2729

    Article  CAS  PubMed  Google Scholar 

  120. Yavari F, Chen Z, Thomas AV, Ren W, Cheng H-M, Koratkar N (2011) High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep 1:166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Yoon HH, Bhang SH, Kim T, Yu T, Hyeon T, Kim BS (2014) Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell-adhesion substrate and growth factor-delivery carrier. Adv Funct Mater 24(41):6455–6464

    Article  CAS  Google Scholar 

  122. Yousefi N, Gudarzi MM, Zheng Q, Aboutalebi SH, Sharif F, Kim J-K (2012) Self-alignment and high electrical conductivity of ultralarge graphene oxide-polyurethane nanocomposites. J Mater Chem 22(25):12709–12717

    Article  CAS  Google Scholar 

  123. Zanin H, Saito E, Marciano FR, Ceragioli HJ, Granato AEC, Porcionatto M, Lobo AO (2013) Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications. J Mater Chem B 1(38):4947–4955

    Article  CAS  PubMed  Google Scholar 

  124. Zeng Y, Pei X, Yang S, Qin H, Cai H, Hu S, Sui L, Wan Q, Wang J (2016) Graphene oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition. SuCT 286:72–79

    CAS  Google Scholar 

  125. Zhang Y, Zhai D, Xu M, Yao Q, Zhu H, Chang J, Wu C (2017) 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication 9(2):025037

    Article  PubMed  Google Scholar 

  126. Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules 43(5):2357–2363

    Article  CAS  Google Scholar 

  127. Zhou M, Lin T, Huang F, Zhong Y, Wang Z, Tang Y, Bi H, Wan D, Lin J (2013) Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv Funct Mater 23(18):2263–2269

    Article  CAS  Google Scholar 

  128. Zhou X, Nowicki M, Cui H, Zhu W, Fang X, Miao S, Lee S-J, Keidar M, Zhang LG (2017) 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon 116:615–624

    Article  CAS  Google Scholar 

  129. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  PubMed  Google Scholar 

  130. Zou F, Zhou H, Jeong DY, Kwon J, Eom SU, Park TJ, Hong SW, Lee J (2017) Wrinkled surface-mediated antibacterial activity of graphene oxide nanosheets. ACS Appl Mater Interfaces 9(2):1343–1351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, South Korea (HI17C1662), by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) & funded by the Korean government (MSIP&MOHW) (2017M3A9E4048170), and by Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (2016R1D1A1B03931076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Wook Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shin, Y.C. et al. (2018). Graphene-Based Nanocomposites as Promising Options for Hard Tissue Regeneration. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_6

Download citation

Publish with us

Policies and ethics