Skip to main content

Crosslinking Biopolymers for Advanced Drug Delivery and Tissue Engineering Applications

  • Chapter
  • First Online:
Cutting-Edge Enabling Technologies for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1078))

Abstract

A popular approach to attaining controlled drug delivery from polymer based systems involves the use of cross-linkers. In order to improve the properties of polymers specific to their applications, they can be modified by either physical cross-linkers (high pressure, irradiation) or chemical cross-linkers (glutaraldehyde, genipin). This chapter provides an insight into the different types and mechanisms of cross-linking. It reviews the existing drug delivery systems to understand the effects of cross-linking in them. The recent applications of cross-linked polymeric drug delivery and tissue engineering systems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya C, Ghosh SK, Kundu SC (2009) Silk fibroin film from non-mulberry tropical tasar silkworms: a novel substrate for in vitro fibroblast culture. Acta Biomater 5(1):429–437

    Article  CAS  Google Scholar 

  2. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Article  CAS  Google Scholar 

  3. Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M (1989) Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biol Chem 53(10):2613–2617

    CAS  Google Scholar 

  4. Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev 20(6):683–696

    Article  CAS  Google Scholar 

  5. Bae HJ, Darby DO, Kimmel RM, Park HJ, Whiteside WS (2009) Effects of transglutaminase-induced cross-linking on properties of fish gelatin–nanoclay composite film. Food Chem 114(1):180–189

    Article  CAS  Google Scholar 

  6. Balakrishnan B, Joshi N, Jayakrishnan A, Banerjee R (2014) Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater 10(8):3650–3663

    Article  CAS  Google Scholar 

  7. Broderick EP, O’Halloran DM, Rochev YA, Griffin M, Collighan RJ, Pandit AS (2005) Enzymatic stabilization of gelatin-based scaffolds. J Biomed Mater Res B Appl Biomater 72B(1):37–42

    Article  CAS  Google Scholar 

  8. Cao Y, Wang B (2009) Biodegradation of silk biomaterials. Int J Mol Sci 10(4):1514–1524

    Article  CAS  Google Scholar 

  9. Cao L, Werkmeister JA, Wang J, Glattauer V, McLean KM, Liu C (2014) Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials 35(9):2730–2742

    Article  CAS  Google Scholar 

  10. Chaochai T, Miyaji H, Yoshida T, Nishida E, Furuike T, Tamura H (2016) Preparation of chitosan-gelatin based sponge cross-linked with GlcNAc for bone tissue engineering. J Chitin Chitosan Sci 4(1):1–8

    Article  Google Scholar 

  11. Chaterji S, Kwon IK, Park K (2007) Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci 32(8):1083–1122

    Article  CAS  Google Scholar 

  12. Chronopoulou L, Toumia Y, Cerroni B, Pandolfi D, Paradossi G, Palocci C (2017) Biofabrication of genipin-crosslinked peptide hydrogels and their use in the controlled delivery of naproxen. New Biotechnol 37:138–143

    Article  CAS  Google Scholar 

  13. Ciardelli G, Gentile P, Chiono V, Mattioli-Belmonte M, Vozzi G, Barbani N, Giusti P (2010) Enzymatically crosslinked porous composite matrices for bone tissue regeneration. J Biomed Mater Res A 92A(1):137–151

    Article  CAS  Google Scholar 

  14. Cong Z, Shi Y, Wang Y, Wang Y, Niu J e, Chen N, Xue H (2018) A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. Int J Biol Macromol 107:855–864

    Article  CAS  Google Scholar 

  15. Cui L, Reddy N, Xu H, Fan X, Yang Y (2017) Enzyme-modified casein fibers and their potential application in drug delivery. Fibers Polym 18(5):900–906

    Article  CAS  Google Scholar 

  16. Dan Z, Ma S, Yi X, Cheng S, Zhuo R, Li F (2017) Reversible core-crosslinked nanocarriers with pH-modulated targeting and redox-controlled drug release for overcoming drug resistance. J Mater Chem B 5(42):8399–8407

    Article  Google Scholar 

  17. Datta P, Thakur G, Chatterjee J, Dhara S (2014) Biofunctional phosphorylated chitosan hydrogels prepared above pH 6 and effect of Crosslinkers on gel properties towards biomedical applications. Soft Mater 12(1):27–35

    Article  CAS  Google Scholar 

  18. Davidenko N, Bax DV, Schuster CF, Farndale RW, Hamaia SW, Best SM, Cameron RE (2015) Optimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds. J Mater Sci Mater Med 27(1):14

    Article  Google Scholar 

  19. Desai RM, Koshy ST, Hilderbrand SA, Mooney DJ, Joshi NS (2015) Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry. Biomaterials 50:30–37

