Advertisement

Novel Biomimetic Microphysiological Systems for Tissue Regeneration and Disease Modeling

  • Karim I. Budhwani
  • Patsy G. Oliver
  • Donald J. Buchsbaum
  • Vinoy ThomasEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)

Abstract

Biomaterials engineered to closely mimic morphology, architecture, and nanofeatures of naturally occurring in vivo extracellular matrices (ECM) have gained much interest in regenerative medicine and in vitro biomimetic platforms. Similarly, microphysiological systems (MPS), such as lab-chip, have drummed up momentum for recapitulating precise biomechanical conditions to model the in vivo microtissue environment. However, porosity of in vivo scaffolds regulating barrier and interface functions is generally absent in lab-chip systems, or otherwise introduces considerable cost, complexity, and an unrealistic uniformity in pore geometry. We address this by integrating electrospun nanofibrous porous scaffolds in MPS to develop the lab-on-a-brane (LOB) MPS for more effectively modeling transport, air-liquid interface, and tumor progression and for personalized medicine applications.

Keywords

Nanomedicine nanotechnology electrohydrodynamic atomization electrospinning tissue engineering microphysiological systems disease model 

Notes

Acknowledgements

In addition to elixir international® and the National Science Foundation (NSF EPS 1158862, DMR 1460392 REU), for their generous support, we thank P. Sethu, M.N. Saleh, S. Pillay, C.A. Monroe, U.K. Vaidya, M.L. Weaver, HW. Jun, G. Walcott, H. Budhwani, J.R. Richter, K.F. Goliwas, A. Gangrade, A.T. Wood, H. Zhang, and J. Rogers for their insight and expertise. We would also like to acknowledge UAB Comprehensive Cancer Center (CCC), UAB Scanning Electron Microscope Lab, and Research Machine Shop for use of facilities and equipment.

References

  1. 1.
    Abbasi N, Hashemi SM, Salehi M, Jahani H, Mowla SJ, Soleimani M, Hosseinkhani H (2015) Influence of oriented nanofibrous PCL scaffolds on quantitative gene expression during neural differentiation of mouse embryonic stem cells. J Biomed Mater Res A 104(1):155–164.  https://doi.org/10.1002/jbm.a.35551 CrossRefPubMedGoogle Scholar
  2. 2.
    Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38(6):963–991.  https://doi.org/10.1016/j.progpolymsci.2013.02.001 CrossRefGoogle Scholar
  3. 3.
    Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A (2015) Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research. Stem Cells Int.  https://doi.org/10.1155/2015/167025 CrossRefGoogle Scholar
  4. 4.
    Ashammakhi N, Ndreu A, Piras A, Nikkola L, Sindelar T, Ylikauppila H et al (2006) Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering. J Nanosci Nanotechnol 6(9):2693–2711.  https://doi.org/10.1166/jnn.2006.485 CrossRefPubMedGoogle Scholar
  5. 5.
    Badylak SF, Freytes DO, Gilbert TW (2015) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 23(S):S17–S26.  https://doi.org/10.1016/j.actbio.2015.07.016 CrossRefPubMedGoogle Scholar
  6. 6.
    Bean AC, Tuan RS (2015) Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Biomed Mater 10(1):15018.  https://doi.org/10.1088/1748-6041/10/1/015018 CrossRefGoogle Scholar
  7. 7.
    Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S (2014) Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Mater Sci Eng C Mater Biol Appl 44:268–277.  https://doi.org/10.1016/j.msec.2014.08.018 CrossRefPubMedGoogle Scholar
  8. 8.
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347.  https://doi.org/10.1016/j.biotechadv.2010.01.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772.  https://doi.org/10.1038/nbt.2989 CrossRefPubMedGoogle Scholar
  10. 10.
    Biazar E, Keshel SH, Sahebalzamani A, Hamidi M, Ebrahimi M (2014) The healing effect of unrestricted somatic stem cells loaded in nanofibrous poly hydroxybutyrate-co-hydroxyvalerate scaffold on full-thickness skin defects. J Biomater Tissue Eng 4(1):20–27.  https://doi.org/10.1166/jbt.2014.1137 CrossRefGoogle Scholar
  11. 11.
    Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439(7074):353–357.  https://doi.org/10.1038/nature04296 CrossRefGoogle Scholar
  12. 12.
