Advertisement

Prospects of Natural Polymeric Scaffolds in Peripheral Nerve Tissue-Regeneration

  • Roqia Ashraf
  • Hasham S. Sofi
  • Mushtaq A. Beigh
  • Shafquat Majeed
  • Shabana Arjamand
  • Faheem A. SheikhEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)

Abstract

Tissue-engineering is emerging field and can be considered as a novel therapeutic intervention in nerve tissue-regeneration. The various pitfalls associated with the use of autografts in nerve-regeneration after injuries have inspired researchers to explore the possibilities using various natural polymers. In this context, the present chapter summarizes the advances of the various types of natural polymeric scaffolds such as fibrous scaffolds, porous scaffolds, and hydrogels in nerve-regeneration and repair process. The functionalization of the scaffolds with wide-range of biomolecules and their biocompatibility analysis by employing various cells (e.g., mesenchymal, neural progenitor stem cells) along with the in vivo regeneration outcomes achieved upon implantation are discussed here. Besides, the various avenues that have been explored so far in nerve tissue-engineering, the use of the extracellular matrix in enhancing the functional polymeric scaffolds and their corresponding outcomes of regeneration are mentioned. We conclude with the present challenges and prospects of efficient exploration of natural polymeric scaffolds in the future to overcome the problems of nerve-regeneration associated with various nerve injuries and neurodegenerative disorders.

Keywords

Nerve tissue-engineering Natural polymers Scaffolds Stem cells Extracellular matrix 

Notes

Acknowledgments

This work was funded by DST Nano Mission sponsored project (SR/NM/NM-1038/2016) and Science and Engineering Research Board (SERB) research grants (ECR/2016/001429).

References

  1. 1.
    Addington CP, Dharmawaj S, Heffernan JM, Sirianni RW, Stabenfeldt SE (2017) Hyaluronic acid-laminin hydrogels increase neural stem cell transplant retention and migratory response to SDF-1α. Matrix Biol 60–61:206–216.  https://doi.org/10.1016/j.matbio.2016.09.007 CrossRefGoogle Scholar
  2. 2.
    Ajalloueian F, Lim ML, Lemon G, Haag JC, Gustafsson Y, Sjöqvist S, Beltrán-Rodríguez A et al (2014) Biomechanical and biocompatibility characteristics of electrospun polymeric tracheal scaffolds. Biomaterials 35(20):5307–5315.  https://doi.org/10.1016/j.biomaterials.2014.03.015 CrossRefPubMedGoogle Scholar
  3. 3.
    Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) Pharmacology & therapeutics GDNF , NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175.  https://doi.org/10.1016/j.pharmthera.2013.01.004 CrossRefPubMedGoogle Scholar
  4. 4.
    Allodi I, Udina E, Navarro X (2012) Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol.  https://doi.org/10.1016/j.pneurobio.2012.05.005 CrossRefGoogle Scholar
  5. 5.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416.  https://doi.org/10.1016/S0142-9612(02)00353-8 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Amir RE, Van Den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2 , encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188CrossRefGoogle Scholar
  7. 7.
    Annabi N, Nichol JW, Zhong X, Ji C (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16(4):371–383.  https://doi.org/10.1089/ten.TEB.2009.0639 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ansari S, Diniz IM, Chen C, Sarrion P, Tamayol A, Wu BM, Moshaverinia A (2017) Human periodontal ligament- and gingiva-derived mesenchymal stem cells promote nerve regeneration when encapsulated in alginate/hyaluronic acid 3D scaffold. Adv Healthc Mater 1700670:1700670.  https://doi.org/10.1002/adhm.201700670 CrossRefGoogle Scholar
  9. 9.
    Aramwit P, Motta A, Kundu SC (2017) Tissue engineering : from basic sciences to clinical perspectives. Biomed Res Int 2017:2–4.  https://doi.org/10.1155/2017/8659036 CrossRefGoogle Scholar
  10. 10.
    Arulmoli J, Wright HJ, Phan DTT, Sheth U, Que RA, Botten GA, Keating M et al (2016) Combination scaffolds of Salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater 43:122–138.  https://doi.org/10.1016/j.actbio.2016.07.043 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Badylak SF, Freytes DO, Gilbert TW (2015) Reprint of: extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 23:S17–S26. https://doi.org/10.1016/j.actbio.2015.07.016 CrossRefGoogle Scholar
  12. 12.
    Bagher Z, Azami M, Ebrahimi-Barough S, Mirzadeh H, Solouk A, Soleimani M, Ai J, Nourani MR, Joghataei MT (2016) Differentiation of Wharton’s jelly-derived mesenchymal stem cells into motor neuron-like cells on three-dimensional collagen-grafted nanofibers. Mol Neurobiol 53(4):2397–2408.  https://doi.org/10.1007/s12035-015-9199-x CrossRefPubMedGoogle Scholar
  13. 13.
    Baiguera S, Del Gaudio C, Lucatelli E, Kuevda E, Boieri M, Mazzanti B, Bianco A, Macchiarini P (2014) Electrospun gelatin scaffolds incorporating rat Decellularized brain extracellular matrix for neural tissue engineering. Biomaterials 35(4):1205–1214.  https://doi.org/10.1016/j.biomaterials.2013.10.060 CrossRefPubMedGoogle Scholar
  14. 14.
    Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56(3):290–299.  https://doi.org/10.1016/j.yrtph.2009.09.015 CrossRefGoogle Scholar
  15. 15.
    Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353.  https://doi.org/10.1016/j.actbio.2014.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bannerman PGC, Mirsky R, Jessen KR, Timpl R, Duance VC (1986) Light microscopic Immunolocalization of laminin, type IV collagen, Nidogen, Heparan Sulphate proteoglycan and fibronectin in the enteric nervous system of rat and Guinea pig. J Neurocytol 15(6):733–743.  https://doi.org/10.1007/BF01625191 CrossRefPubMedGoogle Scholar
  17. 17.
    Bao M, Lou X, Zhou Q, Dong W, Yuan H, Zhang Y (2014) Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering. ACS Appl Mater Interfaces 6(4):2611–2621.  https://doi.org/10.1021/am405101k CrossRefPubMedGoogle Scholar
  18. 18.
    Beachley V, Wen X (2010) Polymer Nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci (Oxford) 35(7):868–892.  https://doi.org/10.1016/j.progpolymsci.2010.03.003 CrossRefGoogle Scholar
  19. 19.
