Advertisement

Modulation of the Osteoimmune Environment in the Development of Biomaterials for Osteogenesis

  • Fei WeiEmail author
  • Yin Xiao
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)

Abstract

In spite of inherent regenerative ability of bone, large amounts of fracture patients still display delayed or compromised bone healing due to patients’ age status, trauma severity or the developmental anomalies or infections, which requires therapeutic intervention. Bone regeneration involves different cells (immune cells, progenitors and mesenchymal stem cells, etc) and subsequent signaling molecules (chemokines, cytokines and growth factors, etc). The quantity and quality of immune cells influx into the site of injury and the subsequent cytokine production form a unique osteoimmune environment. Current strategies on repairing bone defects have largely focused on the development of suitable bone substitute materials, which may have potential osteoinductive, and/or osteoconductive properties. Various studies have been reported to develop the immuno-active or immunomodulatory biomaterials, which could fully explore the early osteoimmune environment in order to achieve better bone regeneration.

Keywords

Osteoimmune environment Immunomodulation Biomaterial Bone regeneration Osteogenesis 

References

  1. 1.
    Altman RD, Latta LL, Keer R, Renfree K, Hornicek FJ, Banovac K (1995) Effect of nonsteroidal antiinflammatory drugs on fracture healing: a laboratory study in rats. J Orthop Trauma 9:392–400PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100CrossRefGoogle Scholar
  3. 3.
    Bari A, Bloise N, Fiorilli S, Novajra G, Vallet-Regi M, Bruni G, Torres-Pardo A, Gonzalez-Calbet JM, Visai L, Vitale-Brovarone C (2017) Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomater 55:493–504PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bastian OW, Koenderman L, Alblas J, Leenen LP, Blokhuis TJ (2016) Neutrophils contribute to fracture healing by synthesizing fibronectin(+) extracellular matrix rapidly after injury. Clin Immunol 164:78–84PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bax DV, Kondyurin A, Waterhouse A, McKenzie DR, Weiss AS, Bilek MMM (2014) Surface plasma modification and tropoelastin coating of a polyurethane co-polymer for enhanced cell attachment and reduced thrombogenicity. Biomaterials 35:6797–6809PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Binder NB, Puchner A, Niederreiter B, Hayer S, Leiss H, Bluml S, Kreindl R, Smolen JS, Redlich K (2013) Tumor necrosis factor-inhibiting therapy preferentially targets bone destruction but not synovial inflammation in a tumor necrosis factor-driven model of rheumatoid arthritis. Arthritis Rheum 65:608–617PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Bougioukli S, Jain A, Sugiyama O, Tinsley BA, Tang AH, Tan MH, Adams DJ, Kostenuik PJ, Lieberman JR (2016) Combination therapy with BMP-2 and a systemic RANKL inhibitor enhances bone healing in a mouse critical-sized femoral defect. Bone 84:93–103PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bouyer M, Guillot R, Lavaud J, Plettinx C, Olivier C, Curry V, Boutonnat J, Coll JL, Peyrin F, Josserand V et al (2016) Surface delivery of tunable doses of BMP-2 from an adaptable polymeric scaffold induces volumetric bone regeneration. Biomaterials 104:168–181PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Brancato SK, Albina JE (2011) Wound macrophages as key regulators of repair origin, phenotype, and function. Am J Pathol 178:19–25PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cha HD, Hong JM, Kang TY, Jung JW, Ha DH, Cho DW (2012) Effects of micro-patterns in three-dimensional scaffolds for tissue engineering applications. J Micromech Microeng 22:125002CrossRefGoogle Scholar
  12. 12.