    Bleicher KH, Böhm H, Müller K, Alanine AI (2003) A guide to drug discovery: Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2(5):369.  https://doi.org/10.1038/nrd1086 CrossRefPubMedGoogle Scholar
  13. 13.
    Budhwani KI, Thomas V, Sethu P (2016) Lab-on-a-brane: nanofibrous polymer membranes to recreate organ–capillary interfaces. J Micromech Microeng 26(3):35013.  https://doi.org/10.1088/0960-1317/26/3/035013 CrossRefGoogle Scholar
  14. 14.
    Cardwell RD, Kluge JA, Thayer PS, Guelcher SA, Dahlgren LA, Kaplan DL, Goldstein AS (2015) Static and cyclic mechanical loading of mesenchymal stem cells on elastomeric, electrospun polyurethane meshes. J Biomech Eng 137(7).  https://doi.org/10.1115/1.4030404 CrossRefGoogle Scholar
  15. 15.
    Chan CW, Hussain I, Waugh DG, Lawrence J, Man HC (2014) Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy. Mater Sci Eng C Mater Biol Appl 42:254–263.  https://doi.org/10.1016/j.msec.2014.05.022 CrossRefPubMedGoogle Scholar
  16. 16.
    Chang JC, Fujita S, Tonami H, Kato K, Iwata H, Hsu SH (2013) Cell orientation and regulation of cell-cell communication in human mesenchymal stem cells on different patterns of electrospun fibers. Biomed Mater 8(5):55002.  https://doi.org/10.1088/1748-6041/8/5/055002 CrossRefGoogle Scholar
  17. 17.
    Chen G, Dong C, Yang L, Lv Y (2015) 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. ACS Appl Mater Interfaces 7(29):15790–15802.  https://doi.org/10.1021/acsami.5b02662 CrossRefPubMedGoogle Scholar
  18. 18.
    Chowdhury S, Thomas V, Dean D, Catledge SA, Vohra YK (2005) Nanoindentation on porous bioceramic scaffolds for bone tissue engineering. J Nanosci Nanotechnol 5(11):1816–1820CrossRefGoogle Scholar
  19. 19.
    Christopherson GT, Song H, Mao HQ (2009) The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30(4):556–564.  https://doi.org/10.1016/j.biomaterials.2008.10.004 CrossRefPubMedGoogle Scholar
  20. 20.
    Chuangchote S, Supaphol P (2006) Fabrication of aligned poly(vinyl alcohol) nanofibers by electrospinning. J Nanosci Nanotechnol 6(1):125–129(5).  https://doi.org/10.1166/jnn.2006.043 CrossRefGoogle Scholar
  21. 21.
    Cramariuc B, Cramariuc R, Scarlet R, Manea LR, Lupu IG, Cramariuc O (2013) Fiber diameter in electrospinning process. J Electrost 71(3):189–198.  https://doi.org/10.1016/j.elstat.2012.12.018 CrossRefGoogle Scholar
  22. 22.
    Crowder SW, Liang Y, Rath R, Park AM, Maltais S, Pintauro PN et al (2013) Poly(epsilon-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Nanomedicine (London) 8(11):1763–1776.  https://doi.org/10.2217/nnm.12.204 CrossRefGoogle Scholar
  23. 23.
    Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146.  https://doi.org/10.1016/j.jconrel.2010.08.027 CrossRefPubMedGoogle Scholar
  24. 24.
    DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185.  https://doi.org/10.1016/S0167-6296(02)00126-1 CrossRefPubMedGoogle Scholar
  25. 25.
    DiMasi JA, Hansen RW, Grabowski HG, Lasagna L (1991) Cost of innovation in the pharmaceutical industry. J Health Econ 10(2):107–142.  https://doi.org/10.1016/0167-6296(91)90001-4 CrossRefPubMedGoogle Scholar
  26. 26.
    Drews J (2000) Drug discovery: a historical perspective. Science 287(5460):1960–1964.  https://doi.org/10.1126/science.287.5460.1960 CrossRefPubMedGoogle Scholar
  27. 27.
    Egawa G, Nakamizo S, Natsuaki Y, Doi H, Miyachi Y, Kabashima K (2013) Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci Rep 3:1932.  https://doi.org/10.1038/srep01932 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166(6):877–887.  https://doi.org/10.1083/jcb.200405004 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689.  https://doi.org/10.1016/j.cell.2006.06.044 CrossRefGoogle Scholar
  30. 30.