    Bellich B, D’Agostino I, Semeraro S, Gamini A, Cesàro A (2016) ‘The good, the bad and the ugly’ of Chitosans. Mar Drugs 14(5):99. https://doi.org/10.3390/md14050099 CrossRefGoogle Scholar
  20. 20.
    Berisio R, Vitagliano L, Mazzarella L, Zagari A (2002) Recent progress on collagen triple Helix structure, stability and assembly. Protein Pept Lett 9(2):107–116.  https://doi.org/10.2174/0929866023408922 CrossRefPubMedGoogle Scholar
  21. 21.
    di Blasio L, Droetto S, Norman J, Bussolino F, Primo L (2010) Protein kinase D1 regulates VEGF-A-induced αvβ3 integrin trafficking and endothelial cell migration. Traffic 11(8):1107–1118.  https://doi.org/10.1111/j.1600-0854.2010.01077.x CrossRefPubMedGoogle Scholar
  22. 22.
    Bonino CA, Efimenko K, In Jeong S, Krebs MD, Alsberg E, Khan SA (2012) Three-dimensional electrospun alginate nanofiber Mats via tailored charge repulsions. Small 8(12):1928–1936.  https://doi.org/10.1002/smll.201101791 CrossRefPubMedGoogle Scholar
  23. 23.
    Bozkurt A, Deumens R, Beckmann C, Damink LO, Schügner F, Heschel I, Sellhaus B et al (2009) In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials 30(2):169–179.  https://doi.org/10.1016/j.biomaterials.2008.09.017 CrossRefPubMedGoogle Scholar
  24. 24.
    Brodsky B, Ramshaw JAM (1997) The collagen triple-Helix structure. Matrix Biol 15(8–9):545–554.  https://doi.org/10.1016/S0945-053X(97)90030-5 CrossRefPubMedGoogle Scholar
  25. 25.
    Bryan DJ, Robert Litchfield C, Manchio JV, Logvinenko T, Holway AH, Austin J, Summerhayes IC, Rieger-Christ KM (2012) Spatiotemporal expression profiling of proteins in rat sciatic nerve regeneration using reverse phase protein arrays. Proteome Sci 10(1):9.  https://doi.org/10.1186/1477-5956-10-9 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bubela T, Li MD, Hafez M, Bieber M, Atkins H (2012) Is belief larger than fact: expectations, optimism and reality for translational stem cell research. BMC Med 10:133. https://doi.org/10.1186/1741-7015-10-133
  27. 27.
    Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater (Deerfield Beach, Fla) 23(12):H41–H56.  https://doi.org/10.1002/adma.201003963 CrossRefGoogle Scholar
  28. 28.
    Burdick JA, Mauck RL, Gorman JH, Gorman RC (2013) Acellular biomaterials: an evolving alternative to cell-based therapies. Sci Transl Med 5(176):176ps4. https://doi.org/10.1126/scitranslmed.3003997 CrossRefGoogle Scholar
  29. 29.
    Büyüköz M, Erdal E, Altinkaya SA (2018) Nanofibrous Gelatine scaffolds integrated with nerve growth factor-loaded alginate microspheres for brain tissue engineering. J Tissue Eng Regen Med 12:e707–e719. https://doi.org/10.1002/term.2353 CrossRefGoogle Scholar
  30. 30.
    Caldwell MA, Svendsen CN (1998) Heparin, but not other proteoglycans potentiates the Mitogenic effects of FGF-2 on mesencephalic precursor cells. Exp Neurol 152(1):1–10.  https://doi.org/10.1006/exnr.1998.6815 CrossRefPubMedGoogle Scholar
  31. 31.
    Cao H, Liu T, Chew SY (2009) The application of Nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 61(12):1055–1064.  https://doi.org/10.1016/j.addr.2009.07.009 CrossRefGoogle Scholar
  32. 32.
    Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302(5646):885–890. https://doi.org/10.1126/science.1086446 CrossRefGoogle Scholar
  33. 33.
    Chen X, Wang XD, Chen G, Lin WW, Yao J, Gu XS (2006) Study of in vivo differentiation of rat bone marrow stromal cells into Schwann cell-like cells. Microsurgery 26(2):111–115.  https://doi.org/10.1002/micr.20184 CrossRefPubMedGoogle Scholar
  34. 34.
    Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin Nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3(3 Special Issue):321–330.  https://doi.org/10.1016/j.actbio.2007.01.002 CrossRefPubMedGoogle Scholar
  35. 35.
    Coutinho DF, Sant SV, Shin H, Oliveira JT, Gomes ME, Neves NM, Khademhosseini A, Reis RL (2010) Modified Gellan gum hydrogels with tunable physical and mechanical properties. Biomaterials 31(29):7494–7502.  https://doi.org/10.1016/j.biomaterials.2010.06.035 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792.  https://doi.org/10.1016/j.eurpolymj.2012.12.009 CrossRefGoogle Scholar
  37. 37.
    Cruz Gaitán AM, Torres-Ruíz NM, Carri NG (2015) Embryonic neural stem cells in a 3D bioassay for trophic stimulation studies. Brain Res Bull 115:37–44.  https://doi.org/10.1016/j.brainresbull.2015.04.006 CrossRefPubMedGoogle Scholar
  38. 38.
    Dai Y, Liu W, Formo E, Sun Y, Xia Y (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental Science, and energy technology. Polym Adv Technol.  https://doi.org/10.1002/pat.1839 CrossRefGoogle Scholar
  39. 39.
    Daly W, Yao L, Zeugolis D, Windebank A, Pandit A (2012) A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface 9(67):202–221.  https://doi.org/10.1098/rsif.2011.0438 CrossRefPubMedGoogle Scholar
  40. 40.
    Dan LI, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42(1):135–145.  https://doi.org/10.1021/ar800080n CrossRefGoogle Scholar
  41. 41.
    Deng H, Lin L, Ji M, Zhang S, Yang M, Qiang F (2014) Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog Polym Sci 39(4):627–655.  https://doi.org/10.1016/j.progpolymsci.2013.07.007 CrossRefGoogle Scholar
  42. 42.
    Deumens R, Bozkurt A, Meek MF, Marcus MAE, Joosten EAJ, Weis J, Brook GA (2010) Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol 92(3):245–276.  https://doi.org/10.1016/j.pneurobio.2010.10.002 CrossRefGoogle Scholar
  43. 43.
    Dhandayuthapani B, Yoshida Y, Maekawa T, Sakthi Kumar D (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci.  https://doi.org/10.1155/2011/290602 CrossRefGoogle Scholar
  44. 44.
