Skip to main content

Advances in Protein-Based Materials: From Origin to Novel Biomaterials

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1078))

Abstract

Biomaterials play a very important role in biomedicine and tissue engineering where they directly affect the cellular activities and their microenvironment . Myriad of techniques have been employed to fabricate a vast number natural, artificial and recombinant polymer s in order to harness these biomaterials in tissue regene ration , drug delivery and various other applications. Despite of tremendous efforts made in this field during last few decades, advanced and new generation biomaterials are still lacking. Protein based biomaterials have emerged as an attractive alternatives due to their intrinsic properties like cell to cell interaction , structural support and cellular communications. Several protein based biomaterials like, collagen , keratin , elastin , silk protein and more recently recombinant protein s are being utilized in a number of biomedical and biotechnological processes. These protein-based biomaterials have enormous capabilities, which can completely revolutionize the biomaterial world. In this review, we address an up-to date review on the novel, protein-based biomaterials used for biomedical field including tissue engineering, medical science, regenerative medicine as well as drug delivery. Further, we have also emphasized the novel fabrication techniques associated with protein-based materials and implication of these biomaterials in the domain of biomedical engineering .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbott RD, Kaplan DL (2016) Engineering biomaterials for enhanced tissue regeneration. Current Stem Cell Rep 2(2):140–146. https://doi.org/10.1007/s40778-016-0039-3

    Article  CAS  Google Scholar 

  2. Adhirajan N, Shanmugasundaram N, Shanmuganathan S, Babu M (2009) Functionally modified gelatin microspheres impregnated collagen scaffold as novel wound dressing to attenuate the proteases and bacterial growth. Eur J Pharm Sci 36(2-3):235–245. https://doi.org/10.1016/j.ejps.2008.09.010

    Article  CAS  PubMed  Google Scholar 

  3. Aerssens J, Dequeker J, Mbuyi-Muamba JM (1994) Bone tissue composition: biochemical anatomy of bone. Clin Rheumatol 13(Suppl 1):54–62

    PubMed  Google Scholar 

  4. Aghaei-Ghareh-Bolagh B, Mithieux SM, Weiss AS (2016) Elastic proteins and elastomeric protein alloys. Curr Opin Biotechnol 39:56–60. https://doi.org/10.1016/j.copbio.2015.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahmad E, Fatima MT, Hoque M, Owais M, Saleemuddin M (2015) Fibrin matrices: the versatile therapeutic delivery systems. Int J Biol Macromol 81:121–136. https://doi.org/10.1016/j.ijbiomac.2015.07.054

    Article  CAS  PubMed  Google Scholar 

  6. Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, Weiss AS (2010) Elastin-based materials. Chem Soc Rev 39(9):3371–3379. https://doi.org/10.1039/b919452p

    Article  CAS  PubMed  Google Scholar 

  7. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416. https://doi.org/10.1016/S0142-9612(02)00353-8

    Article  CAS  Google Scholar 

  8. An B, Kaplan DL, Brodsky B (2014) Engineered recombinant bacterial collagen as an alternative collagen-based biomaterial for tissue engineering. Front Chem 2(40):1–5. https://doi.org/10.3389/fchem.2014.00040

    Article  CAS  Google Scholar 

  9. An B, Lin YS, Brodsky B (2016) Collagen interactions: drug design and delivery. Adv Drug Deliv Rev 97:69–84. https://doi.org/10.1016/j.addr.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  10. Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13(2):117–123. https://doi.org/10.1016/S0958-1669(02)00300-2

    Article  CAS  PubMed  Google Scholar 

  11. Andorko JI, Jewell CM (2017) Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioeng Transl Med 2(2):139–155. https://doi.org/10.1002/btm2.10063

    Article  PubMed  PubMed Central  Google Scholar 

  12. Annabi N, Mithieux SM, Camci-Unal G, Dokmeci MR, Weiss AS, Khademhosseini A (2013) Elastomeric recombinant protein-based biomaterials. Biochem Eng J 77:110–118. https://doi.org/10.1016/j.bej.2013.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Antoni D, Burckel H, Josset E, Noel G (2015) Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 16(3):5517–5527. https://doi.org/10.3390/ijms16035517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Apel PJ, Garrett JP, Sierpinski P, Ma J, Atala A, Smith TL, Van Dyke ME (2008) Peripheral nerve regeneration using a keratin-based scaffold: long-term functional and histological outcomes in a mouse model. J Hand Surg Am 33(9):1541–1547. https://doi.org/10.1016/j.jhsa.2008.05.034

    Article  PubMed  Google Scholar 

  15. Asti A, Gioglio L (2014) Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs 37(3):187–205. http://doi.org/10.530/ijao.5000307

  16. Baldock C, Oberhauser AF, Ma L, Lammie D, Siegler V, Mithieux SM, Weiss AS (2011) Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity. Proc Natl Acad Sci USA 108 (11):4322-4327. http://doi.org/10.1073/pnas.1014280108

    Article  CAS  Google Scholar 

  17. Barac MB, Pesic MB, Stanojevic SP, Kostic AZ, Bivolarevic V (2015) Comparative study of the functional properties of three legume seed isolates: adzuki, pea and soy bean. J Food Sci Technol 52(5):2779–2787. https://doi.org/10.1007/s13197-014-1298-6

    Article  CAS  PubMed  Google Scholar 

  18. Baran ET, Tuzlakoğlu K, Mano JF, Reis RL (2012) Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes. Mater Sci Eng C 32(6):1314–1322. https://doi.org/10.1016/j.msec.2012.02.015

    Article  CAS  Google Scholar 

  19. Barenghi R, Beke S, Romano I, Gavazzo P, Farkas B, Vassalli M, Scaglione S (2014) Elastin-coated biodegradable photopolymer scaffolds for tissue engineering applications. Biomed Res Int 2014:1–9. https://doi.org/10.1155/2014/624645

    Article  CAS  Google Scholar 

  20. Barsotti MC, Felice F, Balbarini A, Di Stefano R (2011) Fibrin as a scaffold for cardiac tissue engineering. Biotechnol Appl Biochem 58(5):301–310. https://doi.org/10.1002/bab.49

    Article  CAS  PubMed  Google Scholar 

  21. Beese AM, Sarkar S, Nair A, Naraghi M, An Z, Moravsky A, Loutfy RO, Buehler MJ, Nguyen SBT, Espinosa HD (2013) Bio-inspired carbon nanotube–polymer composite yarns with hydrogen bond-mediated lateral interactions. acs Nano 7(4):3434–3446. https://doi.org/10.1021/nn400346r

    Article  CAS  PubMed  Google Scholar 

  22. Behnam A, Sangwan VK, Zhong XY, Lian FF, Estrada D, Jariwala D, Hoag AJ, Lauhon LJ, Marks TJ, Hersam MC, Pop E (2013) High-field transport and thermal reliability of sorted carbon nanotube network devices. ACS Nano 7(1):482–490. https://doi.org/10.1021/nn304570u

    Article  CAS  PubMed  Google Scholar 

  23. Belitz HD, Grosch W, Schieberle P (2009) Food chemistry, 4th edn. Springer-Verlag, Berlin

    Google Scholar 

  24. Bello AE, Oesser S (2006) Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: a review of the literature. Curr Med Res Opin 22(11):2221–2232. https://doi.org/10.1185/030079906x148373

    Article  CAS  PubMed  Google Scholar 

  25. Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Ingber DE (2015) Engineered in vitro disease models. Annu Rev Pathol 10:195–262. https://doi.org/10.1146/annurev-pathol-012414-040418

    Article  CAS  Google Scholar 

  26. Bessa PC, Balmayor ER, Azevedo HS, Nürnberger S, Casal M, Griensven MV, Reis RL, Red H (2010) Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. J Tissue Eng Regener Med 4(5):349–355. https://doi.org/10.1002/term.245

    Article  CAS  Google Scholar 

  27. Beutner R, Michael J, Schwenzer B, Scharnweber D (2010) Biological nano-functionalization of titanium-based biomaterial surfaces: a flexible toolbox. J R Soc Interface 7(1):S93–S105. https://doi.org/10.1098/rsif.2009.0418.focus

    Article  CAS  PubMed  Google Scholar 

  28. Bhat S, Kumar A (2013) Biomaterials and bioengineering tomorrow’s healthcare. Biomatter 3(3):1–12. https://doi.org/10.4161/biom.24717

    Article  Google Scholar 

  29. Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK, Bhattacharya D, Kundu SC (2017) Silk scaffolds in bone tissue engineering: an overview. Acta Biomater 63:1–17. https://doi.org/10.1016/j.actbio.2017.09.027

    Article  CAS  PubMed  Google Scholar 

  30. Birk DE (2001) Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32(3):223–237. https://doi.org/10.1016/S0968-4328(00)00043-3

    Article  CAS  PubMed  Google Scholar 

  31. Bragulla HH, Homberger DG (2009) Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 214(4):516–559. https://doi.org/10.1111/j.1469-7580.2009.01066.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brett D (2008) A review of collagen and collagen-based wound dressings. Wounds 20(12):347–356

    PubMed  Google Scholar 

  33. Brown AC, Barker TH (2014) Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater 10(4):1502–1514. https://doi.org/10.1016/j.actbio.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  34. Brown KJ, Maynes SF, Bezos A, Maguire DJ, Ford MD, Parish CR (1996) A novel in vitro assay for human angiogenesis. Lab Invest 75(4):539–555

    CAS  PubMed  Google Scholar 

  35. Bruns RR (1984) Beaded filaments and long-spacing fibrils: relation to type VI collagen. J Ultrastruct Res 89(2):136–145. https://doi.org/10.1016/S0022-5320(84)80010-6

    Article  CAS  PubMed  Google Scholar 

  36. Bulleid NJ, John DC, Kadler KE (2000) Recombinant expression systems for the production of collagen. Biochem Soc Trans 28(4):350–353. https://doi.org/10.1042/bst0280350

    Article  CAS  PubMed  Google Scholar 

  37. Buxboim A, Ivanovska IL, Discher DE (2010) Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in? J Cell Sci 123(3):297–308. https://doi.org/10.1242/jcs.041186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bzymek M, Lovett ST (2001) Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci USA 98(15):8319–8325. https://doi.org/10.1073/pnas.111008398