    Fee T, Surianarayanan S, Downs C, Zhou Y, Berry J (2016) Nanofiber alignment regulates NIH3T3 cell orientation and cytoskeletal gene expression on electrospun PCL+gelatin nanofibers. PLoS ONE 11(5):1–12.  https://doi.org/10.1371/journal.pone.0154806 CrossRefGoogle Scholar
  31. 31.
    Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36. Retrieved from http://www.zyvex.com/nanotech/feynman.html Google Scholar
  32. 32.
    Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200.  https://doi.org/10.1242/jcs CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Freedman LP, Cockburn IM, Simcoe TS (2015) The economics of reproducibility in preclinical research. PLoS Biol 13(6):1–9.  https://doi.org/10.1371/journal.pbio.1002165 CrossRefGoogle Scholar
  34. 34.
    Fujita S, Shimizu H, Suye S (2012) Control of differentiation of human mesenchymal stem cells by altering the geometry of nanofibers. J Nanotechnol 2012:1–9.  https://doi.org/10.1155/2012/429890 CrossRefGoogle Scholar
  35. 35.
    Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101(4):937–949.  https://doi.org/10.1002/jcb.21187 CrossRefPubMedGoogle Scholar
  36. 36.
    Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(D1):1100–1107.  https://doi.org/10.1093/nar/gkr777 CrossRefGoogle Scholar
  37. 37.
    Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322.  https://doi.org/10.1016/j.ccr.2012.02.022 CrossRefGoogle Scholar
  38. 38.
    Hoffmann A, Bredno J, Wendland M, Derugin N, Ohara P, Wintermark M (2011) High and low molecular weight fluorescein isothiocyanate (fitc)-dextrans to assess blood-brain barrier disruption: technical considerations. Transl Stroke Res 2(1):106–111.  https://doi.org/10.1007/s12975-010-0049-x CrossRefPubMedGoogle Scholar
  39. 39.
    Hoyert DL (2012) 75 years of mortality in the United States, 1935-2010. NCHS Data Brief 88(88):1–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22617094 Google Scholar
  40. 40.
    Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754.  https://doi.org/10.1016/j.tcb.2011.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A et al (2013) Microfabrication of human organs-on-chips. Nat Protoc 8(11):2135–2157.  https://doi.org/10.1038/nprot.2013.137 CrossRefPubMedGoogle Scholar
  42. 42.
    Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA et al (2012a) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4(159):159ra147.  https://doi.org/10.1126/scitranslmed.3004249 CrossRefPubMedGoogle Scholar
  43. 43.
    Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE (2012b) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164.  https://doi.org/10.1039/c2lc40089h CrossRefGoogle Scholar
  44. 44.
    Iop L, Bonetti A, Naso F, Rizzo S, Cagnin S, Bianco R et al (2014) Decellularized allogeneic heart valves demonstrate self-regeneration potential after a long-term preclinical evaluation. PLoS ONE 9(6).  https://doi.org/10.1371/journal.pone.0099593 CrossRefGoogle Scholar
  45. 45.
    Jahani J, Kaviani S, Hassanpour-Ezatti M, Soleimani M, Kaviani Z, Zonoubi Z (2011) The effect of aligned and random electrospun fibrous scaffolds on rat mesenchymal stem cell proliferation. Cell J 14(1):31–38Google Scholar
  46. 46.
    Jeffords ME, Wu J, Shah M, Hong Y, Zhang G (2015) Tailoring material properties of cardiac matrix hydrogels to induce endothelial differentiation of human mesenchymal stem cells. ACS Appl Mater Interfaces 7(20):11053–11061.  https://doi.org/10.1021/acsami.5b03195 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jose MV, Steinert BW, Thomas V, Dean DR, Abdalla M a, Price G, Janowski GM (2007) Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer 48(4):1096–1104.  https://doi.org/10.1016/j.polymer.2006.12.023 CrossRefGoogle Scholar
  48. 48.
    Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7(6):513–520.  https://doi.org/10.1016/j.ccr.2005.05.024 CrossRefPubMedGoogle Scholar
  49. 49.