    Doitsidou M, Reichman-fried M, Ko M, Meyer D, Esguerra CV, Leung T, Raz E, Freiburg D (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111:647–659CrossRefGoogle Scholar
  45. 45.
    Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35(2–3):151–160.  https://doi.org/10.1016/0304-3886(95)00041-8 CrossRefGoogle Scholar
  46. 46.
    Dubois SG, Floyd EZ, Zvonic S, Kilroy G, Wu X, Carling S, Halvorsen YDC, Ravussin E, Gimble JM (2008) Isolation of human adipose-derived stem cells from biopsies and liposuction specimens. Methods Mol Biol (Clifton, NJ) 449:69–79.  https://doi.org/10.1007/978-1-60327-169-1_5 CrossRefGoogle Scholar
  47. 47.
    Fakhari A, Berkland C (2013) Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater.  https://doi.org/10.1016/j.actbio.2013.03.005 CrossRefGoogle Scholar
  48. 48.
    Farokhi M, Mottaghitalab F, Shokrgozar MA, Kaplan DL, Kim HW, Kundu SC (2017) Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers. Int Mater Rev 62(7):367–391.  https://doi.org/10.1080/09506608.2016.1252551 CrossRefGoogle Scholar
  49. 49.
    Fathi SS, Zaminy A (2017) Stem cell therapy for nerve injury. World J Stem Cells 9(9):144–151.  https://doi.org/10.4252/wjsc.v9.i9.144 CrossRefGoogle Scholar
  50. 50.
    Ferris CJ, Gilmore KJ, Wallace GG, in het Panhuis M (2013) Modified Gellan gum hydrogels for tissue engineering applications. Soft Matter 9(14):3705.  https://doi.org/10.1039/c3sm27389j CrossRefGoogle Scholar
  51. 51.
    Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sá-Correia I (2008) Occurrence, production, and applications of Gellan: current state and perspectives. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-008-1496-0 CrossRefGoogle Scholar
  52. 52.
    Führmann T, Hillen LM, Montzka K, Wöltje M, Brook GA (2010) Cell-cell interactions of human neural progenitor-derived astrocytes within a microstructured 3D-scaffold. Biomaterials 31(30):7705–7715.  https://doi.org/10.1016/j.biomaterials.2010.06.060 CrossRefPubMedGoogle Scholar
  53. 53.
    Ge D, Song K, Guan S, Qi Y, Guan B, Li W, Liu J, Ma X, Liu T, Cui Z (2013) Culture and differentiation of rat neural stem/progenitor cells in a three-dimensional collagen scaffold. Appl Biochem Biotechnol 170(2):406–419.  https://doi.org/10.1007/s12010-013-0211-5 CrossRefPubMedGoogle Scholar
  54. 54.
    Gnavi S, di Blasio L, Tonda-Turo C, Mancardi A, Primo L, Ciardelli G, Gambarotta G, Geuna S, Perroteau I (2017) Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering. J Tissue Eng Regen Med 11(2):459–470.  https://doi.org/10.1002/term.1936 CrossRefPubMedGoogle Scholar
  55. 55.
    Gomes ED, Mendes SS, Leite-Almeida H, Gimble JM, Tam RY, Shoichet MS, Sousa N, Silva NA, Salgado AJ (2016) Combination of a peptide-modified Gellan gum hydrogel with cell therapy in a lumbar spinal cord injury animal model. Biomaterials 105:38–51.  https://doi.org/10.1016/j.biomaterials.2016.07.019 CrossRefPubMedGoogle Scholar
  56. 56.
    Gómez-Guillén MC, Turnay J, Fernández-Díaz MD, Ulmo N, Lizarbe MA, Montero P (2002) Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocoll 16(1):25–34.  https://doi.org/10.1016/S0268-005X(01)00035-2 CrossRefGoogle Scholar
  57. 57.
    Gonzalez-Perez F, Udina E, Navarro X (2013) Extracellular matrix components in peripheral nerve regeneration. Int Rev Neurobiol 108:257–275.  https://doi.org/10.1016/B978-0-12-410499-0.00010-1 CrossRefPubMedGoogle Scholar
  58. 58.
    Gonzalez-Perez F, Cobianchi S, Geuna S, Barwig C, Freier T, Udina E, Navarro X (2015) Tubulization with chitosan guides for the repair of long gap peripheral nerve injury in the rat. Microsurgery 35(4):300–308.  https://doi.org/10.1002/micr.22362 CrossRefPubMedGoogle Scholar
  59. 59.
    Gonzalez-Perez F, Cobianchi S, Heimann C, Phillips JB, Udina E, Navarro X (2017) Stabilization, rolling, and addition of other extracellular matrix proteins to collagen hydrogels improve regeneration in chitosan guides for long peripheral nerve gaps in rats. Neurosurgery 80(3):465–474.  https://doi.org/10.1093/neuros/nyw068 CrossRefPubMedGoogle Scholar
  60. 60.
    Gu X, Ding F, Yang Y, Liu J (2011) Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol.  https://doi.org/10.1016/j.pneurobio.2010.11.002 CrossRefGoogle Scholar
  61. 61.
    Gu Y, Zhu J, Xue C, Li Z, Ding F, Yang Y, Xiaosong G (2014) Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 35(7):2253–2263.  https://doi.org/10.1016/j.biomaterials.2013.11.087 CrossRefPubMedGoogle Scholar
  62. 62.
    Gu Y, Li Z, Huang J, Wang H, Xiaosong G, Jianhui G (2017) Application of marrow mesenchymal stem cell-derived extracellular matrix in peripheral nerve tissue engineering. J Tissue Eng Regen Med 11(8):2250–2260.  https://doi.org/10.1002/term.2123 CrossRefPubMedGoogle Scholar
  63. 63.
    Guan S, Zhang XL, Lin XM, Liu TQ, Ma XH, Cui ZF (2013) Chitosan/gelatin porous scaffolds containing hyaluronic acid and Heparan sulfate for neural tissue engineering. J Biomater Sci Polym Ed 24(8):999–1014.  https://doi.org/10.1080/09205063.2012.731374 CrossRefPubMedGoogle Scholar
  64. 64.
    Guo B, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. SCIENCE CHINA Chem 57(4):490–500.  https://doi.org/10.1007/s11426-014-5086-y CrossRefGoogle Scholar
  65. 65.
    Haastert K, Lipokatić E, Fischer M, Timmer M, Grothe C (2006) Differentially promoted peripheral nerve regeneration by grafted Schwann cells over-expressing different FGF-2 isoforms. Neurobiol Dis 21(1):138–153.  https://doi.org/10.1016/j.nbd.2005.06.020 CrossRefPubMedGoogle Scholar
  66. 66.