    Article  CAS  PubMed  Google Scholar 

  39. Cao H, Xu SY (2008) EDC/NHS-crosslinked type II collagen-chondroitin sulface. J Mater Sci Mater Med 19:567–575. https://doi.org/10.1007/s10856-007-3281-5

    Article  CAS  PubMed  Google Scholar 

  40. Caves JM, Kumar VA, Martinez AW, Kim J, Ripberger CM, Haller CA, Chaikof EL (2010) The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials 31(27):7175–7182. https://doi.org/10.1016/j.biomaterials.2010.05.014

    Article  CAS  PubMed  Google Scholar 

  41. Ceccarelli G, Presta R, Benedetti L, De Angelis MGC, Marco-Lupi S, Rodriguez y Baena R (2017) Emerging perspectives in scaffold for tissue engineering in oral surgery. Stem Cells Int 2017:1–11. https://doi.org/10.1155/2017/4585401

    Article  Google Scholar 

  42. Chamcheu JC, Siddiqui IA, Syed DN, Adhami VM, Liovic M, Mukhtar H (2011) Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys 508(2):123–137. https://doi.org/10.1016/j.abb.2010.12.019

    Article  CAS  PubMed  Google Scholar 

  43. Chan OCM, So KF, Chan BP (2008) Fabrication of nano-fibrous collagen microspheres for protein delivery and effects of photochemical crosslinking on release kinetics. J Control Release 129(2):135–143. https://doi.org/10.1016/j.jconrel.2008.04.011

    Article  CAS  PubMed  Google Scholar 

  44. Chatterjee S, Barbora L, Cameotra SS, Mahanta P, Goswami P (2009) Silk-fiber immobilized lipase-catalyzed hydrolysis of emulsified sunflower oil. Appl Biochem Biotechnol 157:593–600. https://doi.org/10.1007/s12010-008-8405-y

    Article  CAS  PubMed  Google Scholar 

  45. Chattopadhyay S, Raines RT (2014) Collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833. https://doi.org/10.1002/bip.22486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V, Pillai SR (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17(12):1–31. https://doi.org/10.3390/ijms17121974

    Article  CAS  Google Scholar 

  47. Chen FM, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168. https://doi.org/10.1016/j.progpolymsci.2015.02.004

    Article  CAS  Google Scholar 

  48. Chen Q, Pugno NM (2013) Bio-mimetic mechanisms of natural hierarchical materials: A review. J Mech Behav Biomed Mater 19:3–33. https://doi.org/10.1016/j.jmbbm.2012.10.012

    Article  PubMed  Google Scholar 

  49. Chen G, Zhou P, Mei N, Chen X, Shao ZZ, Pan LF, Wu CG (2004) Silk fibroin modified porous poly (ε-caprolactone) scaffold for human fibroblast culture in vitro. J Mater Sci Mater Med 15(6):671–677. https://doi.org/10.1023/B:JMSM.0000030208.89523.2a

    Article  CAS  PubMed  Google Scholar 

  50. Chen JL, Yin Z, Shen WL, Chen X, Heng BC, Zou XH, Ouyang HW (2010) Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials 31(36):9438–9451. https://doi.org/10.1016/j.biomaterials.2010.08.011

    Article  CAS  PubMed  Google Scholar 

  51. Cheng Y, Koh LD, Li D, Ji B, Han MY, Zhang YW (2014) On the strength of β-sheet crystallites of Bombyx mori silk fibroin. J R Soc Interface 11(96):1–8. https://doi.org/10.1098/rsif.2014.0305

    Article  CAS  Google Scholar 

  52. Cheung HY, Lau KT, Tao XM, Hui DA (2008) Potential material for tissue engineering: silkworm silk/PLA biocomposite. Compos Part B 39:1026–1033. https://doi.org/10.1016/j.compositesb.2007.11.009

    Article  CAS  Google Scholar 

  53. Chevallay B, Herbage D (2000) Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput 38(2):211–218. https://doi.org/10.1007/BF02344779

    Article  CAS  PubMed  Google Scholar 

  54. Chicatun F, Griffanti G, McKee MD, Nazhat SN (2017) 8 – collagen/chitosan composite scaffolds for bone and cartilage tissue engineering. Biomedical Composites (Second Edition) 163–198. https://doi.org/10.1016/B978-0-08-100752-5.00008-1

    Chapter  Google Scholar 

  55. Chien KB, Shah RN (2012) Novel soy protein scaffolds for tissue regeneration: material characterization and interaction with human mesenchymal stem cells. Acta Biomater 8(2):694–703. https://doi.org/10.1016/j.actbio.2011.09.036

    Article  CAS  PubMed  Google Scholar 

  56. Chien KB, Chung EJ, Shah RN (2014) Investigation of soy protein hydrogels for biomedical applications: materials characterization, drug release, and biocompatibility. J Biomater Appl 28(7):1085–1096. https://doi.org/10.1177/0885328213497413

    Article  CAS  PubMed  Google Scholar 

  57. Chin JW, Martin AB, King DS, Wang L, Schultz PG (2002) Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci USA 99(17):11020–11024. https://doi.org/10.1073/pnas.172226299

    Article  CAS  PubMed  Google Scholar 

  58. Choi SM, Singh D, Kumar A, Oh TH, Cho YW, Han SS (2013) Porous three-dimensional PVA/Gelatin sponge for skin tissue engineering. Int J Polym Mater Po 62:384–389. https://doi.org/10.1080/00914037.2012.710862

    Article  CAS  Google Scholar 

  59. Choi SM, Singh D, Shin EJ, Zo SM, Han SS (2015) Engineering and optimization of three-dimensional poly(vinyl alcohol)/gelatin matrix to mimic skin tissue. J Comput Theor Nanos 12(5):1–9. https://doi.org/10.1166/jctn.2015.3817

    Article  CAS  Google Scholar 

  60. Corden LD, McLean WH (1996) Human keratin diseases: hereditary fragility of specific epithelial tissues. Exp Dermatol 5(6):297–307. https://doi.org/10.1111/j.1600-0625.1996.tb00133.x

    Article  CAS  PubMed  Google Scholar 

  61. Cox G, Crossley J, Xing Z (1995) Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am J Respir Cell Mol Biol 12(2):232–237. https://doi.org/10.1165/ajrcmb.12.2.7865221

    Article  CAS  PubMed  Google Scholar 

  62. Craig CL, Riekel C (2002) Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders. Comp Biochem Physiol B Biochem Mol Biol 133(4):493–507. https://doi.org/10.1016/S1096-4959(02)00095-7

    Article  PubMed  Google Scholar 

  63. Cutler SM, Garcia AJ (2003) Engineering cell adhesive surfaces that direct integrin alpha(5)beta(1) binding using a recombinant fragment of fibronectin. Biomaterials 24(10):1759–1760. https://doi.org/10.1016/S0142-9612(02)00570-7

    Article  CAS  PubMed  Google Scholar 

  64. Daamen WF, Veerkamp JH, van Hest JC, van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28(30):4378–4398. https://doi.org/10.1016/j.biomaterials.2007.06.025

    Article  CAS  PubMed  Google Scholar 

  65. Das AM, Chowdhury PK, Saikia CN, Rao PG (2009) Some physical properties and structure determination of vinyl monomer-grafted antheraea assama silk fiber. Ind Eng Chem Res 48:9338–9345. https://doi.org/10.1021/ie9004755

    Article  CAS  Google Scholar 

  66. Das S, Pati F, Chameettachal S, Pahwa S, Ray AR, Dhara S, Ghosh S (2013) Enhanced redifferentiation of chondrocytes on microperiodic silk/gelatin scaffolds: toward tailor-made tissue engineering. Biomacromolecules 14(2):311–321. https://doi.org/10.1021/bm301193t

    Article  CAS  PubMed  Google Scholar 

  67. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001

    Article  CAS  Google Scholar 

  68. de Castro RJS, Ohara A, Okuro PK, Utsunomia C, de Alencar Figueira Angelotti J, de Lima FA, Sato HH (2017) Applications of soy protein-based blends, composites, and nanocomposites. Soy Protein-Based Blends, Composites and Nanocomposites 67–102. doi: https://doi.org/10.1002/9781119419075.ch4

    Chapter  Google Scholar 

  69. De la Puente P, Ludena D (2014) Cell culture in autologous fibrin scaffolds for applications in tissue engineering. Exp Cell Res 322(1):1–11. https://doi.org/10.1016/j.yexcr.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  70. Deivasigamani B, Alagappan KM (2008) Industrial application of keratinase and soluble proteins from feather keratins. J Environ Biol 29(6):933–936

    CAS  PubMed  Google Scholar 

  71. Doillon CJ, Silver FH (1986) Collagen-based wound dressing: effects of hyaluronic acid and fibronectin on wound healing. Biomaterials 7(1):3–8. https://doi.org/10.1016/0142-9612(86)90080-3

    Article  CAS  PubMed  Google Scholar 

  72. Dos Santos-Pinto JR, Lamprecht G, Chen WQ, Heo S, Hardy JG, Priewalder H, Lubec G (2014) Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders. J Proteomics 105:174–185. https://doi.org/10.1016/j.jprot.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  73. Ehrbar M, Metters A, Zammaretti P, Hubbell JA, Zisch AH (2005) Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release 101(1-3):93–109. https://doi.org/10.1016/j.jconrel.2004.07.018

    Article  CAS  PubMed  Google Scholar 

  74. Eisoldt L, Smith A, Scheibel T (2011) Decoding the secrets of spider silk. Mater Today 14(3):80–86. https://doi.org/10.1016/S1369-7021(11)70057-8

    Article  CAS  Google Scholar 

  75. Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, Langer R (2000) Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res Part A 51 (2):164-171. doi: 10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.0.CO;2-W

    Article  CAS  Google Scholar 

  76. Ellman JA, Mendel D, Schultz PG (1992) Site-specific incorporation of novel backbone structures into proteins. Science 255(5041):197–200. https://doi.org/10.1126/science.1553546

    Article  CAS  PubMed  Google Scholar 

  77. Exposito JY, Valcourt U, Cluzel C, Lethias C (2010) The fibrillar collagen family. Int J Mol Sci 11(2):407–426. https://doi.org/10.3390/ijms11020407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. EyreWalker A (1996) The close proximity of Escherichia coli genes: consequences for stop codon and synonymous codon use. J Mol Evol 42(2):73–78. https://doi.org/10.1007/BF02198830