    Junka R, Valmikinathan CM, Kalyon DM, Yu X (2013) Laminin functionalized biomimetic nanofibers for nerve tissue engineering. J Biomater Tissue Eng 3(4):494–502.  https://doi.org/10.1166/jbt.2013.1110 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S (2012) Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 23(9):95705.  https://doi.org/10.1088/0957-4484/23/9/095705 CrossRefGoogle Scholar
  51. 51.
    Kamb A (2005) What’s wrong with our cancer models? Nat Rev Drug Des Discov 4(2):161–165.  https://doi.org/10.1038/nrd1635 CrossRefGoogle Scholar
  52. 52.
    Kelland LR (2004) “Of mice and men”: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40(6):827–836.  https://doi.org/10.1016/j.ejca.2003.11.028 CrossRefPubMedGoogle Scholar
  53. 53.
    Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67.  https://doi.org/10.1016/j.cell.2010.03.015 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Khan M, Xu Y, Hua S, Johnson J, Belevych A, Janssen PML et al (2015) Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (HiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS ONE 10(5):e0126338.  https://doi.org/10.1371/journal.pone.0126338 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26(1):120–126.  https://doi.org/10.1038/nbt1361 CrossRefPubMedGoogle Scholar
  56. 56.
    Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S (2015) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med.  https://doi.org/10.1002/term.1978 CrossRefGoogle Scholar
  57. 57.
    Kim CH, Jung YH, Kim HY, Lee DR (2006) Effect of collector temperature on the porous structure of electrospun fibers. Macromol Res 14(1):59–65CrossRefGoogle Scholar
  58. 58.
    Ko Y-M, Choi D-Y, Jung S-C, Kim B-H (2015) Characteristics of plasma treated electrospun polycaprolactone (PCL) nanofiber scaffold for bone tissue engineering. J Nanosci Nanotechnol 15(1):192–195.  https://doi.org/10.1166/jnn.2015.8372 CrossRefPubMedGoogle Scholar
  59. 59.
    Kocbek P, Pelipenko JAN, Kristl J, Rošic R, Kocbek P, Pelipenko JAN et al (2013) Nanofibers and their biomedical use. Acta Pharmaceutica (Zagreb, Croatia) 63(3):295–304.  https://doi.org/10.2478/acph-2013-0024 CrossRefGoogle Scholar
  60. 60.
    Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8(24):1128–1137.  https://doi.org/10.1016/S1359-6446(03)02933-7 CrossRefPubMedGoogle Scholar
  61. 61.
    Kubinyi H (2003) Drug research: myths, hype and reality. Nat Rev Drug Discov 2(8):665–668.  https://doi.org/10.1038/nrd1156 CrossRefPubMedGoogle Scholar
  62. 62.
    Lee J, Abdeen AA, Huang TH, Kilian KA (2014) Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells. J Mech Behav Biomed Mater 38:209–218.  https://doi.org/10.1016/j.jmbbm.2014.01.009 CrossRefPubMedGoogle Scholar
  63. 63.
    Leipzig ND, Shoichet MS (2009) The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30(36):6867–6878.  https://doi.org/10.1016/j.biomaterials.2009.09.002 CrossRefGoogle Scholar
  64. 64.
    Leite SB, Teixeira AP, Miranda JP, Tostões RM, Clemente JJ, Sousa MF et al (2011) Merging bioreactor technology with 3D hepatocyte-fibroblast culturing approaches: Improved in vitro models for toxicological applications. Toxicol In Vitro 25(4):825–832.  https://doi.org/10.1016/j.tiv.2011.02.002 CrossRefPubMedGoogle Scholar
  65. 65.
    Leung M, Cooper A, Jana S, Tsao CT, Petrie TA, Zhang M (2013) Nanofiber-based in vitro system for high myogenic differentiation of human embryonic stem cells. Biomacromolecules 14(12):4207–4216.  https://doi.org/10.1021/bm4009843 CrossRefPubMedGoogle Scholar
  66. 66.
    Li W, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2001) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):614–621. Retrieved from http://so.med.wanfangdata.com.cn/ViewHTML/PeriodicalPaper_JJ0210742604.aspx Google Scholar
  67. 67.
    Lim SH, Mao HQ (2009) Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev 61(12):1084–1096.  https://doi.org/10.1016/j.addr.2009.07.011 CrossRefPubMedGoogle Scholar
  68. 68.