    Hardy JG, Lee JY, Schmidt CE (2013) Biomimetic conducting polymer-based tissue scaffolds. Curr Opin Biotechnol 24(5):847–854.  https://doi.org/10.1016/j.copbio.2013.03.011 CrossRefPubMedGoogle Scholar
  67. 67.
    Hardy J, Cornelison R, Sukhavasi R, Saballos R, Philip V, Kaplan D, Schmidt C (2015a) Electroactive tissue scaffolds with aligned pores as instructive platforms for biomimetic tissue engineering. Bioengineering 2(1):15–34.  https://doi.org/10.3390/bioengineering2010015 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hardy JG, Sukhavasi RC, Aguilar D, Villancio-Wolter MK, Mouser DJ, Geissler SA, Nguy L, Chow JK, Kaplan DL, Schmidt CE (2015b) Electrical stimulation of human mesenchymal stem cells on biomineralized conducting polymers enhances their differentiation towards osteogenic outcomes. J Mater Chem B 3(41):8059–8064.  https://doi.org/10.1039/C5TB00714C CrossRefGoogle Scholar
  69. 69.
    Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends Food Sci Technol 18(3):117–131.  https://doi.org/10.1016/j.tifs.2006.10.022 CrossRefGoogle Scholar
  70. 70.
    He Y, Lu F (2016) Development of synthetic and natural materials for tissue engineering applications using adipose stem cells. Stem Cells Int 2016:5786257.  https://doi.org/10.1155/2016/5786257 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hess LH, Jansen M, Maybeck V, Hauf MV, Seifert M, Stutzmann M, Sharp ID, Offenhäusser A, Garrido JA (2011) Graphene transistor arrays for recording action potentials from Electrogenic cells:5045–5049.  https://doi.org/10.1002/adma.201102990 CrossRefGoogle Scholar
  72. 72.
    Hogan M, Girish K, James R, Balian G, Hurwitz S, Chhabra AB (2011) Growth differentiation Factor-5 regulation of extracellular matrix gene expression in murine tendon fibroblasts. J Tissue Eng Regen Med 5(3):191–200.  https://doi.org/10.1002/term.304 CrossRefPubMedGoogle Scholar
  73. 73.
    Holmberg J, Durbeej M (2013) Laminin-211 in skeletal muscle function. Cell Adhes Migr 7(1):111–121.  https://doi.org/10.4161/cam.22618 CrossRefGoogle Scholar
  74. 74.
    Hong S, Yang K, Kang B, Lee C, Song IT, Byun E, In Park K, Cho SW, Lee H (2013) Hyaluronic acid catechol: a biopolymer exhibiting a pH-dependent adhesive or cohesive property for human neural stem cell engineering. Adv Funct Mater 23(14):1774–1780.  https://doi.org/10.1002/adfm.201202365 CrossRefGoogle Scholar
  75. 75.
    Hoque ME, Nuge T, Yeow TK, Nordin N, Prasad RGSV (2014) Gelatin based scaffolds for tissue engineering – a review. Polym Res J 9(1):15Google Scholar
  76. 76.
    Horne MK, Nisbet DR, Forsythe JS, Parish CL (2010) Three-dimensional Nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells Dev 19(6):843–852.  https://doi.org/10.1089/scd.2009.0158 CrossRefPubMedGoogle Scholar
  77. 77.
    Imitola J, Raddassi K, In Park K, Mueller F-j, Nieto M, Teng YD, Frenkel D et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Natl Acad Sci 101(52):18117–18122CrossRefGoogle Scholar
  78. 78.
    Jang J, Chang M, Yoon H (2005) Chemical sensors based on highly conductive poly(3,4-Ethylenedioxythiophene) Nanorods. Adv Mater 17(13):1616–1620.  https://doi.org/10.1002/adma.200401909 CrossRefGoogle Scholar
  79. 79.
    Jeong HE, Lee SH, Kim P, Suh KY (2006) Stretched polymer Nanohairs by Nanodrawing. Nano Lett 6(7):1508–1513.  https://doi.org/10.1021/nl061045m CrossRefPubMedGoogle Scholar
  80. 80.
    Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–3531.  https://doi.org/10.1113/JP270874 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Jha AK, Xu X, Duncan RL, Jia X (2011) Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 32(10):2466–2478.  https://doi.org/10.1016/j.biomaterials.2010.12.024 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Jin G, Li K (2015) The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine. Mater Sci Eng C 45:671–681.  https://doi.org/10.1016/j.msec.2014.06.004 CrossRefGoogle Scholar
  83. 83.
    Kagan HM, Li W (2003) Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88(4):660–672.  https://doi.org/10.1002/jcb.10413 CrossRefPubMedGoogle Scholar
  84. 84.
    Kakehi K, Kinoshita M, Yasueda SI (2003) Hyaluronic acid: separation and biological implications. J Chromatogr B Anal Technol Biomed Life Sci 797(1–2):347–355.  https://doi.org/10.1016/S1570-0232(03)00479-3 CrossRefGoogle Scholar
  85. 85.
    Karim AA, Bhat R (2009) Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll.  https://doi.org/10.1016/j.foodhyd.2008.07.002 CrossRefGoogle Scholar
  86. 86.
    Karpiak JV, Ner Y, Almutairi A (2012) Density gradient multilayer polymerization for creating complex tissue. Adv Mater 24(11):1466–1470.  https://doi.org/10.1002/adma.201103501 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kasoju N, Bora U (2012) Silk fibroin in tissue engineering:1–20.  https://doi.org/10.1002/adhm.201200097 CrossRefGoogle Scholar
  88. 88.
    Kerns JM (2008) The microstructure of peripheral nerves. Tech Reg Anesth Pain Manag 12(3):127–133.  https://doi.org/10.1053/j.trap.2008.03.001 CrossRefGoogle Scholar
  89. 89.
    Khaing ZZ, Schmidt CE (2012) Advances in natural biomaterials for nerve tissue repair. Neurosci Lett.  https://doi.org/10.1016/j.neulet.2012.02.027 CrossRefGoogle Scholar
  90. 90.
    Khan AU, Mei YH, Wilson T (1992) A proposed function for Spermine and spermidine: protection of replicating DNA against damage by singlet oxygen. Proc Natl Acad Sci U S A 89(23):11426–11427.  https://doi.org/10.1073/pnas.89.23.11426 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Khan F, Tanaka M, Ahmad SR (2015) Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J Mater Chem B 3(42):8224–8249.  https://doi.org/10.1039/C5TB01370D CrossRefGoogle Scholar
  92. 92.