    Chan JK, Glass GE, Ersek A, Freidin A, Williams GA, Gowers K, Espirito Santo AI, Jeffery R, Otto WR, Poulsom R et al (2015) Low-dose TNF augments fracture healing in normal and osteoporotic bone by up-regulating the innate immune response. EMBO Mol Med 7:547–561PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chen Z, Mao X, Tan L, Friis T, Wu C, Crawford R, Xiao Y (2014a) Osteoimmunomodulatory properties of magnesium scaffolds coated with beta-tricalcium phosphate. Biomaterials 35:8553–8565PubMedCrossRefGoogle Scholar
  14. 14.
    Chen ZT, Bachhuka A, Han SW, Wei F, Lu S, Visalakshan RM, Vasilev K, Xiao Y (2017a) Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone regeneration applications. ACS Nano 11:4494–4506PubMedCrossRefGoogle Scholar
  15. 15.
    Chen ZT, Klein T, Murray RZ, Crawford R, Chang J, Wu CT, Xiao Y (2016) Osteoimmunomodulation for the development of advanced bone biomaterials. Mater Today 19:304–321CrossRefGoogle Scholar
  16. 16.
    Chen ZT, Ni SY, Han SW, Crawford R, Lu S, Wei F, Chang J, Wu CT, Xiao Y (2017b) Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages. Nanoscale 9:706–718PubMedCrossRefGoogle Scholar
  17. 17.
    Chen ZT, Yi DL, Zheng XB, Chang J, Wu CT, Xiao Y (2014b) Nutrient element-based bioceramic coatings on titanium alloy stimulating osteogenesis by inducing beneficial osteoimmmunomodulation. J Mater Chem B 2:6030–6043CrossRefGoogle Scholar
  18. 18.
    Cheng XY, Kondyurin A, Bao S, Bilek MMM, Ye L (2017) Plasma immersion ion implantation of polyurethane shape memory polymer: surface properties and protein immobilization. Appl Surf Sci 416:686–695CrossRefGoogle Scholar
  19. 19.
    Cho TJ, Gerstenfeld LC, Einhorn TA (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 17:513–520PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Chung EJ, Chien KB, Aguado BA, Shah RN (2013) Osteogenic potential of BMP-2-releasing self-assembled membranes. Tissue Eng Part A 19:2664–2673PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chung R, Cool JC, Scherer MA, Foster BK, Xian CJ (2006) Roles of neutrophil-mediated inflammatory response in the bony repair of injured growth plate cartilage in young rats. J Leukoc Biol 80:1272–1280PubMedCrossRefGoogle Scholar
  22. 22.
    Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8:133–143PubMedCrossRefGoogle Scholar
  23. 23.
    Dai XH, Wei Y, Zhang XH, Meng S, Mo XJ, Liu X, Deng XL, Zhang L, Deng XM (2015) Attenuating immune response of macrophage by enhancing hydrophilicity of Ti surface. J Nanomater 2015:1CrossRefGoogle Scholar
  24. 24.
    Deng Y, Sun Y, Bai Y, Gao X, Zhang H, Xu A, Huang E, Deng F, Wei S (2016) In vitro biocompability/osteogenesis and in vivo bone formation evalution of peptide-decorated apatite nanocomposites assisted via polydopamine. J Biomed Nanotechnol 12:602–618PubMedCrossRefGoogle Scholar
  25. 25.
    Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV (2012) The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med 10:81PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ding J, Ghali O, Lencel P, Broux O, Chauveau C, Devedjian JC, Hardouin P, Magne D (2009) TNF-alpha and IL-1beta inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sci 84:499–504PubMedCrossRefGoogle Scholar
  27. 27.
    Eger M, Sterer N, Liron T, Kohavi D, Gabet Y (2017) Scaling of titanium implants entrains inflammation-induced osteolysis. Sci Rep Uk 7:39612CrossRefGoogle Scholar
  28. 28.
    Engesaeter LB, Sudmann B, Sudmann E (1992) Fracture healing in rats inhibited by locally administered indomethacin. Acta Orthop Scand 63:330–333PubMedCrossRefGoogle Scholar
  29. 29.