    Lindsley CW (2014) New statistics on the cost of new drug development and the trouble with CNS drugs. ACS Chem Neurosci 5(12):1142CrossRefGoogle Scholar
  69. 69.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64(SUPPL):4–17.  https://doi.org/10.1016/j.addr.2012.09.019 CrossRefGoogle Scholar
  70. 70.
    Liu C, Zhu C, Li J, Zhou P, Chen M, Yang H, Li B (2015) The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Res 3:15012.  https://doi.org/10.1038/boneres.2015.12 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lorusso G, Rüegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130(6):1091–1103.  https://doi.org/10.1007/s00418-008-0530-8 CrossRefPubMedGoogle Scholar
  72. 72.
    Lotkov AI, Psakh’e SG, Meisner LL, Matveeva VA, Artem’eva LV, Meisner SN, Matveev AL (2012) The effect of chemical composition and roughness of titanium nickelide surface on proliferative properties of mesenchymal stem cells. Inorg Mater Appl Res 3(2):135–144.  https://doi.org/10.1134/S2075113312020116 CrossRefGoogle Scholar
  73. 73.
    Ma C, Wang X-F (2008). In vitro assays for the extracellular matrix protein-regulated extravasation process. CSH Protocols, 2008, pdb.prot5034.  https://doi.org/10.1101/pdb.prot5034 CrossRefGoogle Scholar
  74. 74.
    Ma H, Liu T, Qin J, Lin B (2010) Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device. Electrophoresis 31(10):1599–1605.  https://doi.org/10.1002/elps.200900776 CrossRefPubMedGoogle Scholar
  75. 75.
    Ma J, He X, Jabbari E (2011) Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly(L-lactide) nanofibers. Ann Biomed Eng 39(1):14–25.  https://doi.org/10.1007/s10439-010-0106-3 CrossRefPubMedGoogle Scholar
  76. 76.
    Ma X-J, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res: BCR 11(1):R7.  https://doi.org/10.1186/bcr2222 CrossRefPubMedGoogle Scholar
  77. 77.
    Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10(3):188–195.  https://doi.org/10.1038/nrd3368 CrossRefPubMedGoogle Scholar
  78. 78.
    Macrí-Pellizzeri L, Pelacho B, Sancho A, Iglesias-García O, Simón-Yarza AM, Soriano-Navarro M et al (2015) Substrate stiffness and composition specifically direct differentiation of induced pluripotent stem cells. Tissue Eng A 21(9–10):1633–1641.  https://doi.org/10.1089/ten.TEA.2014.0251 CrossRefGoogle Scholar
  79. 79.
    Mahairaki V, Lim SH, Christopherson GT, Xu L, Nasonkin I, Yu C et al (2011) Nanofiber matrices promote the neuronal differentiation of human embryonic stem cell-derived neural precursors in vitro. Tissue Eng Part A 17(5–6):855–863.  https://doi.org/10.1089/ten.TEA.2010.0377 CrossRefPubMedGoogle Scholar
  80. 80.
    Maldonado M, Wong LY, Echeverria C, Ico G, Low K, Fujimoto T et al (2015) The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells. Biomaterials 50:10–19.  https://doi.org/10.1016/j.biomaterials.2015.01.037 CrossRefPubMedGoogle Scholar
  81. 81.
    Mecham RP (ed) (2011) The extracellular matrix – an overview. Springer, St. LouisGoogle Scholar
  82. 82.
    Miao J, Miyauchi M, Simmons TJ, Dordick JS, Linhardt RJ (2010) Electrospinning of nanomaterials and applications in electronic components and devices. J Nanosci Nanotechnol 10(9):5507–5519.  https://doi.org/10.1166/jnn.2010.3073 CrossRefPubMedGoogle Scholar
  83. 83.
    National Institutes of Health (n.d.) Nanomedicine. Retrieved January 1, 2015, from https://commonfund.nih.gov/nanomedicine/overview
  84. 84.
    National Nanotechnology Initiative (n.d.) Nanotechnology timeline. Retrieved January 1, 2015, from http://www.nano.gov/timeline
  85. 85.
    Nezarati RM, Eifert MB, Dempsey DK, Cosgriff-Hernandez E (2015) Electrospun vascular grafts with improved compliance matching to native vessels. J Biomed Mater Res B Appl Biomater 103(2):313–323.  https://doi.org/10.1002/jbm.b.33201 CrossRefPubMedGoogle Scholar
  86. 86.