    Article  CAS  Google Scholar 

  79. Fallas JA, Gauba V, Hartgerink JD (2009) Solution structure of an ABC collagen heterotrimer reveals a single-register helix stabilized by electrostatic interactions. J Biol Chem 284(39):26851–26859. https://doi.org/10.1074/jbc.M109.014753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Farajollahi MM, Hamzehlou S, Mehdipour A, Samadikuchaksaraei A (2012) Recombinant proteins: hopes for tissue engineering. Bioimpacts 2(3):123–125. https://doi.org/10.5681/bi.2012.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8(9):3191–3200. https://doi.org/10.1016/j.actbio.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  82. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746. https://doi.org/10.1155/2015/421746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  84. Frandsen JL, Ghandehari H (2012) Recombinant protein-based polymers for advanced drug delivery. Chem Soc Rev 41(7):2696–2706. https://doi.org/10.1039/c2cs15303c

    Article  CAS  PubMed  Google Scholar 

  85. Freddi G, Tsukada M, Beretta S (1999) Structure and physical properties of silk fibroin/polyacrylamide blend films. J Appl Polym Sci 71:1563–1571. doi:10.1002/(SICI)1097-4628(19990307)71:10<1563::AID-APP4>3.0.CO;2-E

    Article  CAS  Google Scholar 

  86. Friess W, Uludag H, Foskett S, Biron R, Sargeant C (1999) Characterization of absorbable collagen sponges as recombinant human bone morphogenetic protein-2 carriers. Int J Pharm 185(1):51–60. https://doi.org/10.1016/S0378-5173(99)00128-3

    Article  CAS  PubMed  Google Scholar 

  87. Gagner JE, Kim W, Chaikof EL (2014) Designing protein-based biomaterials for medical applications. Acta Biomater 10(4):1542–1557. https://doi.org/10.1016/j.actbio.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  88. Garcia-Fuentes M, Giger E, Meinel L, Merkle HP (2008) The effect of hyaluronic acid on silk fibroin conformation. Biomaterials 29(6):633–642. https://doi.org/10.1016/j.biomaterials.2007.10.024

    Article  CAS  PubMed  Google Scholar 

  89. Gaspar A (2011) Collagen–based scaffolds for skin tissue engineering. J Med Life 4(2):172–177

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gelse K, Poschl E, Aigner T (2003) Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546. https://doi.org/10.1016/j.addr.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  91. Gershlak JR, Hernandez S, Fontana G, Perreault LR, Hansen KJ, Larson SA, Gaudette GR (2017) Crossing kingdoms: using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials 125:13–22. https://doi.org/10.1016/j.biomaterials.2017.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ghezzi CE, Marelli B, Muja N, Hirota N, Martin JG, Barralet JE, Alessandrino A, Freddi G, Nazhat S (2011) Mesenchymal stem cell-seeded multilayered dense collagen-silk fibroin hybrid for tissue engineering applications. Biotechnol J 6(10):1198–1207. https://doi.org/10.1002/biot.201100127

    Article  CAS  PubMed  Google Scholar 

  93. Ghezzi CE, Kovacina JR, Weiss AS, Kaplan DL (2013) Multifunctional silk tropoelastin biomaterial systems. Isr J Chem 53(9-10):777–786. https://doi.org/10.1002/ijch.201300082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Giesa T, Arslan M, Pugno NM, Buehler MJ (2011) Nanoconfinement of spider silk fibrils begets superior strength extensibility, and toughness. Nano Lett 11(11):5038–5046. https://doi.org/10.1021/nl203108t

    Article  CAS  PubMed  Google Scholar 

  95. Girotti A, Reguera J, Rodriguez-Cabello JC, Arias FJ, Alonso M, Testera AM (2004) Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. J Mater Sci Mater Med 15:479–484. https://doi.org/10.1023/B:JMSM.0000021124.58688.7a

    Article  CAS  PubMed  Google Scholar 

  96. Gomes S, Leonor IB, Mano JF, Reis RL, Kaplan DL (2012) Natural and genetically engineered proteins for tissue engineering. Prog Polym Sci 37(1):1–17. https://doi.org/10.1016/j.progpolymsci.2011.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Griswold KE, Mahmood NA, Iverson BL, Georgiou G (2003) Effects of codon usage versus putative 5′-mRNA structure on the expression of Fusarium solani cutinase in the Escherichia coli cytoplasm. Protein Expr Purif 27(1):134–142. https://doi.org/10.1016/S1046-5928(02)00578-8

    Article  CAS  PubMed  Google Scholar 

  98. Grover CN, Cameron RE, Best SM (2012) Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. J Mech Behav Biomed 10:62–74. https://doi.org/10.1016/j.jmbbm.2012.02.028

    Article  CAS  Google Scholar 

  99. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16 discussion 16

    Article  CAS  Google Scholar 

  100. Guo J, Wang J, Anderson JC, Schultz PG (2008) Addition of an α-hydroxy acid to the genetic code of bacteria. Angew Chem 47(4):722–725. https://doi.org/10.1002/anie.200704074

    Article  CAS  Google Scholar 

  101. Gupta P, Nayak KK (2015) Characteristics of protein-based biopolymer and its application. Polym Eng Sci 55(3):485–498. https://doi.org/10.1002/pen.23928

    Article  CAS  Google Scholar 

  102. Hardy JG, LM R, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49:4309–4327. https://doi.org/10.1016/j.polymer.2008.08.006

    Article  CAS  Google Scholar 

  103. Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24):4385–4415. https://doi.org/10.1016/S0142-9612(03)00343-0

    Article  CAS  Google Scholar 

  104. Higgins JS, Lipson JEG, White RP (2010) A simple approach to polymer mixture miscibility. Phil Trans R Soc A 368(1914):1009–1025. https://doi.org/10.1098/rsta.2009.0215

    Article  CAS  PubMed  Google Scholar 

  105. Hill P, Brantley H, Van Dyke M (2010) Some properties of keratin biomaterials: kerateines. Biomaterials 31(4):585–593. https://doi.org/10.1016/j.biomaterials.2009.09.076

    Article  CAS  PubMed  Google Scholar 

  106. Hitzeman RA, Hagie FE, Levine HL, Goeddel DV, Ammerer G, Hall BD (1981) Expression of a human gene for interferon in yeast. Nature 293:717–722. https://doi.org/10.1038/293717a0

    Article  CAS  PubMed  Google Scholar 

  107. Ho MP, Wang H, Lau KT, Leng JS (2013) Effect of silk fiber to the mechanical and thermal properties of its biodegradable composites. J Appl Polym Sci 127(4):2389–2396. https://doi.org/10.1002/app.37539

    Article  CAS  Google Scholar 

  108. Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak Novakovic G, Merkle HP, Meinel L (2006) Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng 12(10):2729–2738. https://doi.org/10.1089/ten.2006.12.2729

    Article  CAS  PubMed  Google Scholar 

  109. Holmes C, Wrobel JS, MacEachern MP, Boles BR (2013) Collagen-based wound dressings for the treatment of diabetes-related foot ulcers: a systematic review. Diabetes Metab Syndr Obes 6:17–29. https://doi.org/10.2147/dmso.s36024

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hoppenbrouwers T, Tuk B, Fijneman EM, de Maat MP, van Neck JW (2017) Fibrin improves skin wound perfusion in a diabetic rat model. Thromb Res 151:36–40. https://doi.org/10.1016/j.thromres.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  111. Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH (2005) In vitro degradation of silk fibroin. Biomaterials 26(17):3385–3393. https://doi.org/10.1016/j.biomaterials.2004.09.020

    Article  CAS  PubMed  Google Scholar 

  112. Hu X, Park SH, Gil ES, Xia XX, Weiss AS, Kaplan DL (2011) The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cell on silk-elastin biomaterials. Biomaterials 32(34):8979–8989. https://doi.org/10.1016/j.biomaterials.2011.08.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hu Y, Zhang Q, You R, Wang L, Li M (2012a) The Relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds. Adv Mater Sci Eng 2012:1–5. https://doi.org/10.1155/2012/185905

    Article  CAS  Google Scholar 

  114. Hu X, Cebe P, Weiss AS, Omenetto F, Kaplan D (2012b) Protein-based composite materials. Materialstoday 15(5):208–215. https://doi.org/10.1016/S1369-7021(12)70091-3

    Article  CAS  Google Scholar 

  115. Hu J, Chen B, Guo F, Du J, Gu P, Lin X, Yang W, Zhang H, Lu M, Huang Y, Xu G (2012c) Injectable silk fibroin/polyurethane composite hydrogel for nucleus pulposus replacement. J Mater Sci Mater Med 23(3):711–722. https://doi.org/10.1007/s10856-011-4533-y

    Article  CAS  PubMed  Google Scholar 

  116. Huang W, Rollett A, Kaplan DL (2015) Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. Expert Opin Drug Deliv 12(5):779–791. https://doi.org/10.1517/17425247.2015.989830

    Article  CAS  PubMed  Google Scholar 

  117. Huggins ML (1977) The structure of alpha-keratin. Macromolecules 10(5):893–898

    Article  CAS  Google Scholar 

  118. Hwang ES, Thiagarajan G, Parmar AS, Brodsky B (2010) Interruptions in the collagen repeating tripeptide pattern can promote supramolecular association. Protein Sci 19(5):1053–1064. https://doi.org/10.1002/pro.383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3(10):589–601. https://doi.org/10.1098/rsif.2006.0124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Janmey PA, Winer JP, Weisel JW (2009) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6(30):1–10. https://doi.org/10.1098/rsif.2008.0327

    Article  CAS  PubMed  Google Scholar 

  121. Jeon WB (2013) Application of elastin-mimetic recombinant proteins in chemotherapeutics delivery, cellular engineering, and regenerative medicine. Bioengineered 4(6):368–373. https://doi.org/10.4161/bioe.24158

    Article  PubMed  PubMed Central  Google Scholar 

  122. Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Zhang ZY (2009) Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials 30:4522–4532. https://doi.org/10.1016/j.biomaterials.2009.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jin HJ, Chen J, Karageorgiou V, Altman GH, Kaplan DL (2004a) Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25(6):1039–1047. https://doi.org/10.1016/S0142-9612(03)00609-4