    Feng C, Zhang W, Deng C, Li G, Chang J, Zhang Z, Jiang X, Wu C (2017) 3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration. Adv Sci (Weinh) 4:1700401CrossRefGoogle Scholar
  30. 30.
    Fernandez-Vojvodich P, Karimian E, Savendahl L (2011) The biologics anakinra and etanercept prevent cytokine-induced growth retardation in cultured fetal rat metatarsal bones. Horm Res Paediatr 76:278–285PubMedCrossRefGoogle Scholar
  31. 31.
    Fu XB, Han B, Cai S, Lei YH, Sun TZ, Sheng ZY (2009) Migration of bone marrow-derived mesenchymal stem cells induced by tumor necrosis factor-alpha and its possible role in wound healing. Wound Repair Regen 17:185–191PubMedCrossRefGoogle Scholar
  32. 32.
    Gamblin AL, Brennan MA, Renaud A, Yagita H, Lezot F, Heymann D, Trichet V, Layrolle P (2014) Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: the local implication of osteoclasts and macrophages. Biomaterials 35:9660–9667PubMedCrossRefGoogle Scholar
  33. 33.
    Gao X, Song J, Ji P, Zhang X, Li X, Xu X, Wang M, Zhang S, Deng Y, Deng F et al (2016) Polydopamine-templated hydroxyapatite reinforced Polycaprolactone composite nanofibers with enhanced Cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl Mater Interfaces 8:3499–3515PubMedCrossRefGoogle Scholar
  34. 34.
    Garg K, Pullen NA, Oskeritzian CA, Ryan JJ, Bowlin GL (2013) Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34:4439–4451PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55:1613–1629PubMedCrossRefGoogle Scholar
  36. 36.
    Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, Barnes GL, Graves DT, Einhorn TA (2003) Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res Off J Am Soc Bone Miner Res 18:1584–1592CrossRefGoogle Scholar
  37. 37.
    Gilbert LC, Rubin J, Nanes MS (2005) The p55 TNF receptor mediates TNF inhibition of osteoblast differentiation independently of apoptosis. Am J Phys Endocrinol Metab 288:E1011–E1018CrossRefGoogle Scholar
  38. 38.
    Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J (2011) TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci USA 108:1585–1590PubMedCrossRefGoogle Scholar
  39. 39.
    Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34:3174–3183PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Greenblatt MB, Shim JH (2013) Osteoimmunology: a brief introduction. Immun Netw 13:111–115CrossRefGoogle Scholar
  41. 41.
    Groeneveld EH, Burger EH (2000) Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 142:9–21PubMedCrossRefGoogle Scholar
  42. 42.
    Grogaard B, Gerdin B, Reikeras O (1990) The polymorphonuclear leukocyte: has it a role in fracture healing? Arch Orthop Trauma Surg 109:268–271PubMedCrossRefGoogle Scholar
  43. 43.
    Grundnes O, Reikeras O (1993) The importance of the hematoma for fracture healing in rats. Acta Orthop Scand 64:340–342PubMedCrossRefGoogle Scholar
  44. 44.
    Hao SS, Meng J, Zhang Y, Liu J, Nie X, Wu FX, Yang YL, Wang C, Gu N, Xu HY (2017) Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials 140:16–25PubMedCrossRefGoogle Scholar
  45. 45.
    Hashimoto J, Yoshikawa H, Takaoka K, Shimizu N, Masuhara K, Tsuda T, Miyamoto S, Ono K (1989) Inhibitory effects of tumor necrosis factor alpha on fracture healing in rats. Bone 10:453–457PubMedCrossRefGoogle Scholar
  46. 46.
    He S, Zhou P, Wang LX, Xiong XL, Zhang YF, Deng Y, Wei SC (2014) Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant. J R Soc Interface 11:20140169PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hess K, Ushmorov A, Fiedler J, Brenner RE, Wirth T (2009) TNF alpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappa B signaling pathway. Bone 45:367–376PubMedCrossRefGoogle Scholar
  48. 48.