    Koh HS, Thomas Y, Chan CK, Ramakrishna S (2008) Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29(26):3574–3582.  https://doi.org/10.1016/j.biomaterials.2008.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Koivisto JT, Joki T, Parraga JE, Paakkönen R, Yla-Outinen L, Salonen L, Jönkkari I et al (2017) Bioamine-crosslinked Gellan gum hydrogel for neural tissue engineering. Biomed Mater (Bristol) 12(2).  https://doi.org/10.1088/1748-605X/aa62b0 CrossRefGoogle Scholar
  94. 94.
    Kuo YC, Hsueh CH (2017) Neuronal production from induced pluripotent stem cells in self-assembled collagen-hyaluronic acid-alginate microgel scaffolds with grafted GRGDSP/Ln5-P4. Mater Sci Eng C 76:760–774.  https://doi.org/10.1016/j.msec.2017.03.133 CrossRefGoogle Scholar
  95. 95.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126.  https://doi.org/10.1016/j.progpolymsci.2011.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Lee C, Shin J, Lee JS, Byun E, Ryu JH, Um SH, Kim DI, Lee H, Cho SW (2013) Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules 14(6):2004–2013.  https://doi.org/10.1021/bm400352d CrossRefPubMedGoogle Scholar
  97. 97.
    Li X, Liu T, Song K, Yao L, Ge D, Bao C, Ma X, Cui Z (2006) Culture of neural stem cells in calcium alginate beads. Biotechnol Prog 22(6):1683–1689.  https://doi.org/10.1021/bp060185z CrossRefPubMedGoogle Scholar
  98. 98.
    Li H, Wijekoon A, Leipzig ND (2012) 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds. PLoS One 7(11).  https://doi.org/10.1371/journal.pone.0048824 CrossRefGoogle Scholar
  99. 99.
    Li Y, Meng H, Liu Y, Lee BP (2015) Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Sci World J.  https://doi.org/10.1155/2015/685690 Google Scholar
  100. 100.
    Liao J, Guo X, Jane Grande-Allen K, Kurtis Kasper F, Mikos AG (2010) Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials 31(34):8911–8920.  https://doi.org/10.1016/j.biomaterials.2010.07.110 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Liu D, De Feyter S, Cotlet M, Wiesler UM, Weil T, Herrmann A, Müllen K, De Schryver FC (2003) Fluorescent self-assembled polyphenylene dendrimer nanofibers. Macromolecules 36(22):8489–8498.  https://doi.org/10.1021/ma0348573 CrossRefGoogle Scholar
  102. 102.
    Liu B-S, Yang Y-C, Shen C-C (2014) Regenerative effect of adipose tissue-derived stem cells transplantation using nerve conduit therapy on sciatic nerve injury in rats. J Tissue Eng Regen Med 8(5):337–350.  https://doi.org/10.1002/term.1523 CrossRefPubMedGoogle Scholar
  103. 103.
    Liu Q, Huang J, Shao H, Song L, Zhang Y (2016) Dual-factor loaded functional silk fibroin scaffolds for peripheral nerve regeneration with the aid of neovascularization. RSC Adv 6(9):7683–7691.  https://doi.org/10.1039/C5RA22054H CrossRefGoogle Scholar
  104. 104.
    Liuzzi F, Lasek R (1987) Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 237(4815):642–645.  https://doi.org/10.1126/science.3603044 CrossRefPubMedGoogle Scholar
  105. 105.
    Lluch, AV, Cruz DMG, Ivirico JLE, Ramos CM, Pradas MM (2014) Polymers as materials for tissue engineering scaffolds. In: Polymers in regenerative medicine: biomedical applications from nano- to macro-structures, pp 1–47.  https://doi.org/10.1002/9781118356692.ch1 Google Scholar
  106. 106.
    López-Cebral R, Paolicelli P, Romero-Caamaño V, Seijo B, Casadei MA, Sanchez A (2013) Spermidine-cross-linked hydrogels as novel potential platforms for pharmaceutical applications. J Pharm Sci 102(8):2632–2643.  https://doi.org/10.1002/jps.23631 CrossRefPubMedGoogle Scholar
  107. 107.
    Lu, L, Chen X, Zhang CW, Yang WL, Wu YJ, Sun L, Bai LM et al (2008) Morphological and functional characterization of predifferentiation of myelinating glia-like cells from human bone marrow stromal cells through activation of F3/notch signaling in mouse retina. Stem Cells 26(2):580–90. https://doi.org/2007-0106 [pii]\r10.1634/stemcells.2007-0106
  108. 108.
    Lu HF, Lim S-X, Leong MF, Narayanan K, Toh RPK, Gao S, Wan ACA (2012) Efficient neuronal differentiation and maturation of human pluripotent stem cells encapsulated in 3D microfibrous scaffolds. Biomaterials 33(36):9179–9187.  https://doi.org/10.1016/j.biomaterials.2012.09.006 CrossRefPubMedGoogle Scholar
  109. 109.
    Lundborg G, Dahlin LB, Danielsen N, Gelberman RH, Longo FM, Powell HC, Varon S (1982) Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp Neurol 76(2):361–375.  https://doi.org/10.1016/0014-4886(82)90215-1 CrossRefPubMedGoogle Scholar
  110. 110.
    Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46(1):60–72.  https://doi.org/10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H CrossRefPubMedGoogle Scholar
  111. 111.
    Madduri S, Gander B (2010) Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration. J Peripher Nerv Syst 15(2):93–103.  https://doi.org/10.1111/j.1529-8027.2010.00257.x CrossRefPubMedGoogle Scholar
  112. 112.
    Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater.  https://doi.org/10.1021/cm960166s CrossRefGoogle Scholar
  113. 113.
    McGarvey ML, Baron-Van Evercooren A, Kleinman HK, Dubois-Dalcq M (1984) Synthesis and effects of basement membrane components in cultured rat Schwann cells. Dev Biol 105(1):18–28.  https://doi.org/10.1016/0012-1606(84)90257-4 CrossRefPubMedGoogle Scholar
  114. 114.
    Meli L, Barbosa HSC, Hickey AM, Gasimli L, Nierode G, Diogo MM, Linhardt RJ, Cabral JMS, Dordick JS (2014) Three dimensional cellular microarray platform for human neural stem cell differentiation and toxicology. Stem Cell Res 13(1):36–47.  https://doi.org/10.1016/j.scr.2014.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Mentis GZ, Alvarez FJ, Shneider NA, Siembab VC, O’Donovan MJ (2010) Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord. Ann N Y Acad Sci 1198.  https://doi.org/10.1111/j.1749-6632.2010.05538.x CrossRefGoogle Scholar
  116. 116.