    Article  CAS  PubMed  Google Scholar 

  124. Jin HJ, Park J, Valluzzi R, Cebe P, Kaplan DL (2004b) Biomaterial films of bombyx mori silk fibroin with poly(ethylene oxide). Biomacromolecules 5:711–717. https://doi.org/10.1021/bm0343287

    Article  CAS  PubMed  Google Scholar 

  125. Kadir M, Wang X, Zhu B, Liu J, Harland D, Popescu C (2017) The structure of the “amorphous” matrix of keratins. J Struct Biol 198(2):116–123. https://doi.org/10.1016/j.jsb.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  126. Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120(12):1955–1958. https://doi.org/10.1242/jcs.03453

    Article  CAS  PubMed  Google Scholar 

  127. Karageorgiou V, Tomkins M, Fajardo R, Meinel L, Snyder B, Wade K, Chen J, Vunjak-Novakovic G, Kaplan DL (2006) Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo. J Biomed Mater Res A 78(2):324–334. https://doi.org/10.1002/jbm.a.30728

    Article  CAS  PubMed  Google Scholar 

  128. Kasoju N, Bora U (2012) Silk fibroin in tissue engineering. Adv Healthc Mater 1(4):393–412. https://doi.org/10.1002/adhm.201200097

    Article  CAS  PubMed  Google Scholar 

  129. Kassam A, Horowitz M, Carrau R, Snyderman C, Welch W, Hirsch B, Chang YF (2003) Use of tisseel fibrin sealant in neurosurgical procedures: incidence of cerebrospinal fluid leaks and cost-benefit analysis in a retrospective study. Neurosurgery 52(5):1102–1105. https://doi.org/10.1093/neurosurgery/52.5.1102

    Article  PubMed  Google Scholar 

  130. Kastin AJ (2006) Handbook of biologivally avtive peptides. Elsevier, Burlington

    Google Scholar 

  131. Kavanagh MC, Ohr MP, Czyz CN, Cahill KV, Perry JD, Holck DE, Foster JA (2009) Comparison of fibrin sealant versus suture for wound closure in Muller muscle-conjunctiva resection ptosis repair. Ophthal Plast Reconstr Surg 25(2):99–102. https://doi.org/10.1097/IOP.0b013e31819a42e5

    Article  PubMed  Google Scholar 

  132. Kendrew J, Bodo G, Dintzis H, Parrish R, Wyckoff H, Phillips D (1958) A three dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181(4610):662–666. https://doi.org/10.1038/181662a0

    Article  CAS  PubMed  Google Scholar 

  133. Khan F, Tanaka M (2017) Designing smart biomaterials for tissue engineering. Int J Mol Sci 19(1):1–14. https://doi.org/10.3390/ijms19010017

    Article  CAS  Google Scholar 

  134. Khodakaram-Tafti A, Mehrabani D, Shaterzadeh-Yazdi H (2017) An overview on autologous fibrin glue in bone tissue engineering of maxillofacial surgery. Dent Res J (Isfahan) 14(2):79–86. https://doi.org/10.4103/1735-3327.205789

    Article  Google Scholar 

  135. Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115(14):2817–2828

    CAS  PubMed  Google Scholar 

  136. Kilian O, Hossain H, Flesch I, Sommer U, Nolting H, Chakraborty T, Schnettler R (2008) Elution kinetics, antimicrobial efficacy, and degradation and microvasculature of a new gentamicinloaded collagen fleece. J Biomed Mater Res B 90B(1):210–222. https://doi.org/10.1002/jbm.b.31275

    Article  CAS  Google Scholar 

  137. Kim W (2013) Recombinant protein polymers in biomaterials. Front Biosci (Landmark Ed) 18:289–304. https://doi.org/10.2741/4100

    Article  CAS  Google Scholar 

  138. Kim HJ, Kim UJ, Kim HS, Li CM, Wada M, Leisk GG, Kaplan DL (2008) Bone tissue engineering with premineralized silk scaffolds. Bone 42:1226–1234. https://doi.org/10.1016/j.bone.2008.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kimura Y, Tsuji W, Yamashiro H, Toi M, Inamoto T, Tabata Y (2010) In situ adipogenesis in fat tissue augmented by collagen scaffold with gelatin microspheres containing basic fibroblast growth factor. J Tissue Eng Regen Med 4(1):55–61. https://doi.org/10.1002/term.218

    Article  CAS  PubMed  Google Scholar 

  140. Kleinheinz J, Jung S, Wermker K, Fischer C, Joos U (2010) Release kinetics of VEGF165 from a collagen matrix and structural matrix changes in a circulation model. Head Face Med 6(17):1–7. https://doi.org/10.1186/1746-160X-6-17

    Article  CAS  Google Scholar 

  141. Knani D, Barkay-Olami H, Alperstein D, Zilberman M (2017) Simulation of novel soy protein-based systems for tissue regeneration applications. Polym Adv Technol 28(4):496–505. https://doi.org/10.1002/pat.3918

    Article  CAS  Google Scholar 

  142. Knupp C, Squire JM (2003) Molecular packing in network-forming collagens. Sci World J 3:558–577. https://doi.org/10.1100/tsw.2003.40

    Article  CAS  Google Scholar 

  143. Kozlovskaya V, Baggett J, Godin B, Liu XW, Kharlampieva E (2012) Hydrogen-bonded multilayers of silk fibroin: from coatings to cell-mimicking shaped microcontainers. ACS Macro Lett 2012(1):384–387. https://doi.org/10.1021/mz200118f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258. https://doi.org/10.1126/science.1170160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470. https://doi.org/10.1016/j.addr.2012.09.043

    Article  CAS  PubMed  Google Scholar 

  146. Kyle S, Aggeli A, Ingham E, McPherson MJ (2009) Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol 27(7):423–433. https://doi.org/10.1016/j.tibtech.2009.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492. https://doi.org/10.1038/nature02388

    Article  CAS  Google Scholar 

  148. Laurens N, Koolwijk P, de Maat MP (2006) Fibrin structure and wound healing. J Thromb Haemost 4(5):932–939. https://doi.org/10.1111/j.1538-7836.2006.01861.x

    Article  CAS  PubMed  Google Scholar 

  149. Leach JB, Wolinsky JB, Stone PJ, Wong JY (2005) Crosslinked alpha-elastin biomaterials: towards a processable elastin mimetic scaffold. Acta Biomater 1(2):155–164. https://doi.org/10.1016/j.actbio.2004.12.001

    Article  PubMed  Google Scholar 

  150. Leal-Egana A, Scheibel T (2010) Silk-based materials for biomedical applications. Biotechnol Appl Biochem 55(3):155–167. https://doi.org/10.1042/ba20090229

    Article  CAS  PubMed  Google Scholar 

  151. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1-2):1–22. https://doi.org/10.1016/S0378-5173(01)00691-3

    Article  CAS  PubMed  Google Scholar 

  152. Lee EJ, Kasper FK, Mikos AG (2014a) Biomaterials for tissue engineering. Ann Biomed Eng 42(2):323–337. https://doi.org/10.1007/s10439-013-0859-6

    Article  PubMed  Google Scholar 

  153. Lee H, Noh K, Lee SC, Kwon IK, Han DW, Lee IS, Hwang YS (2014b) Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng Regener Med 11(4):255–265. https://doi.org/10.1007/s13770-014-0029-4

    Article  CAS  Google Scholar 

  154. Lei P, Padmashali RM, Andreadis ST (2009) Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels. Biomaterials 30(22):3790–3799. https://doi.org/10.1016/j.biomaterials.2009.03.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li M, Lu S, Wu Z, Tan K, Minoura N, Kuga S (2002) Structure and properties of silk fibroin-poly(vinyl alcohol) gel. Int J Biol Macromol 30(2):89–94. https://doi.org/10.1016/S0141-8130(02)00007-7

    Article  PubMed  Google Scholar 

  156. Li JP, Habibovic P, van den Doel M, Wilson CE, de Wijn JR, van Blitterswijk CA, de Groot K (2007) Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28(18):2810–2820. https://doi.org/10.1016/j.biomaterials.2007.02.020

    Article  CAS  Google Scholar 

  157. Li L, Tong Z, Jia X, Kiick KL (2013) Resilin-like polypeptide hydrogels engineered for versatile biological functions. Soft Matter 9(3):665–673. https://doi.org/10.1039/C2SM26812D

    Article  CAS  PubMed  Google Scholar 

  158. Li Y, Meng H, Liu Y, Lee BP (2015) Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Sci World J 2015:1–11. https://doi.org/10.1155/2015/685690

    Article  CAS  Google Scholar 

  159. Li L, Mahara A, Tong Z, Levenson EA, McGann CL, Jia X, Yamaoka T, Kiick KL (2016) Recombinant resilin-based bioelastomers for regenerative medicine applications. Adv Healthc Mater 5(2):266–275. https://doi.org/10.1002/adhm.201500411

    Article  CAS  PubMed  Google Scholar 

  160. Litvinov RI, Weisel JW (2017) Fibrin mechanical properties and their structural origins. Matrix Biol 60-61:110–123. https://doi.org/10.1016/j.matbio.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  161. Liu XY, Zhang CC, Xu WL, Liu HT, Ouyang CX (2011) Blend films of silk fibroin and water-insoluble polyurethane prepared from an ionic liquid. Mater Lett 65(15-16):2489–2491. https://doi.org/10.1016/j.matlet.2011.05.017

    Article  CAS  Google Scholar 

  162. Lord ST (2011) Molecular mechanisms affecting fibrin structure and stability. Arterioscler Thromb Vasc Biol 31(3):494–499. https://doi.org/10.1161/atvbaha.110.213389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lu T, Ting AY, Mainland J, Jan LY, Schultz PG, Yang J (2001) Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nat Neurosci 4:239–246. https://doi.org/10.1038/85080

    Article  CAS  PubMed  Google Scholar 

  164. Lu Q, Zhu H, Zhang C, Zhang F, Zhang B, Kaplan DL (2012) Silk self-assembly mechanisms and control from thermodynamics to kinetics. Biomacromolecules 13(3):826−832. https://doi.org/10.1021/bm201731e

    Article  CAS  PubMed Central  Google Scholar 

  165. Lv Q, Hu K, Feng QL, Cui FZ (2008) Preparation of insoluble fibroin/collagen films without methanol treatment and the increase of its flexibility and cytocompatibility. J Appl Polym Sci 109(3):1577–1584. https://doi.org/10.1002/app.24546