    Ho C, Wang K, Shie M, Chen Y, Wang B (2017) The osteogenesis and degradation of 3D printed calcium silicate/polydopamine/polycaprolactone scaffolds for bone regeneration. Tiss Eng Pt A 23:S105–S105Google Scholar
  49. 49.
    Hofer HP, Kukovetz E, Egger G, Wildburger R, Quehenberger F, Schaur RJ (1994) Polymorphonuclear leucocyte migration response in uneventful wound healing following trauma surgery. A contribution to the search for objectifiable criteria in wound healing monitoring. Arch Orthop Trauma Surg 113:170–173PubMedCrossRefGoogle Scholar
  50. 50.
    Hoff P, Maschmeyer P, Gaber T, Schutze T, Raue T, Schmidt-Bleek K, Dziurla R, Schellmann S, Lohanatha FL, Rohner E et al (2013) Human immune cells' behavior and survival under bioenergetically restricted conditions in an in vitro fracture hematoma model. Cell Mol Immunol 10:151–158PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hoppe A, Mourino V, Boccaccini AR (2013) Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater Sci Uk 1:254–256CrossRefGoogle Scholar
  52. 52.
    Hotchkiss KM, Reddy GB, Hyzy SL, Schwartz Z, Boyan BD, Olivares-Navarrete R (2016) Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater 31:425–434PubMedCrossRefGoogle Scholar
  53. 53.
    Hsu WK, Sugiyama O, Park SH, Conduah A, Feeley BT, Liu NQ, Krenek L, Virk MS, An DS, Chen IS et al (2007) Lentiviral-mediated BMP-2 gene transfer enhances healing of segmental femoral defects in rats. Bone 40:931–938PubMedCrossRefGoogle Scholar
  54. 54.
    Huang S, Liang N, Hu Y, Zhou X, Abidi N (2016) Polydopamine-assisted surface modification for bone biosubstitutes. Biomed Res Int 2016:2389895PubMedPubMedCentralGoogle Scholar
  55. 55.
    Hyzy SL, Olivares-Navarrete R, Hutton DL, Tan C, Boyan BD, Schwartz Z (2013) Microstructured titanium regulates interleukin production by osteoblasts, an effect modulated by exogenous BMP-2. Acta Biomater 9:5821–5829PubMedCrossRefGoogle Scholar
  56. 56.
    Iqbal S, Rashid MH, Arbab AS, Khan M (2017) Encapsulation of anticancer drugs (5-fluorouracil and paclitaxel) into polycaprolactone (PCL) nanofibers and in vitro testing for sustained and targeted therapy. J Biomed Nanotechnol 13:355–366PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Jemat A, Ghazali MJ, Razali M, Otsuka Y (2015) Surface modifications and their effects on titanium dental implants. Biomed Res Int 2015:1CrossRefGoogle Scholar
  58. 58.
    Jiang Y, Wang B, Jia Z, Lu X, Fang L, Wang K, Ren F (2017) Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein-2 on magnesium alloys for enhanced corrosion resistance and bone regeneration. J Biomed Mater Res A 105:2750–2761PubMedCrossRefGoogle Scholar
  59. 59.
    John AA, Jaganathan SK, Supriyanto E, Manikandan A (2016) Surface modification of titanium and its alloys for the enhancement of osseointegration in orthopaedics. Curr Sci India 111:1003–1015CrossRefGoogle Scholar
  60. 60.