    Nishikawa M, Kojima N, Yamamoto T, Fujii T, Sakai Y (2008) An advanced in vitro liver tissue model by combination of on-site oxygenation and double-layer coculture with fibroblasts. AATEX 14(Special Issue):659–663Google Scholar
  87. 87.
    Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E et al (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen Off J Soc Biomol Screen 6(6):429–440.  https://doi.org/10.1177/108705710100600609 CrossRefGoogle Scholar
  88. 88.
    Park JH, Chung BG, Lee WG, Kim J, Brigham MD, Shim J et al (2010) Microporous cell-laden hydrogels for engineered tissue constructs. Biotechnol Bioeng 106(1):138–148PubMedPubMedCentralGoogle Scholar
  89. 89.
    Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials 32(16):3921–3930.  https://doi.org/10.1016/j.biomaterials.2011.02.019 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Persidis A (1998) High-throughput screening. Advances in robotics and miniturization continue to accelerate drug lead identification. Nat Biotechnol 16(5):488–489.  https://doi.org/10.1038/nbt0598-488 CrossRefPubMedGoogle Scholar
  91. 91.
    Phipps MC, Clem WC, Catledge S a, Xu Y, Hennessy KM, Thomas V et al (2011) Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite. PLoS ONE 6(2):1–8.  https://doi.org/10.1371/journal.pone.0016813 CrossRefGoogle Scholar
  92. 92.
    Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P et al (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013:1–22.  https://doi.org/10.1155/2013/789289 CrossRefGoogle Scholar
  93. 93.
    Prabhakaran MP, Mobarakeh LG, Kai D, Karbalaie K, Nasr-Esfahani MH, Ramakrishna S (2014) Differentiation of embryonic stem cells to cardiomyocytes on electrospun nanofibrous substrates. Jf Biomed Mater Res Part B Appl Biomat 102(3):447–454.  https://doi.org/10.1002/jbm.b.33022 CrossRefGoogle Scholar
  94. 94.
    Press Association (2014). Why tests on mice may be of little use. The Telegraph, pp 3–5. Retrieved from http://www.telegraph.co.uk/science/science-news/11241310/Why-tests-on-mice-may-be-of-little-use.html
  95. 95.
    Ramesh Kumar P, Khan N, Vivekanandhan S, Satyanarayana N, Mohanty AK, Misra M (2012) Nanofibers: effective generation by electrospinning and their applications. J Nanosci Nanotechnol 12(1):1–25.  https://doi.org/10.1166/jnn.2012.5111 CrossRefPubMedGoogle Scholar
  96. 96.
    Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2013) Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World J Cardiol 5(3):28–41.  https://doi.org/10.4330/wjc.v5.i3.28 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Rederstorff E, Rethore G, Weiss P, Sourice S, Beck-Cormier S, Mathieu E et al (2015) Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering. J Tissue Eng Regen Med.  https://doi.org/10.1002/term.2018 CrossRefGoogle Scholar
  98. 98.
    Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56(24):5754–5757. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8971187%5Cn, http://cancerres.aacrjournals.org/content/56/24/5754.full.pdf PubMedGoogle Scholar
  99. 99.
    Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341(1):126–140.  https://doi.org/10.1016/j.ydbio.2009.10.026 CrossRefGoogle Scholar
  100. 100.
    Safaeijavan R, Soleimani M, Divsalar A, Eidi A, Ardeshirylajimi A (2014) Comparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells. Iran J Basic Med Sci 17(11):903–911PubMedPubMedCentralGoogle Scholar
  101. 101.
    Salaam AD, Mishra M, Nyairo E, Dean D (2014) Electrospun polyvinyl alcohol/nanodiamond composite scaffolds: morphological, structural, and biological analysis. J Biomater Tissue Eng 4(3):173–180.  https://doi.org/10.1166/jbt.2014.1152 CrossRefGoogle Scholar
  102. 102.
    Schindler C, Williams BL, Patel HN, Thomas V, Dean DR (2013) Electrospun polycaprolactone/polyglyconate blends: miscibility, mechanical behavior, and degradation. Polymer (United Kingdom) 54(25):6824–6833.  https://doi.org/10.1016/j.polymer.2013.10.025 CrossRefGoogle Scholar
  103. 103.