    Article  CAS  Google Scholar 

  166. Lynch MH, O'Guin WM, Hardy C, Mak L, Sun TT (1986) Acidic and basic hair/nail (“hard”) keratins: their colocalization in upper cortical and cuticle cells of the human hair follicle and their relationship to “soft” keratins. J Cell Biol 103(6 Pt 2):2593–2606. https://doi.org/10.1083/jcb.103.6.2593

    Article  CAS  PubMed  Google Scholar 

  167. Lynn AK, Yannas IV, Bonfield W (2004) Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater 71(2):343–354. https://doi.org/10.1002/jbm.b.30096

    Article  CAS  PubMed  Google Scholar 

  168. Malay AD, Sato R, Yazawa K, Watanabe H, Ifuku N, Masunaga H, Numata K (2016) Relationships between physical properties and sequence in silkworm silks. Sci Rep 6:27573. https://doi.org/10.1038/srep27573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Marsano E, Canetti M, Conio G, Corsini P, Freddi G (2007) Fibers based on cellulose–silk fibroin blend. J Appl Polym Sci 104(4):2187–2196. https://doi.org/10.1002/app.24856

    Article  CAS  Google Scholar 

  170. Maton A (1993) Human biology and health. Prentice Hall science, Englewood Cliffs, pp 165–185

    Google Scholar 

  171. Maurice P, Blaise S, Gayral S, Debelle L, Laffargue M, Hornebeck W, Duca L (2013) Elastin fragmentation and atherosclerosis progression: the elastokine concept. Trends Cardiovasc Med 23(6):211–221. https://doi.org/10.1016/j.tcm.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  172. Megeed Z, Cappello J, Ghandehari H (2002) Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv Drug Deliv Rev 54(8):1075–1091. https://doi.org/10.1016/S0169-409X(02)00063-7

    Article  CAS  PubMed  Google Scholar 

  173. Meghezi S, Seifu DG, Bono N, Unsworth L, Mequanint K, Mantovani D (2015) Engineering 3D cellularized collagen gels for vascular tissue regeneration. J Vis Exp (100):1–12. https://doi.org/10.3791/52812

  174. Merkel L, Budisa N (2012) Organic fluorine as a polypeptide building element: in vivo expression of fluorinated peptides, proteins and proteomes. Org Biomol Chem 10:7241–7261. https://doi.org/10.1039/C2OB06922A

    Article  CAS  PubMed  Google Scholar 

  175. Metcalfe AD, Ferguson MWJ (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4(14):413–437. https://doi.org/10.1098/rsif.2006.0179

    Article  CAS  PubMed  Google Scholar 

  176. Meyers MA, Chen PY, Lopez MI, Seki Y, Lin AY (2011) Biological materials: a materials science approach. J Mech Behav Biomed Mater 4(5):626–657. https://doi.org/10.1016/j.jmbbm.2010.08.005

    Article  PubMed  Google Scholar 

  177. Milner-Whitea EJ, Poet R (1987) Loops, bulges, turns and hairpins in proteins. Trends Biochem Sci 12:189–192. https://doi.org/10.1016/0968-0004(87)90091-0

    Article  Google Scholar 

  178. Minoura N, Aiba S, Higuchi M, Gotoh Y, Tsukada M, Imai Y (1995) Attachment and growth of fibroblast cells on silk fibroin. Biochem Biophys Res Commun 208(2):511–516. https://doi.org/10.1002/jbm.820291008

    Article  CAS  PubMed  Google Scholar 

  179. Mithieux SM, Weiss AS (2005) Elastin. Adv Protein Chem 70:437–461. https://doi.org/10.1016/s0065-3233(05)70013-9

    Article  CAS  PubMed  Google Scholar 

  180. Mithieux SM, Wise SG, Weiss AS (2013) Tropoelastin – a multifaceted naturally smart material. Adv Drug Deliver Rev 65(4):421–428. https://doi.org/10.1016/j.addr.2012.06.009

    Article  CAS  Google Scholar 

  181. Modulevsky DJ, Cuerrier CM, Pelling AE (2016) Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials. PLoS One 11(6):1–19. https://doi.org/10.1371/journal.pone.0157894

    Article  CAS  Google Scholar 

  182. Mogosanu GD, Grumezescu AM, Chifiriuc MC (2014) Keratin-based biomaterials for biomedical applications. Curr Drug Targets 15(5):518–530. https://doi.org/10.2174/1389450115666140307154143

    Article  CAS  PubMed  Google Scholar 

  183. Mol A, van Lieshout MI, Dam-de Veen CG, Neuenschwander S, Hoerstrup SP, Baaijens FP, Bouten CV (2005) Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials 26(16):3113–3121. https://doi.org/10.1016/j.biomaterials.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  184. Moll R, Divo M, Langbein L (2008) The human keratins: biology and pathology. Histochem Cell Biol 129(6):705–733. https://doi.org/10.1007/s00418-008-0435-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Morgan AW, Roskov KE, Lin-Gibson S, Kaplan DL, Becker ML, Simon CG Jr (2008) Characterization and optimization of RGD-containing silk blends to support osteoblastic differentiation. Biomaterials 29(16):2556–2563. https://doi.org/10.1016/j.biomaterials.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  186. Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3(8):1894–1904. https://doi.org/10.1111/j.1538-7836.2005.01365.x

    Article  CAS  PubMed  Google Scholar 

  187. Mouw JK, Ou G, Weaver VM (2014) Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15(12):771–785. https://doi.org/10.1038/nrm3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Muirhead H, Perutz M (1963) Structure of hemoglobin. A three-dimentional fourier synthesis of reduced human hemoglovin a 5.5 A resolution. Nature 199(4894):633–638. https://doi.org/10.1038/199633a0

    Article  CAS  PubMed  Google Scholar 

  189. Muiznieks LD, Keeley FW (2013) Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta 1832(7):866–875. https://doi.org/10.1016/j.bbadis.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  190. Muralidharan N, Jeya Shakila R, Sukumar D, Jeyasekaran G (2013) Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization. J Food Sci Technol 50(6):1106–1113. https://doi.org/10.1007/s13197-011-0440-y

    Article  CAS  PubMed  Google Scholar 

  191. Murphy AR, Kaplan DL (2009) Biomedical applications of chemically-modified silk fibroin. J Mater Chem 19:6443–6450. https://doi.org/10.1039/B905802H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Nagaoka M, Jiang HL, Hoshiba T, Akaike T, Cho CS (2010) Application of recombinant fusion proteins for tissue engineering. Ann Biomed Eng 38(3):683–693. https://doi.org/10.1007/s10439-010-9935-3

    Article  PubMed  Google Scholar 

  193. Nagata T, Uchijima M, Yoshida A, Kawashima M, Koide Y (1999) Codon optimization effect on translational efficiency of DNA vaccine in mammalian cells: analysis of plasmid DNA encoding a CTL epitope derived from microorganisms. Biochem Biophys Res Commun 261(2):445–451. https://doi.org/10.1006/bbrc.1999.1050

    Article  CAS  PubMed  Google Scholar 

  194. Narayanan AS, Page RC, Swanson J (1989) Collagen synthesis by human fibroblasts. Regulation by transforming growth factor-beta in the presence of other inflammatory mediators. Biochem J 260(2):463–469. https://doi.org/10.1042/bj2600463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Nelson DL, Cox MM (2005) Lehninger’s principles of biochemistry, 4th edn. W. H. Freeman and Company, New York

    Google Scholar 

  196. Neves SC, Moreira-Teixeira LS, Moroni L, Reis RL, Van Blitterswijk CA, Alves NM, Karperien M, Mano JF (2011) Chitosan/Poly(ɛ-caprolactone) blend scaffolds for cartilage repair. Biomaterials 32:1068–1079. https://doi.org/10.1016/j.biomaterials.2010.09.073

    Article  CAS  PubMed  Google Scholar 

  197. Nileback L, Chouhan D, Jansson R, Widhe M, Mandal BB, Hedhammar M (2017) Silk-Silk Interactions between silkworm fibroin and recombinant spider silk fusion proteins enable the construction of bioactive materials. ACS Appl Mater Interfaces 9(37):31634–31644. https://doi.org/10.1021/acsami.7b10874

    Article  CAS  PubMed  Google Scholar 

  198. Nogueira GM, Aimoli CG, Weska RF, Nascimento LS, Beppu MM (2008) Three-dimensional characterization of the microstructure of bioglass/polyethylene composite by X-ray microtomography. Key Eng Mater 330-332:503–506

    Google Scholar 

  199. Nogueira GM, Swiston AJ, Beppu MM, Rubner MF (2010) Layer-by-layer deposited chitosan/silk fibroin thin films with anisotropic nanofiber alignment. Langmuir 26(11):8953–8958. https://doi.org/10.1021/la904741h

    Article  CAS  PubMed  Google Scholar 

  200. Noori A (2017) A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine 12:4937–4961. https://doi.org/10.2147/ijn.s124671

    Article  PubMed  PubMed Central  Google Scholar 

  201. Noqueira GM, Rodas AC, Leite CA, Giles C, Hiqa OZ, Polakiewicz B, Beppu MM (2010) Preparation and characterization of ethanol-treated silk fibroin dense membranes for biomaterials application using waste silk fibers as raw material. Bioresour Technol 101(21):8446–8451. https://doi.org/10.1016/j.biortech.2010.06.064

    Article  CAS  Google Scholar 

  202. Ozsvar J, Mithieux SM, Wang R, Weiss AS (2015) Elastin-based biomaterials and mesenchymal stem cells. Biomater Sci 3(6):800–809. https://doi.org/10.1039/c5bm00038f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Padma PS, Rai SK (2006) Utilization of waste silk fabric as reinforcement for acrylonitrile butadiene styrene. Toughened epoxy matrix. J Reinf Plast Compos 25(6):565–574. https://doi.org/10.1177/0021998306059727

    Article  CAS  Google Scholar 

  204. Paladini RD, Takahashi K, Gant TM, Coulombe PA (1995) cDNA cloning and bacterial expression of the human type I keratin 16. Biochem Biophys Res Commun 215(2):517–523. https://doi.org/10.1006/bbrc.1995.2495