    Kaner D, Zhao H, Arnold W, Terheyden H, Friedmann A (2017) Pre-augmentation soft tissue expansion improves scaffold-based vertical bone regeneration – a randomized study in dogs. Clin Oral Implants Res 28:640–647PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Kempen DH, Lu L, Hefferan TE, Creemers LB, Maran A, Classic KL, Dhert WJ, Yaszemski MJ (2008) Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering. Biomaterials 29:3245–3252PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kempen DHR, Lu LC, Heijink A, Hefferan TE, Creemers LB, Maran A, Yaszemski MJ, Dhert WJA (2009) Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 30:2816–2825PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Khan PK, Mahato A, Kundu B, Nandi SK, Mukherjee P, Datta S, Sarkar S, Mukherjee J, Nath S, Balla VK et al (2016) Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds. Sci Rep Uk 6:32964CrossRefGoogle Scholar
  64. 64.
    Kidd LJ, Stephens AS, Kuliwaba JS, Fazzalari NL, Wu AC, Forwood MR (2010) Temporal pattern of gene expression and histology of stress fracture healing. Bone 46:369–378PubMedCrossRefGoogle Scholar
  65. 65.
    Klopfleisch R, Jung F (2017) The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A 105:927–940PubMedCrossRefGoogle Scholar
  66. 66.
    Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, Gerstenfeld LC, Einhorn TA (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res Off J Am Soc Bone Miner Res 16:1004–1014CrossRefGoogle Scholar
  67. 67.
    Konnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, Ellinghaus A, Volk HD, Radbruch A, Duda GN et al (2014) T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone 64:155–165PubMedCrossRefGoogle Scholar
  68. 68.
    Konstantinidis I, Papageorgiou SN, Kyrgidis A, Tzellos TG, Kouvelas D (2013) Effect of non-steroidal anti-inflammatory drugs on bone turnover: an evidence-based review. Rev Recent Clin Trials 8:48–60PubMedCrossRefGoogle Scholar
  69. 69.
    Lacey DC, Simmons PJ, Graves SE, Hamilton JA (2009) Proinflammatory cytokines inhibit osteogenic differentiation from stem cells: implications for bone repair during inflammation. Osteoarthr Cartil 17:735–742PubMedCrossRefGoogle Scholar
  70. 70.
    Landau S, Szklanny AA, Yeo GC, Shandalov Y, Kosobrodova E, Weiss AS, Levenberg S (2017) Tropoelastin coated PLLA-PLGA scaffolds promote vascular network formation. Biomaterials 122:72–82PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Lange J, Sapozhnikova A, Lu CY, Hu D, Li X, Miclau T, Marcucio RS (2010) Action of IL-1 beta during fracture healing. J Orthop Res 28:778–784PubMedPubMedCentralGoogle Scholar
  72. 72.
    Lee GH, Makkar P, Paul K, Lee BT (2018) Comparative bone regeneration potential studies of collagen, heparin, and polydopamine-coated multichannelled BCP granules. ASAIO J 64:115–121PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Lee YM, Fujikado N, Manaka H, Yasuda H, Iwakura Y (2010) IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol 22:805–816PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lekstrom-Himes JA, Gallin JI (2000) Immunodeficiency diseases caused by defects in phagocytes. New Engl J Med 343:1703–1714PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Li B, Cao H, Zhao Y, Cheng M, Qin H, Cheng T, Hu Y, Zhang X, Liu X (2017) In vitro and in vivo responses of macrophages to magnesium-doped titanium. Sci Rep 7:42707PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Liebscher J, Mrowczynski R, Scheidt HA, Filip C, Hadade ND, Turcu R, Bende A, Beck S (2013) Structure of polydopamine: a never-ending story? Langmuir 29:10539–10548PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Maas CS, Gnepp DR, Bumpous J (1993) Expanded polytetrafluoroethylene (Gore-Tex soft-tissue patch) in facial augmentation. Arch Otolaryngol Head Neck Surg 119:1008–1014PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Mantovani A, Locati M (2009) Orchestration of macrophage polarization. Blood 114:3135–3136PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23:344–346CrossRefGoogle Scholar
  80. 80.