    Meyer C, Stenberg L, Gonzalez-Perez F, Wrobel S, Ronchi G, Udina E, Suganuma S et al (2016a) Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials 76:33–51.  https://doi.org/10.1016/j.biomaterials.2015.10.040 CrossRefPubMedGoogle Scholar
  117. 117.
    Meyer C, Wrobel S, Raimondo S, Rochkind S, Heimann C, Shahar A, Ziv-Polat O, Geuna S, Grothe C, Haastert-Talini K (2016b) Peripheral nerve regeneration through hydrogel-enriched chitosan conduits containing engineered Schwann cells for drug delivery. Cell Transplant 25(1):159–182.  https://doi.org/10.3727/096368915X688010 CrossRefPubMedGoogle Scholar
  118. 118.
    Morris ER, Nishinari K, Rinaudo M (2012) Gelation of Gellan - a review. Food Hydrocoll.  https://doi.org/10.1016/j.foodhyd.2012.01.004 CrossRefGoogle Scholar
  119. 119.
    Moshaverinia A, Xu X, Chen C, Akiyama K, Snead ML, Shi S (2013) Acta biomaterialia dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomater 9(12):9343–9350.  https://doi.org/10.1016/j.actbio.2013.07.023 CrossRefPubMedGoogle Scholar
  120. 120.
    Moshaverinia A, Chen C, Xu X, Akiyama K, Ansari S, Zadeh HH, Shi S (2014) Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Eng A 20(3–4):611–621.  https://doi.org/10.1089/ten.tea.2013.0229 CrossRefGoogle Scholar
  121. 121.
    Müller HW, Stoll G (1998) Nerve injury and regeneration: basic insights and therapeutic interventions. Curr Opin Neurol.  https://doi.org/10.1097/00019052-199810000-00019 CrossRefGoogle Scholar
  122. 122.
    Murphy AR, Laslett A, O’Brien CM, Cameron NR (2017) Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomater 54(February):1–20.  https://doi.org/10.1016/j.actbio.2017.02.046 CrossRefPubMedGoogle Scholar
  123. 123.
    Muzzarelli RAA (2009) Chitins and Chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym.  https://doi.org/10.1016/j.carbpol.2008.11.002 CrossRefGoogle Scholar
  124. 124.
    Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229–258.  https://doi.org/10.1111/j.1085-9489.2005.10303.x CrossRefPubMedGoogle Scholar
  125. 125.
    O’Brien FJ, Harley BA, Yannas IV, Gibson L (2004) Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25(6):1077–1086.  https://doi.org/10.1016/S0142-9612(03)00630-6 CrossRefPubMedGoogle Scholar
  126. 126.
    Ostenfeld T (2004) Requirement for neurogenesis to proceed through the division of neuronal progenitors following differentiation of epidermal growth factor and fibroblast growth Factor-2-responsive human neural stem cells. Stem Cells 22(5):798–811.  https://doi.org/10.1634/stemcells.22-5-798 CrossRefPubMedGoogle Scholar
  127. 127.
    Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH (1999) Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 19(19):8487–8497. https://doi.org/10.1523/JNEUROSCI.19-19-08487.1999 CrossRefGoogle Scholar
  128. 128.
    Panzavolta S, Gioffrè M, Letizia M, Gualandi C, Foroni L, Bigi A (2011) Acta biomaterialia electrospun gelatin nanofibers : optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater 7(4):1702–1709.  https://doi.org/10.1016/j.actbio.2010.11.021 CrossRefPubMedGoogle Scholar
  129. 129.
    Pereira Lopes FR, Lisboa BCG, Frattini F, Almeida FM, Tomaz MA, Matsumoto PK, Langone F et al (2011) Enhancement of sciatic nerve regeneration after vascular endothelial growth factor (VEGF) gene therapy. Neuropathol Appl Neurobiol 37(6):600–612.  https://doi.org/10.1111/j.1365-2990.2011.01159.x CrossRefPubMedGoogle Scholar
  130. 130.
    Pfister LA, Papaloïzos M, Merkle HP, Gander B (2007) Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst 12(2):65–82.  https://doi.org/10.1111/j.1529-8027.2007.00125.x CrossRefPubMedGoogle Scholar
  131. 131.
    Potter, W, Kalil RE, Kao WJ (2008) Biomimetic material systems for neural progenitor cell-based therapy. Front Biosci 13:806–21. https://doi.org/2721 [pii]
  132. 132.
    Rajabi M, Firouzi M, Hassannejad Z, Haririan I, Zahedi P (2017) Fabrication and characterization of electrospun laminin-functionalized silk fibroin/poly(ethylene oxide) nanofibrous scaffolds for peripheral nerve regeneration. J Biomed Mater Res B Appl Biomater:1–10.  https://doi.org/10.1002/jbm.b.33968 CrossRefGoogle Scholar
  133. 133.
    Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-015-6426-3 CrossRefGoogle Scholar
  134. 134.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science (New York, NY) 255(5052):1707–1710.  https://doi.org/10.1126/science.1553558 CrossRefGoogle Scholar
  135. 135.
    Ribeiro JCV, Vieira RS, Melo IM, Araújo VMA, Lima V (2017) Versatility of chitosan-based biomaterials and their use as scaffolds for tissue regeneration. Sci World J 2017.  https://doi.org/10.1155/2017/8639898 CrossRefGoogle Scholar
  136. 136.
    Ribeiro-Resende VT, Koenig B, Nichterwitz S, Oberhoffner S, Schlosshauer B (2009) Strategies for inducing the formation of bands of Büngner in peripheral nerve regeneration. Biomaterials 30(29):5251–5259.  https://doi.org/10.1016/j.biomaterials.2009.07.007 CrossRefPubMedGoogle Scholar
  137. 137.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci (Oxford) 31(7):603–632.  https://doi.org/10.1016/j.progpolymsci.2006.06.001 CrossRefGoogle Scholar
  138. 138.
    Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015.  https://doi.org/10.1155/2015/821279 CrossRefGoogle Scholar
  139. 139.
    Rollings DAE, Tsoi S, Sit JC, Veinot JGC (2007) Formation and aqueous surface wettability of polysiloxane nanofibers prepared via surface initiated, vapor-phase polymerization of organotrichlorosilanes. Langmuir 23(10):5275–5278.  https://doi.org/10.1021/la063604a CrossRefPubMedGoogle Scholar
  140. 140.