    Article  CAS  PubMed  Google Scholar 

  205. Panda A, Kumar S, Kumar A, Bansal R, Bhartiya S (2009) Fibrin glue in ophthalmology. Indian J Ophthalmol 57(5):371–379. https://doi.org/10.4103/0301-4738.55079

    Article  PubMed  PubMed Central  Google Scholar 

  206. Pang Y, Wang X, Ucuzian AA, Brey EM, Burgess WH, Jones KJ, Greisler HP (2010) Local delivery of a collagen binding FGF-1 chimera to smooth muscle cells in collagen scaffolds for vascular tissue engineering. Biomaterials 31(5):878–885. https://doi.org/10.1016/j.biomaterials.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  207. Parenteau-Bareil R, Gauvin R (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3(3):1863–1887. https://doi.org/10.3390/ma3031863

    Article  CAS  PubMed Central  Google Scholar 

  208. Parker RN, Roth KL, Kim C, McCord JP, Van Dyke ME, Grove TZ (2017) Homo- and heteropolymer self-assembly of recombinant trichocytic keratins. Biopolymers 107(10). https://doi.org/10.1002/bip.23037

    Article  Google Scholar 

  209. Peng Q, Zhang Y, Lu L, Shao H, Qin K, Hu X, Xia X (2016) Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci Rep 6:36473. https://doi.org/10.1038/srep36473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Pierschbacher MD, Ruoslahti E (1984) The cell attachment activity of fibronectin can be duplicated by small fragments of the molecule. Nature 309(5963):30–33. https://doi.org/10.1038/309030a0

    Article  CAS  PubMed  Google Scholar 

  211. Powers ET, Deechongkit S, Kelly JW (2005) Backbone–backbone H-bonds make context-dependent contributions to protein folding kinetics and thermodynamics: lessons from amide-to-ester mutations. Adv Protein Chem 72:39–78. https://doi.org/10.1016/S0065-3233(05)72002-7

    Article  CAS  PubMed  Google Scholar 

  212. Prachayawarakorn J, Hwansanoet W (2012) Effect of silk protein fibers on properties of thermoplastic rice starch. Fibers Polym 13(5):606–612. https://doi.org/10.1007/s12221-012-0606-x

    Article  CAS  Google Scholar 

  213. Prachayawarakorn J, Sangnitidej P, Boonpasith P (2010) Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydr Polym 81(2):425–433. https://doi.org/10.1016/j.carbpol.2010.02.041

    Article  CAS  Google Scholar 

  214. Preda RC, Leisk G, Omenetto F, Kaplan DL (2013) Bioengineered silk proteins to control cell and tissue functions. Methods Mol Biol 996:19–41. https://doi.org/10.1007/978-1-62703-354-1_2

    Article  CAS  PubMed  Google Scholar 

  215. Prum RO, Dufresne ER, Quinn T, Waters K (2009) Development of colour-producing β-keratin nanostructures in avian feather barbs. J R Soc Interface 6(2):253–265. https://doi.org/10.1098/rsif.2008.0466.focus

    Article  CAS  Google Scholar 

  216. Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, Zhang KQ (2017) A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci 18(3):1–21. https://doi.org/10.3390/ijms18030237

    Article  CAS  Google Scholar 

  217. Qiu WG, Huang YD, Teng WB, Cohn CM, Cappello J, Wu XY (2010) Complete recombinant silk-elastinlike protein-based tissue scaffold. Biomacromolecules 11(12):3219–3227. https://doi.org/10.1021/bm100469w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Rao KP (1995) Recent developments of collagen-based materials for medical applications and drug delivery systems. J Biomater Sci Polym Ed 7(7):623–645. https://doi.org/10.1163/156856295X00526

    Article  CAS  PubMed  Google Scholar 

  219. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials and medicine, 2nd edn. Elsevier, Oxford

    Google Scholar 

  220. Rech E, Murad GVA, Cunha N, Lacorte C, Araujo A, Brigido M, Michael W, Fontes A, Barry K, Andrew S, Otavia C (2014) Recombinant proteins in plants. BMC Proc 8(4):O1. https://doi.org/10.1186/1753-6561-8-S4-O1

    Article  PubMed Central  Google Scholar 

  221. Reddy N, Yang Y (2011) Potential of plant proteins for medical applications. Trends Biotechnol 29(10):490–498. https://doi.org/10.1016/j.tibtech.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  222. Ricard-Blum S (2011) The Collagen family. Cold Spring Harb Perspect Biol 3(1):1–19. https://doi.org/10.1101/cshperspect.a004978

    Article  CAS  Google Scholar 

  223. Rnjak-Kovacina J, Wise SG, Li Z, Maitz PKM, Young CJ, Wang Y, Weiss S (2012) Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. Acta Biomater 8(10):3714–3722. https://doi.org/10.1016/j.actbio.2012.06.032

    Article  CAS  PubMed  Google Scholar 

  224. Rockwood DN, Preda RC, Yücel T, Wang XQ, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6:1612–1631. https://doi.org/10.1038/nprot.2011.379

    Article  CAS  PubMed  Google Scholar 

  225. Rodgers UR, Weiss AS (2005) Cellular interactions with elastin. Pathol Biol (Paris) 53(7):390–398. https://doi.org/10.1016/j.patbio.2004.12.022

    Article  CAS  Google Scholar 

  226. Rodriguez-Cabello CJ, Prieto S, Arias FJ, Reguera J, Ribeiro A (2006) Nanobiotechnological approach to engineered biomaterial design: the example of elastin-like polymers. Nanomedicine-UK 1(3):267–280. https://doi.org/10.2217/17435889.1.3.267

    Article  CAS  Google Scholar 

  227. Römer L, Scheibel T (2008) The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2(4):154–161. https://doi.org/10.4161/pri.2.4.7490

    Article  PubMed  PubMed Central  Google Scholar 

  228. Rosewald M, Hou FYS, Mututuvari T, Harkins AL, Tran CD (2014) Cellulose-Chitosan-Keratin composite materials: synthesis, immunological and antibacterial properties. ECS Trans 64(4):499–505. https://doi.org/10.1149/06404.0499ecst

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Rucker RB, Dubick MA (1984) Elastin metabolism and chemistry: potential roles in lung development and structure. Environ Health Perspect 55:179–191

    Article  CAS  Google Scholar 

  230. Sampath U, Ching YC, Chuah CH, Sabariah JJ, Lin PC (2016) Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials (Basel) 9(12):1–32. https://doi.org/10.3390/ma9120991

    Article  CAS  Google Scholar 

  231. Sato AK, Viswanathan M, Kent RB, Wood CR (2006) Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol 17(6):638–642. https://doi.org/10.1016/j.copbio.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  232. Saul JM, Ellenburg MD, de Guzman RC, Van Dyke M (2011) Keratin hydrogels support the sustained release of bioactive ciprofloxacin. J Biomed Mater Res A 98(4):544–553. https://doi.org/10.1002/jbm.a.33147

    Article  CAS  PubMed  Google Scholar 

  233. Schacht K, Scheibel T (2014) Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Curr Opin Biotechnol 29:62–69. https://doi.org/10.1016/j.copbio.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  234. Scheibel T (2004) Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb Cell Fact 3(1):14. https://doi.org/10.1186/1475-2859-3-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL (2010) The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers 2(4):522–553. https://doi.org/10.3390/polym2040522

    Article  CAS  Google Scholar 

  236. Sengupta D, Heilshorn SC (2010) Protein-engineered biomateirals: highly tunable tissue engineering scaffolds. Tissue Eng Part B 16(3):285–293. https://doi.org/10.1089/ten.teb.2009.0591

    Article  CAS  Google Scholar 

  237. Sephel GC, Davidson JM (1986) Elastin production in human skin fibroblast cultures and its decline with age. J Invest Dermatol 86(3):279–285. https://doi.org/10.1111/1523-1747.ep12285424

    Article  CAS  PubMed  Google Scholar 

  238. Shaikh FM, Callanan A, Kavanagh EG, Burke PE, Grace PA, McGloughlin TM (2008) Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs 188(4):333–346. https://doi.org/10.1159/000139772

    Article  CAS  PubMed  Google Scholar 

  239. Shao HJ, LeeYT CCS, Wang JH, Young TH (2010) Modulation of gene expression and collagen production of anterior cruciate ligament cells through cell shape changes on polycaprolactone/chitosan blends. Biomaterials 31:4695–4705. https://doi.org/10.1016/j.biomaterials.2010.02.037

    Article  CAS  PubMed  Google Scholar 

  240. Shaw LM, Olsen BR (1991) FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem Sci 16(5):191–194. https://doi.org/10.1016/0968-0004(91)90074-6

    Article  CAS  PubMed  Google Scholar 

  241. Sherman VR, Yang W, Meyers MA (2015) The materials science of collagen. J Mech Behav Biomed Mater 52:22–50. https://doi.org/10.1016/j.jmbbm.2015.05.023

    Article  CAS  PubMed  Google Scholar 

  242. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Sidhu SS, Bader GD, Boone C (2003) Functional genomics of intracellular peptide recognition domains with combinatorial biology methods. Curr Opin Chem Biol 7(1):97–102. https://doi.org/10.1016/S1367-5931(02)00011-X

    Article  CAS  PubMed  Google Scholar 

  244. Silva RD, Wang XG, Byrne N (2013) Tri-component bio-composite materials prepared using an eco-friendly processing route. Cellulose 20(5):2461–2468. https://doi.org/10.1007/s10570-013-0014-4

    Article  CAS  Google Scholar 

  245. Silva NHCS, Vilela C, Marrucho IM, Freire CSR, Neto CP, Silvestre AJD (2014) Protein-based materials: from sources to innovative sustainable materials for biomedical applications. J Mater Chem B 2:3715–3740. https://doi.org/10.1039/c4tb00168k

    Article  CAS  Google Scholar 

  246. Sionkowska A, Płanecka A (2013) Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering. J Mol Liq 178:5–14. https://doi.org/10.1016/j.molliq.2012.10.042

    Article  CAS  Google Scholar 

  247. Siriwardane ML, DeRosa K, Collins G, Pfister BJ (2014) Controlled formation of cross-linked collagen fibers for neural tissue engineering applications. Biofabrication 6(1):015012. https://doi.org/10.1088/1758-5082/6/1/015012