    Mao CY, Wang YG, Zhang X, Zheng XY, Tang TT, Lu EY (2016) Double-edged-sword effect of IL-1 beta on the osteogenesis of periodontal ligament stem cells via crosstalk between the NF-kappa B, MAPK and BMP/Smad signaling pathways. Cell Death Dis 7:e2296PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci: J Virtual Libr 13:453–461CrossRefGoogle Scholar
  82. 82.
    Mckay WF, Peckham SM, Badura JM (2007) A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE (R) bone graft). Int Orthop 31:729–734PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    McKeown A, Beattie RF, Murrell GA, Lam PH (2016) Biomechanical comparison of expanded polytetrafluoroethylene (ePTFE) and PTFE interpositional patches and direct tendon-to-bone repair for massive rotator cuff tears in an ovine model. Should Elb 8:22–31CrossRefGoogle Scholar
  84. 84.
    McWhorter FY, Wang TT, Nguyen P, Chung T, Liu WF (2013) Modulation of macrophage phenotype by cell shape. P Natl Acad Sci USA 110:17253–17258CrossRefGoogle Scholar
  85. 85.
    Mensah KA, Li J, Schwarz EM (2009) The emerging field of osteoimmunology. Immunol Res 45:100–113PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Minardi S, Corradetti B, Taraballi F, Sandri M, Van Eps J, Cabrera FJ, Weiner BK, Tampieri A, Tasciotti E (2015) Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials 62:128–137PubMedCrossRefGoogle Scholar
  87. 87.
    Mountziaris PM, Mikos AG (2008) Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev 14:179–186PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Oh HH, Lu H, Kawazoe N, Chen G (2012) Spatially guided angiogenesis by three-dimensional collagen scaffolds micropatterned with vascular endothelial growth factor. J Biomater Sci Polym Ed 23:2185–2195PubMedPubMedCentralGoogle Scholar
  89. 89.
    Pajarinen J, Kouri VP, Jamsen E, Li TF, Mandelin J, Konttinen YT (2013) The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomater 9:9229–9240PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Pan H, Zheng Q, Guo X, Wu Y, Wu B (2016) Polydopamine-assisted BMP-2-derived peptides immobilization on biomimetic copolymer scaffold for enhanced bone induction in vitro and in vivo. Colloids Surf B: Biointerfaces 142:1–9PubMedCrossRefGoogle Scholar
  91. 91.
    Patterson J, Siew R, Herring SW, Lin AS, Guldberg R, Stayton PS (2010) Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31:6772–6781PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Pilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, Hollister SJ, Giannobile WV (2016) Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo. Adv Healthc Mater 5:676–687PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ping ZC, Wang ZR, Shi JW, Wang LL, Guo XB, Zhou W, Hu XY, Wu XX, Liu Y, Zhang W et al (2017) Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-kappa B signaling. Acta Biomater 62:362–371PubMedCrossRefGoogle Scholar
  94. 94.
    Pountos I, Georgouli T, Blokhuis TJ, Pape HC, Giannoudis PV (2008) Pharmacological agents and impairment of fracture healing: what is the evidence? Injury 39:384–394PubMedCrossRefGoogle Scholar
  95. 95.
    Pricola KL, Kuhn NZ, Haleem-Smith H, Song YJ, Tuan RS (2009) Interleukin-6 maintains bone marrow-derived mesenchymal stem cell Stemness by an ERK1/2-dependent mechanism. J Cell Biochem 108:577–588PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Rifas L (2006) T-cell cytokine induction of BMP-2 regulates human mesenchymal stromal cell differentiation and mineralization. J Cell Biochem 98:706–714PubMedCrossRefGoogle Scholar
  97. 97.
    Sam G, Pillai BR (2014) Evolution of barrier membranes in periodontal regeneration-“are the third generation membranes really here?”. J Clin Diagn Res 8:ZE14–ZE17PubMedPubMedCentralGoogle Scholar
  98. 98.