    Article  CAS  Google Scholar 

  20. Dou Y, Zhang B, He M, Yin G, Cui Y, Savina I (2015) Keratin/polyvinyl alcohol blend films cross-linked by Dialdehyde starch and their potential application for drug release. Polymers 7(3):580–591

    Article  CAS  Google Scholar 

  21. Drexler JW, Powell HM (2010) Dehydrothermal crosslinking of electrospun collagen. Tissue Eng Part C Methods 17(1):9–17

    Article  Google Scholar 

  22. Fagerholm P, Lagali NS, Ong JA, Merrett K, Jackson WB, Polarek JW, Suuronen EJ, Liu Y, Brunette I, Griffith M (2014) Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials 35(8):2420–2427

    Article  CAS  Google Scholar 

  23. Fessel G, Cadby J, Wunderli S, van Weeren R, Snedeker JG (2014) Dose- and time-dependent effects of genipin crosslinking on cell viability and tissue mechanics – toward clinical application for tendon repair. Acta Biomater 10(5):1897–1906

    Article  CAS  Google Scholar 

  24. Flory PJ, Rehner JJJ (1943) Statistical mechanics of cross-linked polymer networks II. Swelling. J Chem Phys 11:521–526

    Article  CAS  Google Scholar 

  25. Ganguly K, Kulkarni AR, Aminabhavi TM (2015) In vitro cytotoxicity and in vivo efficacy of 5-fluorouracil-loaded enteric-coated PEG-crosslinked chitosan microspheres in colorectal cancer therapy in rats. Drug Deliv:1–14

    Google Scholar 

  26. Gomes S, Rodrigues G, Martins G, Henriques C, Silva JC (2017) Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Int J Biol Macromol 102:1174–1185

    Article  CAS  Google Scholar 

  27. Grant SA, Spradling CS, Grant DN, Fox DB, Jimenez L, Grant DA, Rone RJ (2014) Assessment of the biocompatibility and stability of a gold nanoparticle collagen bioscaffold. J Biomed Mater Res A 102(2):332–339

    Article  Google Scholar 

  28. Han HS, Choi KY, Ko H, Jeon J, Saravanakumar G, Suh YD, Lee DS, Park JH (2015a) Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy. J Control Release 200:158–166

    Article  CAS  Google Scholar 

  29. Han S, Ham TR, Haque S, Sparks JL, Saul JM (2015b) Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications. Acta Biomater 23:201–213

    Article  CAS  Google Scholar 

  30. Harish Prashanth KV, Tharanathan RN (2006) Crosslinked chitosan—preparation and characterization. Carbohydr Res 341(1):169–173

    Article  Google Scholar 

  31. Heck T, Faccio G, Richter M, Thöny-Meyer L (2013) Enzyme-catalyzed protein crosslinking. Appl Microbiol Biotechnol 97(2):461–475

    Article  CAS  Google Scholar 

  32. Holloway JL, Ma H, Rai R, Burdick JA (2014) Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J Control Release 191:63–70

    Article  CAS  Google Scholar 

  33. Jae Suk Y, Yong Jin K, Soo Hwan K, Seung Hwa C (2011) Study on Genipin: a new alternative natural crosslinking agent for fixing heterograft tissue. Korean J Thorac Cardiovasc Surg 44(3):197–207

    Article  Google Scholar 

  34. Jin R, Moreira Teixeira LS, Dijkstra PJ, Zhong Z, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng A 16(8):2429–2440

    Article  CAS  Google Scholar 

  35. Ju C, Mo R, Xue J, Zhang L, Zhao Z, Xue L, Ping Q, Zhang C (2014) Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration. Angew Chem Int Ed 53(24):6253–6258

    Article  CAS  Google Scholar 

  36. Kalbitzer L, Franke K, Moller S, Schnabelrauch M, Pompe T (2015) Glycosaminoglycan functionalization of mechanically and topologically defined collagen I matrices. J Mater Chem B 3(45):8902–8910

    Article  CAS  Google Scholar 

  37. Kamoun EA, Kenawy E-RS, Tamer TM, El-Meligy MA, Mohy Eldin MS (2015) Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab J Chem 8(1):38–47

    Article  CAS  Google Scholar 

  38. Kim S-S, Lim S-H, Cho SW, Gwak S-J, Hong Y-S, Chang BC, Park MH, Song KW, Choi CY, Kim B-S (2006) Tissue engineering of heart valves by recellularization of glutaraldehyde-fixed porcine valves using bone marrow-derived cells. Exp Amp Mol Med 38:273–283