    Ruan Y, Lin H, Yao J, Chen Z, Shao Z, Lin H, Chen Z (2011) Preparation of 3D fibroin/chitosan blend porous scaffold for tissue engineering via a simplified method. Macromol Biosci 11(3):419–426.  https://doi.org/10.1002/mabi.201000392 CrossRefPubMedGoogle Scholar
  141. 141.
    Sankar S, Sharma CS, Rath SN, Ramakrishna S (2017) Electrospun fibers for recruitment and differentiation of stem cells in regenerative medicine. Biotechnol J 1700263:1–11.  https://doi.org/10.1002/biot.201700263 CrossRefGoogle Scholar
  142. 142.
    Saranraj P, Naidu MA (2013) Hyaluronic acid production and its applications - a review. Int J Pharm & Biochem Arch 4(5):853–859 http://www.ijpba.info/ijpba/index.php/ijpba/article/viewFile/1126/795 Google Scholar
  143. 143.
    Scheibel TR, Hardy JG, Ro LM (2008) Polymeric materials based on silk proteins. Polymer 49:4309–4327.  https://doi.org/10.1016/j.polymer.2008.08.006 CrossRefGoogle Scholar
  144. 144.
    Shearer MC, Niclou SP, Brown D, Asher RA, Holtmaat AJGD, Levine JM, Verhaagen J, Fawcett JW (2003) The astrocyte/meningeal cell interface is a barrier to neurite outgrowth which can be overcome by manipulation of inhibitory molecules or axonal signalling pathways. Mol Cell Neurosci 24(4):913–925.  https://doi.org/10.1016/j.mcn.2003.09.004 CrossRefPubMedGoogle Scholar
  145. 145.
    Sheikh FA, Ju HW, Moon BM, Lee OJ, Kim J-h, Park HJ, Kim DW et al (2015) Hybrid scaffolds based on PLGA and silk for bone tissue engineering. J Tissue Eng Regen Med 10(3):209–221.  https://doi.org/10.1002/term CrossRefPubMedGoogle Scholar
  146. 146.
    Shreiber DI, Barocas VH, Tranquillo RT (2003) Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophys J 84(6):4102–4114.  https://doi.org/10.1016/S0006-3495(03)75135-2 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Silva NA, Salgado AJ, Sousa RA, Oliveira JT, Pedro AJ, Leite-Almeida H, Cerqueira R et al (2010) Development and characterization of a novel hybrid tissue engineering-based scaffold for spinal cord injury repair. Tissue Eng Part A 16(1):45–54.  https://doi.org/10.1089/ten.TEA.2008.0559 CrossRefPubMedGoogle Scholar
  148. 148.
    Silva NA, Cooke MJ, Tam RY, Sousa N, Salgado AJ, Reis RL, Shoichet MS (2012a) The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials 33(27):6345–6354.  https://doi.org/10.1016/j.biomaterials.2012.05.050 CrossRefPubMedGoogle Scholar
  149. 149.
    Silva NA, Sousa RA, Pires AO, Sousa N, Salgado AJ, Reis RL (2012b) Interactions between Schwann and olfactory ensheathing cells with a starch/polycaprolactone scaffold aimed at spinal cord injury repair. J Biomed Mater Res A 100 A(2):470–476.  https://doi.org/10.1002/jbm.a.33289 CrossRefGoogle Scholar
  150. 150.
    Stevens LR, Gilmore KJ, Wallace GG, M. in het Panhuis (2016) Tissue engineering with gellan gum. Biomater Sci 4(9):1276–1290.  https://doi.org/10.1039/C6BM00322B CrossRefPubMedGoogle Scholar
  151. 151.
    Stoppel WL, Ghezzi CE, McNamara SL, Black LD III, Kaplan DL (2015) Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 43(3):657–680.  https://doi.org/10.1007/s10439-014-1206-2 CrossRefPubMedGoogle Scholar
  152. 152.
    Subia B, Rao RR, Kundu SC (2015) Silk 3D matrices incorporating human neural progenitor cells for neural tissue engineering applications. Polym J 47(12):819–825.  https://doi.org/10.1038/pj.2015.69 CrossRefGoogle Scholar
  153. 153.
    Sugiyama T, Kohara H, Noda M (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988.  https://doi.org/10.1016/j.immuni.2006.10.016 CrossRefGoogle Scholar
  154. 154.
    Tao SL, Desai TA (2007) Aligned arrays of biodegradable poly(epsilon-Caprolactone) nanowires and nanofibers by template synthesis. Nano Lett 7(6):1463–1468.  https://doi.org/10.1021/nl0700346 CrossRefPubMedGoogle Scholar
  155. 155.
    Thomas RC, Vu P, Modi SP, Chung PE, Clive Landis R, Khaing ZZ, Hardy JG, Schmidt CE (2017) Sacrificial crystal templated hyaluronic acid hydrogels as biomimetic 3D tissue scaffolds for nerve tissue regeneration. ACS Biomater Sci Eng 3(7):1451–1459.  https://doi.org/10.1021/acsbiomaterials.7b00002 CrossRefGoogle Scholar
  156. 156.
    Thu B, Smidsrød O, Skjak-Brk G (1996) Alginate gels - some structure-function correlations relevant to their use as immobilization matrix for cells. Prog Biotechnol 11(C):19–30.  https://doi.org/10.1016/S0921-0423(96)80004-9 CrossRefGoogle Scholar
  157. 157.
    Tian L, Prabhakaran MP, Hu J, Chen M, Besenbacher F, Ramakrishna S (2015) Coaxial electrospun poly(lactic acid)/silk fibroin nanofibers incorporated with nerve growth factor support the differentiation of neuronal stem cells. RSC Adv 5(62):49838–49848.  https://doi.org/10.1039/C5RA05773F CrossRefGoogle Scholar
  158. 158.
    Tonda-Turo C, Gnavi S, Ruini F, Gambarotta G, Gioffredi E, Chiono V, Perroteau I, Ciardelli G (2017) Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. J Tissue Eng Regen Med 11(1):197–208.  https://doi.org/10.1002/term.1902 CrossRefPubMedGoogle Scholar
  159. 159.
    Tortora GJ, Derrickson B (2014) Principles of Anatomy & Physiology, 14th ed. Wiley, Hoboken.  https://doi.org/10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  160. 160.
    Van Steenwinckel J, Roste W (2013) Current status of chemokines in the adult CNS. Prog Neurobiol 104:67–92.  https://doi.org/10.1016/j.pneurobio.2013.02.001 CrossRefPubMedGoogle Scholar
  161. 161.