    Schmidt-Bleek K, Schell H, Lienau J, Schulz N, Hoff P, Pfaff M, Schmidt G, Martin C, Perka C, Buttgereit F et al (2014) Initial immune reaction and angiogenesis in bone healing. J Tissue Eng Regen Med 8:120–130PubMedCrossRefGoogle Scholar
  99. 99.
    Sharmin F, McDermott C, Lieberman J, Sanjay A, Khan Y (2017) Dual growth factor delivery from biofunctionalized allografts: sequential VEGF and BMP-2 release to stimulate allograft remodeling. J Orthop Res 35:1086–1095PubMedCrossRefGoogle Scholar
  100. 100.
    Shi MC, Chen ZT, Farnaghi S, Friis T, Mao XL, Xiao Y, Wu CT (2016) Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomater 30:334–344PubMedCrossRefGoogle Scholar
  101. 101.
    Simon AM, O'Connor JP (2007) Dose and time-dependent effects of cyclooxygenase-2 inhibition on fracture-healing. J Bone Joint Surg Am 89:500–511PubMedCrossRefGoogle Scholar
  102. 102.
    Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G (2014) The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35:4477–4488PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J, Nakazawa KR, Yu T, Vunjak-Novakovic G (2015) Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37:194–207CrossRefGoogle Scholar
  104. 104.
    Sridharan R, Cameron AR, Kelly DJ, Kearney CJ, O'Brien FJ (2015) Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater Today 18:313–325CrossRefGoogle Scholar
  105. 105.
    Stahli A, Miron RJ, Bosshardt DD, Sculean A, Gruber R (2016) Collagen membranes adsorb the transforming growth factor-beta receptor I kinase-dependent activity of enamel matrix derivative. J Periodontol 87:583–590PubMedCrossRefGoogle Scholar
  106. 106.
    Stanford CM (2010) Surface modification of biomedical and dental implants and the processes of inflammation, wound healing and bone formation. Int J Mol Sci 11:354–369PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Sudmann E, Dregelid E, Bessesen A, Morland J (1979) Inhibition of fracture healing by indomethacin in rats. Eur J Clin Investig 9:333–339CrossRefGoogle Scholar
  108. 108.
    Takayanagi H (2005) Inflammatory bone destruction and osteoimmunology. J Periodontal Res 40:287–293PubMedCrossRefGoogle Scholar
  109. 109.
    Tannoury CA, An HS (2014) Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J 14:552–559PubMedCrossRefGoogle Scholar
  110. 110.
    Truong NP, Gu WY, Prasadam I, Jia ZF, Crawford R, Xiao Y, Monteiro MJ (2013) An influenza virus-inspired polymer system for the timed release of siRNA. Nat Commun 4:1902PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Varoni EM, Altomare L, Cochis A, GhalayaniEsfahani A, Cigada A, Rimondini L, De Nardo L (2016) Hierarchic micro-patterned porous scaffolds via electrochemical replica-deposition enhance neo-vascularization. Biomed Mater 11:025018PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Vasconcelos DM, Santos SG, Lamghari M, Barbosa MA (2016) The two faces of metal ions: from implants rejection to tissue repair/regeneration. Biomaterials 84:262–275PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Wallace A, Cooney TE, Englund R, Lubahn JD (2011) Effects of interleukin-6 ablation on fracture healing in mice. J Orthop Res 29:1437–1442PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Wang Q, Zhang YX, Li B, Chen L (2017) Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin-nanohydroxyapatite scaffold for vascularized bone regeneration. J Mater Chem B 5:6963–6972CrossRefGoogle Scholar
  115. 115.
    Wang X, Friis TE, Masci PP, Crawford RW, Liao WB, Xiao Y (2016) Alteration of blood clot structures by interleukin-1 beta in association with bone defects healing. Sci Rep Uk 6:35645CrossRefGoogle Scholar
  116. 116.