    Article  CAS  Google Scholar 

  39. Kim JW, Kim MJ, Ki CS, Kim HJ, Park YH (2017) Fabrication of bi-layer scaffold of keratin nanofiber and gelatin-methacrylate hydrogel: implications for skin graft. Int J Biol Macromol 105:541–548

    Article  CAS  Google Scholar 

  40. Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28(34):5185–5192

    Article  Google Scholar 

  41. Kuijpers AJ, Engbers GHM, Krijgsveld J, Zaat SAJ, Dankert J, Feijen J (2000) Cross-linking and characterisation of gelatin matrices for biomedical applications. J Biomater Sci Polym Ed 11(3):225–243

    Article  CAS  Google Scholar 

  42. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880

    Article  CAS  Google Scholar 

  43. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  Google Scholar 

  44. Li Y, Zhi X, Lin J, You X, Yuan J (2017) Preparation and characterization of DOX loaded keratin nanoparticles for pH/GSH dual responsive release. Mater Sci Eng C 73:189–197

    Article  CAS  Google Scholar 

  45. Lin Y-H, Huang K-W, Chen S-Y, Cheng N-C, Yu J (2017) Keratin/chitosan UV-crosslinked composites promote the osteogenic differentiation of human adipose derived stem cells. J Mater Chem B 5(24):4614–4622

    Article  CAS  Google Scholar 

  46. Ma B, Wang X, Wu C, Chang J (2014) Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater 1(1):81–89

    Article  Google Scholar 

  47. Martínez A, Blanco MD, Davidenko N, Cameron RE (2015) Tailoring chitosan/collagen scaffolds for tissue engineering: effect of composition and different crosslinking agents on scaffold properties. Carbohydr Polym 132:606–619

    Article  Google Scholar 

  48. Moffat KL, Marra KG (2004) Biodegradable poly(ethylene glycol) hydrogels crosslinked with genipin for tissue engineering applications. J Biomed Mater Res B Appl Biomater 71B(1):181–187

    Article  CAS  Google Scholar 

  49. Muzzarelli R, El Mehtedi M, Bottegoni C, Aquili A, Gigante A (2015) Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar Drugs 13(12):7068

    Article  Google Scholar 

  50. Naseri N, Algan C, Jacobs V, John M, Oksman K, Mathew AP (2014) Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr Polym 109:7–15

    Article  CAS  Google Scholar 

  51. Noguchi K, Ishikawa K, Yokoyama K-i, Ohtsuka T, Nio N, Suzuki E-i (2001) Crystal structure of Red Sea bream transglutaminase. J Biol Chem 276(15):12055–12059

    Article  CAS  Google Scholar 

  52. Nonaka M, Tanaka H, Okiyama A, Motoki M, Ando H, Umeda K, Matsuura A (1989) Polymerization of several proteins by Ca2+-independent transglutaminase derived from microorganisms. Agric Biol Chem 53(10):2619–2623

    CAS  Google Scholar 

  53. Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H (2018) Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol 107:678–688

    Article  CAS  Google Scholar 

  54. Pei Z, Sun Q, Sun X, Wang Y, Zhao P (2015) Preparation and characterization of silver nanoparticles on silk fibroin/carboxymethy lchitosan composite sponge as anti-bacterial wound dressing. Biomed Mater Eng 26:S111–S118

    PubMed  Google Scholar 

  55. Pieper JS, Hafmans T, Veerkamp JH, van Kuppevelt TH (2000) Development of tailor-made collagen–glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials 21(6):581–593

    Article  CAS  Google Scholar 

  56. Pieper JS, van der Kraan PM, Hafmans T, Kamp J, Buma P, van Susante JLC, van den Berg WB, Veerkamp JH, van Kuppevelt TH (2002) Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials 23(15):3183–3192

    Article  CAS  Google Scholar 

  57. Prasertsung I, Damrongsakkul S, Saito N (2013) Crosslinking of a gelatin solutions induced by pulsed electrical discharges in solutions. Plasma Process Polym 10(9):792–797

    Article  CAS  Google Scholar 

  58. Praveen R, Verma PRP, Singh SK, George JK (2015) Cross linked alginate gel beads as floating drug delivery system for cefdinir: optimization using Box–Behnken design. J Pharm Investig 45(2):187–199

    Article  CAS  Google Scholar 

  59. Pugliese R, Marchini A, Saracino GAA, Zuckermann RN, Gelain F (2018) Cross-linked self-assembling peptide scaffolds. Nano Res 11(1):586–602

    Article  CAS  Google Scholar 

  60. Quinlan E, López-Noriega A, Thompson E, Kelly HM, Cryan SA, O’Brien FJ (2015) Development of collagen–hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J Control Release 198:71–79