    Article  CAS  PubMed  Google Scholar 

  248. Skopinska-Wisniewska J, Sionkowska A, Kaminska A, Kaznica A, Jachimiak R, Drewa T (2009) Surface characterization of collagen/elastin based biomaterials for tissue regeneration. Appl Surf Sci 255:8286–8292. https://doi.org/10.1016/j.apsusc.2009.05.127

    Article  CAS  Google Scholar 

  249. Sorenson HP, Mortenson KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115(2):113–128. https://doi.org/10.1016/j.jbiotec.2004.08.004

    Article  CAS  Google Scholar 

  250. Stark M, Grip S, Rising A, Hedhammar M, Engstrom W, Hjalm G, Johansson J (2007) Macroscopic fibers selfassembled from recombinant miniature spider silk proteins. Biomacromolecules 8(5):1695–1701. https://doi.org/10.1021/bm070049y

    Article  CAS  PubMed  Google Scholar 

  251. Stoppato M, Stevens HY, Carletti E, Migliaresi C, Motta A, Guldberg RE (2013) Effects of silk fibroin fiber incorporation on mechanical properties, endothelial cell colonization and vascularization of PDLLA scaffolds. Biomaterials 34:4573–4581. https://doi.org/10.1016/j.biomaterials.2013.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Sun YY, Shao ZZ, Hu P, Yu TY (1997) Hydrogen bonds in silk fibroin-poly(acrylonitrile-co-methyl acrylate) blends. J Polym Sci Part B Polym Phys 35:1405–1414. doi: 10.1002/(SICI)1099-0488(19970715)35:9<1405::AID-POLB10>3.0.CO;2-A

    Article  CAS  Google Scholar 

  253. Swinerd VM, Collins AM, Skaer NJV, Gheysens T, Mann S (2007) Silk inverse opals from template-directed b-sheet transformation of regenerated silk fibroin. Soft Matter 3:1377–1380. https://doi.org/10.1039/B711975E

    Article  CAS  Google Scholar 

  254. Tabata Y (2009) Biomaterial technology for tissue engineering applications. J R Soc Interface 6(Suppl 3):S311–S324. https://doi.org/10.1098/rsif.2008.0448.focus

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Talukdar S, Nguyen QT, Chen AC, Sah RL, Kundu SC (2011) Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials 32(34):8927–8937. https://doi.org/10.1016/j.biomaterials.2011.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Terzi A, Storelli E, Bettini S (2018) Effects of processing on structural, mechanical and biological properties of collagen-based substrates for regenerative medicine. Sci Rep UK 8(1):1–13. https://doi.org/10.1038/s41598-018-19786-0

    Article  CAS  Google Scholar 

  257. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27. https://doi.org/10.1016/j.addr.2015.11.001

    Article  CAS  Google Scholar 

  258. Thiagarajan G, Li Y, Mohs A, Strafaci C, Popiel M, Baum J, Brodsky B (2008) Common interruptions in the repeating tripeptide sequence of non-fibrillar collagens: sequence analysis and structural studies on triple-helix peptide models. J Mol Biol 376(3):736–748. https://doi.org/10.1016/j.jmb.2007.11.075

    Article  CAS  PubMed  Google Scholar 

  259. Tomita M (2011) Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol Lett 33(4):645–654. https://doi.org/10.1007/s10529-010-0498-z

    Article  CAS  PubMed  Google Scholar 

  260. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52–56. https://doi.org/10.1038/nbt771

    Article  CAS  PubMed  Google Scholar 

  261. Tong AHY, Drees B, Nardelli G, Bader GD, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, Quondam M, Zucconi A, Hogue CWE, Fields S, Boone C, Cesareni G (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295(5553):321–324. https://doi.org/10.1126/science.1064987

    Article  CAS  PubMed  Google Scholar 

  262. Trabbic-Carlson K, Liu L, Kim B, Chilkoti A (2004) Expression and purification of recombinant proteins from Escherichia coli: comparison of an elastin-like polypeptide fusion with an oligohistidine fusion. Protein Sci 13(12):3274–3284. https://doi.org/10.1110/ps.04931604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Tsukada M, Freddi G, Crighton JS (1994) Changes in the fine structure of silk fibroin fibers following gamma irradiation. J Polym Sci Part B Polym Phys 32:243–248. https://doi.org/10.1002/app.1994.070510505

    Article  Google Scholar 

  264. Uebersax L, Mattotti M, Papaloizos M, Merkle HP, Gander B, Meinel L (2007) Silk fibroin matrices for the controlled release of nerve growth factor (NGF). Biomaterials 28(30):4449–4460. https://doi.org/10.1016/j.biomaterials.2007.06.034

    Article  CAS  PubMed  Google Scholar 

  265. Uitto J, Lichtenstein JR (1976) Defects in the biochemistry of collagen in diseases of connective tissue. J Invest Dermatol 66(2):59–79. https://doi.org/10.1111/1523-1747.ep12481404

    Article  CAS  PubMed  Google Scholar 

  266. Undas A, Ariens RA (2011) Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol 31(12):e88–e99. https://doi.org/10.1161/atvbaha.111.230631

    Article  CAS  PubMed  Google Scholar 

  267. Urbán Z, Boyd CD (2000) Elastic-fiber pathologies: primary defects in assembly-and secondary disorders in transport and delivery. Am J Hum Genet 67(1):4–7. https://doi.org/10.1086/302987

    Article  PubMed  PubMed Central  Google Scholar 

  268. Urry DW, Pattanaik A, Xu J, Woods TC, McPherson DT, Parker TM (1998) Elastic protein-based polymers in soft issue augmentation and generation. J Biomat Sci-Polym E 9(10):1015–1048. https://doi.org/10.1163/156856298X00316

    Article  CAS  Google Scholar 

  269. Valle LD, Nardi A, Toni M, Emera D, Alibardi L (2009) Beta-keratins of turtle shell are glycine-proline-tyrosine rich proteins similar to those of crocodilians and birds. J Anat 214(2):284–300. https://doi.org/10.1111/j.1469-7580.2008.01030.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Van Amerongen MJ, Harmsen MC, Petersen AH, Kors G, van Luyn MJA (2006) The enzymatic degradation of scaffolds and their replacement by vascularized extracellular matrix in the murine myocardium. Biomaterials 27(10):2247–2257. https://doi.org/10.1016/j.biomaterials.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  271. Van Beek JD, Hess S, Vollrath F, Meier BH (2002) The molecular structure of spider dragline silk: folding and orientation of the protein backbone. PNAS USA 99(16):10266–10271. https://doi.org/10.1073/pnas.152162299

    Article  CAS  PubMed  Google Scholar 

  272. Vaz CM, de Graaf LA, Reis RL, Cunha AM (2002) Soy protein-based systems for different tissue regeneration applications. In: Reis RL, Cohn D (eds) Polymer based systems on tissue engineering, replacement and regeneration, Springer, Dordrecht, pp 93–110

    Chapter  Google Scholar 

  273. Vedakumari WS, Sastry TP (2014) Physiologically clotted fibrin--preparation and characterization for tissue engineering and drug delivery applications. Biologicals 42(5):277–284. https://doi.org/10.1016/j.biologicals.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  274. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8-9):991–1007. https://doi.org/10.1016/j.progpolymsci.2007.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Verma R, Boleti E, George AJT (1998) Antibodyengineering: comparison of bacterial, yeast, insect and mammalian expression systems. J Immunol Methods 216(1-2):165–181. https://doi.org/10.1016/S0022-1759(98)00077-5

    Article  CAS  PubMed  Google Scholar 

  276. Verma V, Verma P, Ray P, Ray AR (2008) Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed Mater 3(2):025007. https://doi.org/10.1088/1748-6041/3/2/025007

    Article  CAS  PubMed  Google Scholar 

  277. Vielmuth F, Wanuske MT, Radeva MY, Hiermaier M, Kugelmann D, Walter E, Spindler V (2018) Keratins regulate the adhesive properties of desmosomal cadherins through signaling. J Invest Dermatol 138(1):121–131. https://doi.org/10.1016/j.jid.2017.08.033

    Article  CAS  PubMed  Google Scholar 

  278. Vrhovski B, Weiss AS (1998) Biochemistry of tropoelastin. Eur J Biochem 258(1):1–18. https://doi.org/10.1046/j.1432-1327.1998.2580001.x

    Article  CAS  PubMed  Google Scholar 

  279. Vyas KS, Vasconez HC (2014) Wound healing: biologics, skin substitutes, biomembranes and scaffolds. Healthcare (Basel) 2(3):356–400. https://doi.org/10.3390/healthcare2030356

    Article  Google Scholar 

  280. Walts AE, Said JW, Shintaku IP, Sassoon AF, Banks-Schlegel S (1984) Keratins of different molecular weight in exfoliated mesothelial and adenocarcinoma cells--an aid to cell identification. Am J Clin Pathol 81(4):442–446. https://doi.org/10.1016/S0022-5347(17)50023-3

    Article  CAS  PubMed  Google Scholar 

  281. Wang YZ, Kim HJ, Vunjak-Novakovic G, Kaplan DL (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27(36):6064–6082. https://doi.org/10.1016/j.biomaterials.2006.07.008

    Article  CAS  PubMed  Google Scholar 

  282. Wang X, Wenk E, Matsumoto A, Meinel L, Li C, Kaplan DL (2007) Silk microspheres for encapsulation and controlled release. J Control Release 117(3):360–370. https://doi.org/10.1016/j.jconrel.2006.11.021

    Article  CAS  PubMed  Google Scholar 

  283. Wang X, Zhang X, Castellot J, Herman I, Iafrati M, Kaplan DL (2008) Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses. Biomaterials 29:894–903. https://doi.org/10.1016/j.biomaterials.2007.10.055

    Article  CAS  PubMed  Google Scholar 

  284. Wang F, Yang C, Hu X (2014) Advanced protein composite materials. ACS Symp Ser 1175(11):177–208. https://doi.org/10.1021/bk-2014-1175.ch011

    Article  CAS  Google Scholar 

  285. Wang B, Yang W, McKittrick J, Meyers MA (2016) Keratin: structure, mechanical properties, occurrence in biological organisms, and effeorts at bioinspiration. Prog Mater Sci 76:229–318. https://doi.org/10.1016/j.pmatsci.2015.06.001