    Wilgus TA, Roy S, McDaniel JC (2013) Neutrophils and wound repair: positive actions and negative reactions. Adv Wound Care 2:379–388CrossRefGoogle Scholar
  117. 117.
    Wong HM, Chu PK, Leung FKL, Cheung KMC, Luk KDK, Yeung KWK (2014) Engineered polycaprolactone-magnesium hybrid biodegradable porous scaffold for bone tissue engineering. Prog Nat Sci Mater 24:561–567CrossRefGoogle Scholar
  118. 118.
    Wu AC, Raggatt LJ, Alexander KA, Pettit AR (2013) Unraveling macrophage contributions to bone repair. BoneKEy Rep 2:373PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Wu CT, Fan W, Chang J, Xiao Y (2011) Mussel-inspired porous SiO2 scaffolds with improved mineralization and cytocompatibility for drug delivery and bone tissue engineering. J Mater Chem 21:18300–18307CrossRefGoogle Scholar
  120. 120.
    Xing Z, Lu C, Hu D, Yu YY, Wang X, Colnot C, Nakamura M, Wu Y, Miclau T, Marcucio RS (2010) Multiple roles for CCR2 during fracture healing. Dis Model Mech 3:451–458PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Yamano S, Haku K, Yamanaka T, Dai J, Takayama T, Shohara R, Tachi K, Ishioka M, Hanatani S, Karunagaran S et al (2014) The effect of a bioactive collagen membrane releasing PDGF or GDF-5 on bone regeneration. Biomaterials 35:2446–2453PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Yang CH, Li YC, Tsai WF, Ai CF, Huang HH (2015) Oxygen plasma immersion ion implantation treatment enhances the human bone marrow mesenchymal stem cells responses to titanium surface for dental implant application. Clin Oral Implants Res 26:166–175PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Yang HW, Tang XS, Tian ZW, Wang Y, Yang WY, Hu JZ (2017) Effects of nano-hydroxyapatite/polyetheretherketone-coated, sandblasted, large-grit, and acid-etched implants on inflammatory cytokines and osseointegration in a peri-implantitis model in beagle dogs. Med Sci Monit 23:4601–4611PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Yang J, Zhou Y, Wei F, Xiao Y (2016) Blood clot formed on rough titanium surface induces early cell recruitment. Clin Oral Implants Res 27:1031–1038PubMedCrossRefGoogle Scholar
  125. 125.
    Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Pleshko Camacho N, Bostrom MP (2007) Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41:928–936PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Yi H, Ur Rehman F, Zhao C, Liu B, He N (2016) Recent advances in nano scaffolds for bone repair. Bone Res 4:16050PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Yu XH, Walsh J, Wei M (2014) Covalent immobilization of collagen on titanium through polydopamine coating to improve cellular performances of MC3T3-E1 cells. RSC Adv 4:7185–7192CrossRefGoogle Scholar
  128. 128.
    Zhang W, Liu J, Shi HG, Liu N, Yang K, Shi LX, Gu B, Wang HY, Ji JH, Chu PK (2015a) Effects of plasma-generated nitrogen functionalities on the upregulation of osteogenesis of bone marrow-derived mesenchymal stem cells. J Mater Chem B 3:1856–1863CrossRefGoogle Scholar
  129. 129.
    Zhang W, Liu N, Shi H, Liu J, Shi L, Zhang B, Wang H, Ji J, Chu PK (2015b) Upregulation of BMSCs osteogenesis by positively-charged tertiary amines on polymeric implants via charge/iNOS signaling pathway. Sci Rep 5:9369PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Zhao Y, Wong SM, Wong HM, Wu S, Hu T, Yeung KW, Chu PK (2013) Effects of carbon and nitrogen plasma immersion ion implantation on in vitro and in vivo biocompatibility of titanium alloy. ACS Appl Mater Interfaces 5:1510–1516PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveAustralia

Personalised recommendations