    Article  CAS  Google Scholar 

  61. Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J Supercrit Fluids 105:1–8

    Article  CAS  Google Scholar 

  62. Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33(6):362–369

    Article  CAS  Google Scholar 

  63. Ruijgrok JM, De Wijn JR, Boon ME (1994) Optimizing glutaraldehyde crosslinking of collagen: effects of time, temperature and concentration as measured by shrinkage temperature. J Mater Sci Mater Med 5(2):80–87

    Article  CAS  Google Scholar 

  64. Salem M, Mauguen Y, Prangé T (2010) Revisiting glutaraldehyde cross-linking: the case of the Arg–Lys intermolecular doublet. Acta Crystallogr Sect F 66(3):225–228

    Article  CAS  Google Scholar 

  65. Sarker B, Rompf J, Silva R, Lang N, Detsch R, Kaschta J, Fabry B, Boccaccini AR (2015) Alginate-based hydrogels with improved adhesive properties for cell encapsulation. Int J Biol Macromol 78:72–78

    Article  CAS  Google Scholar 

  66. Segura T, Anderson BC, Chung PH, Webber RE, Shull KR, Shea LD (2005) Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 26(4):359–371

    Article  CAS  Google Scholar 

  67. Seib FP, Coburn J, Konrad I, Klebanov N, Jones GT, Blackwood B, Charest A, Kaplan DL, Chiu B (2015) Focal therapy of neuroblastoma using silk films to deliver kinase and chemotherapeutic agents in vivo. Acta Biomater 20:32–38

    Article  CAS  Google Scholar 

  68. Shi L, Wang F, Zhu W, Xu Z, Fuchs S, Hilborn J, Zhu L, Ma Q, Wang Y, Weng X, Ossipov DA (2017) Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach. Adv Funct Mater 27(37):1700591-n/a

    Article  Google Scholar 

  69. Shin J, Lee JS, Lee C, Park H-J, Yang K, Jin Y, Ryu JH, Hong KS, Moon S-H, Chung H-M, Yang HS, Um SH, Oh J-W, Kim D-I, Lee H, Cho S-W (2015) Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy. Adv Funct Mater 25(25):3814–3824

    Article  CAS  Google Scholar 

  70. Shtenberg Y, Goldfeder M, Prinz H, Shainsky J, Ghantous Y, Abu El-Naaj I, Schroeder A, Bianco-Peled H (2018) Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. Int J Biol Macromol 111:62–69

    Article  CAS  Google Scholar 

  71. Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF (2009) Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules 10(7):1675–1680

    Article  CAS  Google Scholar 

  72. Slusarewicz P, Zhu K, Hedman T (2010) Kinetic characterization and comparison of various protein crosslinking reagents for matrix modification. J Mater Sci Mater Med 21(4):1175–1181

    Article  CAS  Google Scholar 

  73. Snyder TN, Madhavan K, Intrator M, Dregalla RC, Park D (2014) A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. J Biol Eng 8(1):10

    Article  Google Scholar 

  74. Speer DP, Chvapil M, Eskelson CD, Ulreich J (1980) Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 14(6):753–764

    Article  CAS  Google Scholar 

  75. Sung H-W, Huang R-N, Huang LLH, Tsai C-C (1999) In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J Biomater Sci Polym Ed 10(1):63–78

    Article  CAS  Google Scholar 

  76. Thakur G, Mitra A, Rousseau D, Basak A, Sarkar S, Pal K (2011) Crosslinking of gelatin-based drug carriers by genipin induces changes in drug kinetic profiles in vitro. J Mater Sci Mater Med 22(1):115–123

    Article  CAS  Google Scholar 

  77. Thakur G, Naqvi MA, Rousseau D, Pal K, Mitra A, Basak A (2012) Gelatin-based emulsion gels for diffusion-controlled release applications. J Biomater Sci Polym Ed 23(5):645–661

    Article  CAS  Google Scholar 

  78. Tomblyn S, Pettit Kneller EL, Walker SJ, Ellenburg MD, Kowalczewski CJ, Van Dyke M, Burnett L, Saul JM (2016) Keratin hydrogel carrier system for simultaneous delivery of exogenous growth factors and muscle progenitor cells. J Biomed Mater Res B Appl Biomater 104(5):864–879

    Article  CAS  Google Scholar 

  79. Tsekoura EK, H AL, Wall JG, Bayon Y, Zeugolis DI (2017) Battling bacterial infection with hexamethylene diisocyanate cross-linked and Cefaclor-loaded collagen scaffolds. Biomed Mater 12(3):035013