    Vepari C, Kaplan DL (2009) Silk as a biomaterial. Prog Polym Sci 32:991–1007. https://doi.org/10.1016/j.progpolymsci.2007.05.013 CrossRefGoogle Scholar
  162. 162.
    Volpato FZ, Führmann T, Migliaresi C, Hutmacher DW, Dalton PD (2013) Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials 34(21):4945–4955.  https://doi.org/10.1016/j.biomaterials.2013.03.057 CrossRefPubMedGoogle Scholar
  163. 163.
    Waite JH, Andersen NH, Jewhurst S, Sun C (2005) Mussel adhesion: finding the tricks worth mimicking. J Adhes 81(3–4):297–317.  https://doi.org/10.1080/00218460590944602 CrossRefGoogle Scholar
  164. 164.
    Walsh S, Midha R (2009) Practical considerations concerning the use of stem cells for peripheral nerve repair. Neurosurg Focus 26(2):E2.  https://doi.org/10.3171/FOC.2009.26.2.E2 CrossRefPubMedGoogle Scholar
  165. 165.
    Wang TY, Forsythe JS, Parish CL, Nisbet DR (2012) Biofunctionalisation of polymeric scaffolds for neural tissue engineering. J Biomater Appl 27(4):369–390.  https://doi.org/10.1177/0885328212443297 CrossRefPubMedGoogle Scholar
  166. 166.
    Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241.  https://doi.org/10.1016/j.mattod.2013.06.005 CrossRefGoogle Scholar
  167. 167.
    Wang J, Sun B, Bhutto MA, Zhu T, Yu K, Bao J, Morsi Y, El-Hamshary H, El-Newehy M, Mo X (2017a) Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) Nanofibrous scaffolds for peripheral nerve tissue engineering. Front Mater Sci 11(1):22–32.  https://doi.org/10.1007/s11706-017-0368-x CrossRefGoogle Scholar
  168. 168.
    Wang S, Sun C, Guan S, Li W, Xu J, Ge D, Zhuang M, Liu T, Ma X (2017b) Chitosan/gelatin porous scaffolds assembled with conductive poly(3,4-Ethylenedioxythiophene) nanoparticles for neural tissue engineering. J Mater Chem B 5(24):4774–4788.  https://doi.org/10.1039/C7TB00608J CrossRefGoogle Scholar
  169. 169.
    Wani S, Sofi HS, Majeed S, Sheikh FA (2017) Recent trends in chitosan nanofibers : from tissue-engineering to environmental importance: a review. Mater Sci Res India 14(2):89–99CrossRefGoogle Scholar
  170. 170.
    Willand MP (2015) Electrical stimulation enhances Reinnervation after nerve injury. Eur J Transl Myol 25(4):243–248.  https://doi.org/10.4081/ejtm.2015.5243 CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Wu Y, Feng S, Zan X, Lin Y, Wang Q (2015) Aligned electroactive TMV nanofibers as enabling scaffold for neural tissue engineering. Biomacromolecules 16(11):3466–3472.  https://doi.org/10.1021/acs.biomac.5b00884 CrossRefPubMedGoogle Scholar
  172. 172.
    Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, Xia Y (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30(3):354–362.  https://doi.org/10.1016/j.biomaterials.2008.09.046 CrossRefGoogle Scholar
  173. 173.
    Xu Y, Zhang Z, Chen X, Li R, Li D, Feng S (2016) A silk fibroin/collagen nerve scaffold seeded with a co-culture of Schwann cells and adipose-derived stem cells for sciatic nerve regeneration. PLoS One 11(1):1–11.  https://doi.org/10.1371/journal.pone.0147184 CrossRefGoogle Scholar
  174. 174.
    Xue C, Ren H, Zhu H, Gu X, Guo Q, Zhou Y, Huang J et al (2017a) Bone marrow mesenchymal stem cell-derived acellular matrix-coated chitosan/silk scaffolds for neural tissue regeneration. J Mater Chem B 5(6):1246–1257.  https://doi.org/10.1039/C6TB02959K CrossRefGoogle Scholar
  175. 175.
    Xue C, Zhu H, Tan D, Ren H, Gu X, Zhao Y, Zhang P et al (2017b) Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs. J Tissue Eng Regen Med 12(2):e1143–e1153.  https://doi.org/10.1002/term.2449 CrossRefPubMedGoogle Scholar
  176. 176.
    Yang C, Hillas PJ, Báez JA, Nokelainen M, Balan J, Tang J, Spiro R, Polarek JW (2004) The application of recombinant human collagen in tissue engineering. BioDrugs 18(2):103–119.  https://doi.org/10.2165/00063030-200418020-00004 CrossRefPubMedGoogle Scholar
  177. 177.
    Yang K, Park H-J, Han S, Lee J, Ko E, Kim J, Lee JS et al (2015) Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system. Biomaterials 63:177–188.  https://doi.org/10.1016/j.biomaterials.2015.06.011 CrossRefPubMedGoogle Scholar
  178. 178.
    Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytomaderived Pc12 cells. ACS Nano 4(6):3181–3186. https://doi.org/10.1021/nn1007176 CrossRefGoogle Scholar
  179. 179.
    Zhang Z-N, Freitas BC, Qian H, Lux J, Acab A, Trujillo CA, Herai RH et al (2016) Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc Natl Acad Sci 113(12):3185–3190.  https://doi.org/10.1073/pnas.1521255113 CrossRefPubMedGoogle Scholar
  180. 180.
    Zhao Y, Gong J, Niu C, Wei Z, Shi J, Li G, Yang Y, Wang H (2017) A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells. J Biomater Sci Polym Ed 28(18):2171–2185.  https://doi.org/10.1080/09205063.2017.1386835 CrossRefPubMedGoogle Scholar
  181. 181.
    Zhou K, Thouas GA, Bernard CC, Nisbet DR, Finkelstein DI, Li D, Forsythe JS (2012) Method to impart electro- and biofunctionality to neural ScaffOlds using graphene − polyelectrolyte multilayers. ACS Appl Mater Interfaces 4(9):4524–4531.  https://doi.org/10.1021/am3007565 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Roqia Ashraf
    • 1
  • Hasham S. Sofi
    • 1
  • Mushtaq A. Beigh
    • 1
  • Shafquat Majeed
    • 1
  • Shabana Arjamand
    • 2
  • Faheem A. Sheikh
    • 1
    Email author
  1. 1.Department of NanotechnologyUniversity of KashmirSrinagarIndia
  2. 2.Department of Industrial Fish and Fisheries, Degree College BeminaCluster University SrinagarSrinagarIndia

Personalised recommendations