    Sheets K, Wang J, Meehan S, Sharma P, Ng C, Khan M et al (2013) Cell-fiber interactions on aligned and suspended nanofiber scaffolds. J Biomater Tissue Eng 3(4):355–368.  https://doi.org/10.1166/jbt.2013.1105 CrossRefGoogle Scholar
  104. 104.
    Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S (2015) Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B: Biointerfaces 134:346–354.  https://doi.org/10.1016/j.colsurfb.2015.07.019 CrossRefPubMedGoogle Scholar
  105. 105.
    Sweeney SM (2014) AACR cancer progress report 2015. Am Assoc Cancer Res 126.  https://doi.org/10.1158/1078-0432.CCR-12-2891
  106. 106.
    Taetle R, Honeysett JM, Rosen F, Shoemaker R (1986) Use of nude mouse xenografts as preclinical drug screens: Further studies onin vitro growth of xenograft tumor colony-forming cells. Cancer 58(9):1969–1978.  https://doi.org/10.1002/1097-0142(19861101)58:9<1969::AID-CNCR2820580903>3.0.CO;2-4 CrossRefPubMedGoogle Scholar
  107. 107.
    Takimoto CH (2001) Why drugs fail: of mice and men revisited. Clin Cancer Res 7(2):229–230PubMedGoogle Scholar
  108. 108.
    Tamayol A, Akbari M, Annabi N, Paul A, Khademhosseini A, Juncker D (2013) Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv 31(5):669–687.  https://doi.org/10.1016/j.biotechadv.2012.11.007 CrossRefPubMedGoogle Scholar
  109. 109.
    Thomas V, Dean DR, Jose MV, Mathew B, Chowdhury S, Vohra YK (2007a) Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules 8(2):631–637.  https://doi.org/10.1021/bm060879w CrossRefPubMedGoogle Scholar
  110. 110.
    Thomas V, Dean DR, Vohra YK (2006a) Nanostructured biomaterials for regenerative medicine. Curr Nanosci 2(3):155–177.  https://doi.org/10.1007/978-1-4614-1080-5 CrossRefGoogle Scholar
  111. 111.
    Thomas V, Jagani S, Johnson K, Jose MV, Dean DR, Vohra YK, Nyairo E (2006b) Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J Nanosci Nanotechnol 6(2):487–493CrossRefGoogle Scholar
  112. 112.
    Thomas V, Jose MV, Chowdhury S, Sullivan JF, Dean DR, Vohra YK (2006c) Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J Biomater Scie Polym Edn 17(9):969–984.  https://doi.org/10.1163/156856206778366022 CrossRefGoogle Scholar
  113. 113.
    Thomas V, Zhang X, Catledge SA, Vohra YK (2007b) Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomed Mater (Bristol, England) 2(4):224–232.  https://doi.org/10.1088/1748-6041/2/4/004 CrossRefGoogle Scholar
  114. 114.
    Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922.  https://doi.org/10.1016/j.polymer.2007.09.017 CrossRefGoogle Scholar
  115. 115.
    Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99(19):1441–1454.  https://doi.org/10.1093/jnci/djm135 CrossRefPubMedGoogle Scholar
  116. 116.
    Tse JR, Engler AJ (2011) Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6(1).  https://doi.org/10.1371/journal.pone.0015978 CrossRefGoogle Scholar
  117. 117.
    Tucker N, Stanger JJ, Staiger MP, Razzaw H, Hofman K (2012) The history of the science and technology of electrospinning from 1600 to 1995. J Eng Fibers Fabrics 7:63–73Google Scholar
  118. 118.
    Tyagi P, Catledge SA, Stanishevsky A, Thomas V, Vohra YK (2009) Nanomechanical properties of electrospun composite scaffolds based on polycaprolactone and hydroxyapatite. J Nanosci Nanotechnol 9(8):4839–4845CrossRefGoogle Scholar
  119. 119.
    Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15(10):1219–1223.  https://doi.org/10.1038/nm.1971 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    van der Meer AD, van den Berg A (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol (Camb) 4(5):461–470.  https://doi.org/10.1039/c2ib00176d CrossRefGoogle Scholar
  121. 121.
    van Manen EH, Zhang W, Walboomers XF, Vazquez B, Yang F, Ji W et al (2014) The influence of electrospun fibre scaffold orientation and nano-hydroxyapatite content on the development of tooth bud stem cells in vitro. Odontology 102(1):14–21.  https://doi.org/10.1007/s10266-012-0087-9 CrossRefPubMedGoogle Scholar
  122. 122.