    Article  CAS  Google Scholar 

  286. Waters M, VandeVord P, Van Dyke M (2018) Keratin biomaterials augment anti-inflammatory macrophage phenotype in vitro. Acta Biomater 66:213–223. https://doi.org/10.1016/j.actbio.2017.10.042

    Article  CAS  PubMed  Google Scholar 

  287. Wenger MPE, Bozec L, Horton MA, Mesquida P (2007) Mechanical properties of Collagen Fibrils. Biophys J 93(4):1255–1263. https://doi.org/10.1529/biophysj.106.103192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Wenk E, Merkle HP, Meinel L (2011) Silk fibroin as a vehicle for drug delivery applications. J Control Release 150(2):128–141. https://doi.org/10.1016/j.jconrel.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  289. Werkmeister JA, Ramshaw JA (2012) Recombinant protein scaffolds for tissue engineering. Biomed Mater 7(1):1–29. https://doi.org/10.1088/1748-6041/7/1/012002

    Article  CAS  Google Scholar 

  290. Whelan D, Caplice NM, Clover AJ (2014) Fibrin as a delivery system in wound healing tissue engineering applications. J Control Release 196:1–8. https://doi.org/10.1016/j.jconrel.2014.09.023

    Article  CAS  PubMed  Google Scholar 

  291. Wise SG, Mithieux SM, Weiss AS (2009) Engineered tropoelastin and elastin-based biomaterials. Adv Protein Chem Struct Biol 78:1–24. https://doi.org/10.1016/s1876-1623(08)78001-5

    Article  CAS  PubMed  Google Scholar 

  292. Wong Po Foo CTS, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC (2009) Two-component protein-engineered physical hydrogels for cell encapsulation. Proc Natl Acad Sci 106(52):22067–22072. https://doi.org/10.1073/pnas.0904851106

    Article  PubMed  Google Scholar 

  293. Wongpanit P, Ueda H, Tabata Y, Rujiravanit R (2010) In vitro and in vivo release of basic fibroblast growth factor using a silk fibroin scaffold as delivery carrier. J Biomater Sci Polym Ed 21:1403–1419. https://doi.org/10.1163/092050609X12517858243706

    Article  CAS  PubMed  Google Scholar 

  294. Wu F, Jin T (2009) Polymer-based sustained-release dosage forms for protein drugs, challenges, and recent advances. AAPS Pharm Sci Tech 9(4):1218–1229. https://doi.org/10.1208/s12249-008-9148-3

    Article  CAS  Google Scholar 

  295. Wu XQ, Jornvall H, Berndt KD, Oppermann U (2004) Codon optimization reveals critical factors for high level expression of two rare codon genes in Escherichia coli: RNA stability and secondary structure but not tRNA abundance. Biochem Biophys Res Commun 313(1):89–96. https://doi.org/10.1016/j.bbrc.2003.11.091

    Article  CAS  PubMed  Google Scholar 

  296. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398. https://doi.org/10.1038/nbt1026

    Article  CAS  PubMed  Google Scholar 

  297. Xia XX, Xu Q, Hu X, Qin G, Kaplan DL (2011) Tunable self-assembly of genetically engineered silk--elastin-like protein polymers. Biomacromolecules 12(11):3844–3850. https://doi.org/10.1021/bm201165h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Xie J, Zhang H, Li X, Shi Y (2014) Entrapment of methyl parathion hydrolase in cross-linked poly(γ-glutamic acid)/gelatin hydrogel. Biomacromolecules 15(2):690–697. https://doi.org/10.1021/bm401784r

    Article  CAS  PubMed  Google Scholar 

  299. Yaari A, Posen Y, Shoseyov O (2013) Liquid crystalline human recombinant collagen: the challenge and the opportunity. Tissue Eng A 19(13-14):1502–1506. https://doi.org/10.1089/ten.tea.2012.0335

    Article  CAS  Google Scholar 

  300. Yakovlev S, Medved L (2009) Interaction of fibrin (ogen) with the endothelial cell receptor VE-cadherin: localization of the fibrin-binding site within the third extracellular VE-cadherin domain. Biochemistry 48(23):5171–5179. https://doi.org/10.1021/bi900487d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Yamaura K, Kuranuki N, Suzuki M, Tanigami T, Matsuzawa S (1990) Properties of mixtures of silk fibroin/syndiotactic-rich poly(vinyl alcohol). J Appl Polym Sci 41(9-10):2409–2425. https://doi.org/10.1002/app.1990.070410941

    Article  CAS  Google Scholar 

  302. Yang X, Wang M, Fitzgerald MC (2004) Analysis of protein folding and function using backbone modified proteins. Bioorg Chem 32(5):438–449. https://doi.org/10.1016/j.bioorg.2004.06.011

    Article  CAS  PubMed  Google Scholar 

  303. Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S, Turina M (2000) Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg 17(5):587–591. https://doi.org/10.1016/S1010-7940(00)00373-0

    Article  CAS  PubMed  Google Scholar 

  304. Yeo S, Oh JE, Jeong L, Lee TS, Lee SJ, Park WH, Min BM (2008) Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Biomacromolecules 9:1106–1116. https://doi.org/10.1021/bm700875a Epub 2008 Mar 8

    Article  CAS  PubMed  Google Scholar 

  305. Yeo GC, Aghaei-Ghareh-Bolagh B, Brackenreg EP, Hiob MA, Lee P, Weiss AS (2015) Fabricated elastin. Adv Healthc Mater 4(16):2530–2556. https://doi.org/10.1002/adhm.201400781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Yoder NC, Kumar K (2002) Fluorinated amino acids in protein design and engineering. Chem Soc Rev 31(6):335–341. https://doi.org/10.1039/B201097F

    Article  CAS  PubMed  Google Scholar 

  307. Zhang D (2014) Lightweight materials from biofibers and biopolymers. ACS Symp Ser 1175(1):1–20. https://doi.org/10.1021/bk-2014-1175.ch001

    Article  CAS  Google Scholar 

  308. Zhang L, Zeng M (2008) Monomers, polymers and composites from renewable resources: chapter 23Proteins as Sources of Materials. Elsevier 479–493. doi: https://doi.org/10.1016/B978-0-08-045316-3.00023-5

    Chapter  Google Scholar 

  309. Zhang W, Chen L, Chen J, Wang L, Gui X, Ran J, Zou X (2017) Silk fibroin biomaterial shows safe and effective wound healing in animal models and a randomized controlled clinical trial. Adv Healthcare Mater 6(10):1–16. https://doi.org/10.1002/adhm.201700121

    Article  CAS  Google Scholar 

  310. Zhao H, Ma L, Zhou J, Mao Z, Gao C, Shen J (2008) Fabrication and physical and biological properties of fibrin gel derived from human plasma. Biomed Mater 3(1):1–9. https://doi.org/10.1088/1748-6041/3/1/015001

    Article  CAS  Google Scholar 

  311. Zhao J, Zhang ZC, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Jiang XQ (2009) Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 45(3):517–527. https://doi.org/10.1016/j.bone.2009.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Zhao Z, Li Y, Xie MB (2015) Silk fibroin-based nanoparticles for drug delivery. Int J Mol Sci 16(3):4880–4903. https://doi.org/10.3390/ijms16034880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Zheng W, Zhang W, Jiang X (2010) Biomimetic Collagen nanofibrous materials for bone tissue engineering. Adv Eng Mater 12(9):B451–B466. https://doi.org/10.1002/adem.200980087

    Article  CAS  Google Scholar 

  314. Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins Struct Funct Bioinf 44(2):119–122. https://doi.org/10.1002/prot.1078

    Article  CAS  Google Scholar 

  315. Zhou J, Fang T, Wen J, Dong J (2011) Silk coating on poly(ε-caprolactone) microspheres for the delayed release of vancomycin. J Microencapsul 28(2):99–107. https://doi.org/10.3109/02652048.2010.534824

    Article  CAS  PubMed  Google Scholar 

  316. Zhou L, Wang Q, Wen JC, Chen X, Shao ZZ (2013) Preparation and characterization of transparent silk fibroin/cellulose blend films. Polymer 54(18):5035–5042. https://doi.org/10.1016/j.polymer.2013.07.002

    Article  CAS  Google Scholar 

  317. Zorlutuna P, Vrana NE, Khademhosseini A (2013) The expanding world of tissue engineering: the building blocks and new applications of tissue engineered constructs. IEEE Rev Biomed Eng 6:47–62. https://doi.org/10.1109/rbme.2012.2233468

    Article  PubMed  Google Scholar 

  318. Klaas Enno S (2004) On the role of general system theory for functional neuroimaging. J Anat 205(6):443–470

    Google Scholar 

  319. Maertens B, Hopkins D, Franzke C-W, Keene DR, Bruckner-Tuderman L, Greenspan DS, Koch M (2007) Cleavage and oligomerization of gliomedin, a transmembrane collagen required for node of ranvier formation. J Biol Chem 282(14):10647–10659

    Article  CAS  Google Scholar 

  320. Li L, Charati MB, Kiick KL (2010) Elastomeric polypeptide-based biomaterials. Polym Chem 1(8):1160

    Article  CAS  Google Scholar 

  321. Min B-M, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25(7-8):1289–1297

    Article  CAS  Google Scholar 

  322. Santin M, Morris C, Standen G, Nicolais L, Ambrosio L (2007) A new class of bioactive and biodegradable soybean-based bone fillers. Biomacromolecules 8(9):2706–2711

    Article  CAS  Google Scholar 

  323. Miranda-Nieves D, Chaikof EL (2016) Collagen and elastin biomaterials for the fabrication of engineered living tissues. ACS Biomater Sci Eng 3(5):694–711

    Article  Google Scholar 

  324. Lendlein A, Spiess K, Lammel A, Scheibel T (2010) Recombinant spider silk proteins for applications in biomaterials. Macromol Biosci 10(9):998–1007

    Google Scholar 

  325. Yaari A, Posen Y, Shoseyov O (2013) Liquid crystalline human recombinant collagen: the challenge and the opportunity. Tissue Eng A 19(13–14):1502–1506

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Yeungnam University 2016 research grant and the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A6A3A11930280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Soo Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, S.M., Chaudhry, P., Zo, S.M., Han, S.S. (2018). Advances in Protein-Based Materials: From Origin to Novel Biomaterials. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_10

Download citation

Publish with us

Policies and ethics