    Article  CAS  Google Scholar 

  80. Wang Y, Bao J, Wu X, Wu Q, Li Y, Zhou Y, Li L, Bu H (2016a) Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci Rep 6:24779

    Article  CAS  Google Scholar 

  81. Wang Y, Wang X, Shi J, Zhu R, Zhang J, Zhang Z, Ma D, Hou Y, Lin F, Yang J, Mizuno M (2016b) A biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering. Sci Rep 6:39477

    Article  CAS  Google Scholar 

  82. Wei J, Ju X-J, Zou X-Y, Xie R, Wang W, Liu Y-M, Chu L-Y (2014) Multi-stimuli-responsive microcapsules for adjustable controlled-release. Adv Funct Mater 24(22):3312–3323

    Article  CAS  Google Scholar 

  83. Widjaja LK, Bora M, Chan PNPH, Lipik V, Wong TTL, Venkatraman SS (2015) Hyaluronic acid-based nanocomposite hydrogels for ocular drug delivery applications. J Biomed Mater Res A 103(6):2201–2201

    Article  CAS  Google Scholar 

  84. Xu J, Strandman S, Zhu JXX, Barralet J, Cerruti M (2015) Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials 37:395–404

    Article  CAS  Google Scholar 

  85. Yan J, Miao Y, Tan H, Zhou T, Ling Z, Chen Y, Xing X, Hu X (2016) Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Mater Sci Eng C 63:274–284

    Article  CAS  Google Scholar 

  86. Yan L-P, Oliveira JM, Oliveira AL, Reis RL (2017) Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system. J Tissue Eng Regen Med 11(11):3168–3177

    Article  CAS  Google Scholar 

  87. Yang C, Wang X, Yao X, Zhang Y, Wu W, Jiang X (2015) Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. J Control Release 205:206–217

    Article  CAS  Google Scholar 

  88. Yin W, Su R, Qi W, He Z (2012) A casein-polysaccharide hybrid hydrogel cross-linked by transglutaminase for drug delivery. J Mater Sci 47(4):2045–2055

    Article  CAS  Google Scholar 

  89. Zeng S, Liu L, Shi Y, Qiu J, Fang W, Rong M, Guo Z, Gao W (2015) Characterization of silk fibroin/chitosan 3D porous scaffold and in vitro cytology. PLoS One 10(6):e0128658

    Article  Google Scholar 

  90. Zhang L, Li K, Xiao W, Zheng L, Xiao Y, Fan H, Zhang X (2011) Preparation of collagen–chondroitin sulfate–hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr Polym 84(1):118–125

    Article  CAS  Google Scholar 

  91. Zhang Y, Mao X, Schwend T, Littlechild S, Conrad GW (2013) Resistance of corneal RFUVA–cross-linked collagens and small leucine-rich proteoglycans to degradation by matrix metalloproteinases. Invest Ophthalmol Vis Sci 54(2):1014–1025

    Article  CAS  Google Scholar 

  92. Zhang D, Zhou W, Wei B, Wang X, Tang R, Nie J, Wang J (2015) Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohydr Polym 125:189–199

    Article  CAS  Google Scholar 

  93. Zhang X, Tang K, Zheng X (2016a) Electrospinning and crosslinking of COL/PVA nanofiber-microsphere containing salicylic acid for drug delivery. J Bionic Eng 13(1):143–149

    Article  Google Scholar 

  94. Zhang Y, Wang Q-S, Yan K, Qi Y, Wang G-F, Cui Y-L (2016b) Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications. J Biomed Mater Res A 104(8):1863–1870

    Article  CAS  Google Scholar 

  95. Zhao X, Lui YS, Choo CKC, Sow WT, Huang CL, Ng KW, Tan LP, Loo JSC (2015) Calcium phosphate coated Keratin–PCL scaffolds for potential bone tissue regeneration. Mater Sci Eng C 49:746–753

    Article  Google Scholar 

  96. Zhong Y, Zhang J, Cheng R, Deng C, Meng F, Xie F, Zhong Z (2015) Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J Control Release 205:144–154

    Article  CAS  Google Scholar 

  97. Zhou Y, Zhang C, Liang K, Li J, Yang H, Liu X, Yin X, Chen D, Xu W (2018) Photopolymerized water-soluble maleilated chitosan/methacrylated poly (vinyl alcohol) hydrogels as potential tissue engineering scaffolds. Int J Biol Macromol 106:227–233

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, G., Rodrigues, F.C., Singh, K. (2018). Crosslinking Biopolymers for Advanced Drug Delivery and Tissue Engineering Applications. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_11

Download citation

Publish with us

Policies and ethics