    Wagner I, Materne E-M, Brincker S, Süssbier U, Frädrich C, Busek M et al (2013) A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13(18):3538–3547. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23648632 CrossRefGoogle Scholar
  123. 123.
    Wang J, Ye R, Wei Y, Wang H, Xu X, Zhang F et al (2012) The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. J Biomed Mater Res A 100(3):632–645.  https://doi.org/10.1002/jbm.a.33291 CrossRefPubMedGoogle Scholar
  124. 124.
    Wang Z, Cui Y, Wang J, Yang X, Wu Y, Wang K et al (2014) The effect of thick fibers and large pores of electrospun poly(epsilon-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35(22):5700–5710.  https://doi.org/10.1016/j.biomaterials.2014.03.078 CrossRefPubMedGoogle Scholar
  125. 125.
    Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172):1001–1009.  https://doi.org/10.1038/nature06526 CrossRefGoogle Scholar
  126. 126.
    Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912.  https://doi.org/10.1038/onc.2008.271 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Wise JK, Yarin AL, Megaridis CM, Cho M (2009) Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds - engineering the superficial zone of articular cartilage. Tissue Eng Part A 15(4):10CrossRefGoogle Scholar
  128. 128.
    Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668–D672.  https://doi.org/10.1093/nar/gkj067 CrossRefGoogle Scholar
  129. 129.
    Yang L, Pang Y, Moses HL (2010) TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227.  https://doi.org/10.1016/j.it.2010.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Ye K, Wang X, Cao L, Li S, Li Z, Yu L, Ding J (2015) Matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. Nano Lett 15(7):4720–4729.  https://doi.org/10.1021/acs.nanolett.5b01619 CrossRefPubMedGoogle Scholar
  131. 131.
    Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M et al (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34.  https://doi.org/10.1002/cm.20041 CrossRefPubMedGoogle Scholar
  132. 132.
    Young DA, Choi YS, Engler AJ, Christman KL (2013) Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials 34(34):8581–8588.  https://doi.org/10.1016/j.biomaterials.2013.07.103 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Youngstrom DW, Barrett JG, Jose RR, Kaplan DL (2013) Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications. PLoS ONE 8(5).  https://doi.org/10.1371/journal.pone.0064151 CrossRefGoogle Scholar
  134. 134.
    Zanatta G, Steffens D, Braghirolli DI, Fernandes RA, Netto CA, Pranke P (2012) Viability of mesenchymal stem cells during electrospinning. Braz J Med Biol Res 45(2):125–130.  https://doi.org/10.1590/s0100-879x2011007500163 CrossRefPubMedGoogle Scholar
  135. 135.
    Zeleny J (1917) Instability of electrified liquid surfaces. Phys Rev 10(1):1–6.  https://doi.org/10.1103/PhysRev.10.1 CrossRefGoogle Scholar
  136. 136.
    Zhao W, Li X, Liu X, Zhang N, Wen X (2014) Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 40:316–323.  https://doi.org/10.1016/j.msec.2014.03.048 CrossRefPubMedGoogle Scholar
  137. 137.
    Zheng W, Spencer RH, Kiss L (2004) High throughput assay technologies for ion channel drug discovery. Assay Drug Dev Technol 2(5):543–552.  https://doi.org/10.1089/adt.2004.2.543 CrossRefPubMedGoogle Scholar
  138. 138.
    Zhu B, Li W, Lewis RV, Segre CU, Wang R (2015) E-spun composite fibers of collagen and dragline silk protein: fiber mechanics, biocompatibility, and application in stem cell differentiation. Biomacromolecules 16(1):202–213.  https://doi.org/10.1021/bm501403f CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Karim I. Budhwani
    • 1
  • Patsy G. Oliver
    • 2
  • Donald J. Buchsbaum
    • 2
  • Vinoy Thomas
    • 3
    Email author
  1. 1.Departments of Radiation Oncology and Materials Science & EngineeringThe University of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Radiation OncologyThe University of Alabama at BirminghamBirminghamUSA
  3. 3.Department of Materials Science & EngineeringThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations