Advertisement

Mussel-Inspired Biomaterials for Cell and Tissue Engineering

  • Min LuEmail author
  • Jiashing Yu
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)

Abstract

In designing biomaterial for regenerative medicine or tissue engineering, there are a variety of issues to consider including biocompatibility, biochemical reactivity, and cellular interaction etc. Mussel-inspired biomaterials have received much attention because of its appealing features including strong adhesiveness on moist surfaces, enhancement of cell adhesion, immobilization of bioactive molecules and its amenability to post-functionalization via catechol chemistry. In this review chapter, we give a brief introduction on the basic principles of mussel-inspired polydopamine coating, catechol conjugation, and discuss how their features play a vital role in biomedical application. Special emphasis is placed on tissue engineering and regenerative applications. We aspire to give readers of this book a comprehensive insight into mussel-inspired biomaterials that can facilitate them make significant contributions in this promising field.

Keywords

Mussel-inspired Polydopamine Catechol conjugation Tissue engineering Biomedical application 

References

  1. 1.
    Anderson TH, Yu J, Estrada A, Hammer MU, Waite JH, Israelachvili JN (2010) The contribution of DOPA to substrate–peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films. Adv Funct Mater 20(23):4196–4205.  https://doi.org/10.1002/adfm.201000932 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Annabi N, Yue K, Tamayol A, Khademhosseini A (2015) Elastic sealants for surgical applications. Eur J Pharm Biopharm 95(Pt A):27–39.  https://doi.org/10.1016/j.ejpb.2015.05.022 CrossRefGoogle Scholar
  3. 3.
    Beckwith KM, Sikorski P (2013) Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels. Biofabrication 5(4):045009.  https://doi.org/10.1088/1758-5082/5/4/045009 CrossRefPubMedGoogle Scholar
  4. 4.
    Bernsmann F, Ball V, Addiego F, Ponche A, Michel M, Gracio JJ et al (2011) Dopamine−melanin film deposition depends on the used oxidant and buffer solution. Langmuir 27(6):2819–2825.  https://doi.org/10.1021/la104981s CrossRefPubMedGoogle Scholar
  5. 5.
    Bridelli MG, Crippa PR (2010) Infrared and water sorption studies of the hydration structure and mechanism in natural and synthetic melanin. J Phys Chem B 114(29):9381–9390.  https://doi.org/10.1021/jp101833k CrossRefPubMedGoogle Scholar
  6. 6.
    Burzio LA, Waite JH (2000) Cross-linking in adhesive Quinoproteins: studies with model Decapeptides. Biochemistry 39(36):11147–11153.  https://doi.org/10.1021/bi0002434 CrossRefPubMedGoogle Scholar
  7. 7.
    Cha HJ, Hwang DS, Lim S (2008) Development of bioadhesives from marine mussels. Biotechnol J 3(5):631–638.  https://doi.org/10.1002/biot.200700258 CrossRefPubMedGoogle Scholar
  8. 8.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428.  https://doi.org/10.1126/science.276.5317.1425 CrossRefGoogle Scholar
  9. 9.
    Chien CY, Tsai WB (2013) Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces 5(15):6975–6983.  https://doi.org/10.1021/am401071f CrossRefPubMedGoogle Scholar
  10. 10.
    Chien H-W, Kuo W-H, Wang M-J, Tsai S-W, Tsai W-B (2012) Tunable micropatterned substrates based on poly(dopamine) deposition via microcontact printing. Langmuir 28(13):5775–5782.  https://doi.org/10.1021/la300147p CrossRefPubMedGoogle Scholar
  11. 11.
    Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003.  https://doi.org/10.1038/nmat2013 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ding Y, Yang Z, Bi CWC, Yang M, Zhang J, Xu SL et al (2014) Modulation of protein adsorption, vascular cell selectivity and platelet adhesion by mussel-inspired surface functionalization. J Mater Chem B 2(24):3819–3829.  https://doi.org/10.1039/c4tb00386a CrossRefGoogle Scholar
  13. 13.
    Fan X, Lin L, Dalsin JL, Messersmith PB (2005) Biomimetic anchor for surface-initiated polymerization from metal substrates. J Am Chem Soc 127(45):15843–15847.  https://doi.org/10.1021/ja0532638 CrossRefPubMedGoogle Scholar
  14. 14.
    Hafner D, Ziegler L, Ichwan M, Zhang T, Schneider M, Schiffmann M et al (2016) Mussel-inspired polymer carpets: direct Photografting of polymer brushes on Polydopamine Nanosheets for controlled cell adhesion. Adv Mater 28(7):1489–1494.  https://doi.org/10.1002/adma.201504033 CrossRefPubMedGoogle Scholar
  15. 15.
    Hamming LM, Fan XW, Messersmith PB, Brinson LC (2008) Mimicking mussel adhesion to improve interfacial properties in composites. Compos Sci Technol 68(9):2042–2048.  https://doi.org/10.1016/j.compscitech.2008.02.036 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Han L, Lu X, Liu K, Wang K, Fang L, Weng L-T et al (2017) Mussel-inspired adhesive and tough hydrogel based on Nanoclay confined dopamine polymerization. ACS Nano 11(3):2561–2574.  https://doi.org/10.1021/acsnano.6b05318 CrossRefPubMedGoogle Scholar
  17. 17.
    Hou J, Liu T, Chen R, Liu J, Chen J, Zhao C et al (2017) Guided protein/cell patterning on superhydrophilic polymer brushes functionalized with mussel-inspired polydopamine coatings. Chem Commun 53(50):6708–6711.  https://doi.org/10.1039/C7CC02460F CrossRefGoogle Scholar
  18. 18.
    Hwang DS, Sim SB, Cha HJ (2007) Cell adhesion biomaterial based on mussel adhesive protein fused with RGD peptide. Biomaterials 28(28):4039–4046.  https://doi.org/10.1016/j.biomaterials.2007.05.028 CrossRefPubMedGoogle Scholar
  19. 19.
    Jeon EY, Choi B-H, Jung D, Hwang BH, Cha HJ (2017) Natural healing-inspired collagen-targeting surgical protein glue for accelerated scarless skin regeneration. Biomaterials 134(Suppl C):154–165.  https://doi.org/10.1016/j.biomaterials.2017.04.041 CrossRefGoogle Scholar
  20. 20.
    Kastrup CJ, Nahrendorf M, Figueiredo JL, Lee H, Kambhampati S, Lee T et al (2012) Painting blood vessels and atherosclerotic plaques with an adhesive drug depot. Proc Natl Acad Sci 109(52):21444–21449.  https://doi.org/10.1073/pnas.1217972110 CrossRefPubMedGoogle Scholar
  21. 21.
    Kim BJ, Cheong H, Choi E-S, Yun S-H, Choi B-H, Park K-S et al (2017) Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. J Biomed Mater Res A 105(1):218–225.  https://doi.org/10.1002/jbm.a.35903 CrossRefPubMedGoogle Scholar
  22. 22.
    Kim, K., Kim, K., Ryu, J. H., & Lee, H. (2015). Chitosan-catechol: a polymer with long-lasting mucoadhesive properties. Biomaterials 52(Suppl C):161–170.  https://doi.org/10.1016/j.biomaterials.2015.02.010 CrossRefGoogle Scholar
  23. 23.
    Kim K, Ryu JH, Lee DY, Lee H (2013) Bio-inspired catechol conjugation converts water-insoluble chitosan into a highly water-soluble, adhesive chitosan derivative for hydrogels and LbL assembly. Biomater Sci 1(7):783.  https://doi.org/10.1039/c3bm00004d CrossRefGoogle Scholar
  24. 24.
    Ko E, Yang K, Shin J, Cho S-W (2013) Polydopamine-assisted Osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules 14(9):3202–3213.  https://doi.org/10.1021/bm4008343 CrossRefPubMedGoogle Scholar
  25. 25.
    Ku SH, Lee JS, Park CB (2010a) Spatial control of cell adhesion and patterning through mussel-inspired surface modification by polydopamine. Langmuir 26(19):15104–15108.  https://doi.org/10.1021/la102825p CrossRefPubMedGoogle Scholar
  26. 26.
    Ku SH, Park CB (2010) Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 31(36):9431–9437.  https://doi.org/10.1016/j.biomaterials.2010.08.071 CrossRefPubMedGoogle Scholar
  27. 27.
    Ku SH, Ryu J, Hong SK, Lee H, Park CB (2010b) General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials 31(9):2535–2541.  https://doi.org/10.1016/j.biomaterials.2009.12.020 CrossRefPubMedGoogle Scholar
  28. 28.
    Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132.  https://doi.org/10.1146/annurev-matsci-062910-100429 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lee H, Dellatore SM, Miller WM, Messersmith PB (2007a) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430.  https://doi.org/10.1126/science.1147241 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lee H, Lee BP, Messersmith PB (2007b) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151):338–341.  https://doi.org/10.1038/nature05968 CrossRefPubMedGoogle Scholar
  31. 31.
    Lee H, Lee KD, Pyo KB, Park SY, Lee H (2010) Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates. Langmuir 26(6):3790–3793.  https://doi.org/10.1021/la904909h CrossRefPubMedGoogle Scholar
  32. 32.
    Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21(4):431–434.  https://doi.org/10.1002/adma.200801222 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci U S A 103(35):12999–13003.  https://doi.org/10.1073/pnas.0605552103 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lee K, Oh MH, Lee MS, Nam YS, Park TG, Jeong JH (2013) Stabilized calcium phosphate nano-aggregates using a dopa-chitosan conjugate for gene delivery. Int J Pharm 445(1):196–202.  https://doi.org/10.1016/j.ijpharm.2013.01.014 CrossRefPubMedGoogle Scholar
  35. 35.
    Lee SJ, Lee D, Yoon TR, Kim HK, Jo HH, Park JS et al (2016) Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater 40:182–191.  https://doi.org/10.1016/j.actbio.2016.02.006 CrossRefPubMedGoogle Scholar
  36. 36.
    Lee YB, Shin YM, Lee J-H, Jun I, Kang JK, Park J-C, Shin H (2012) Polydopamine-mediated immobilization of multiple bioactive molecules for the development of functional vascular graft materials. Biomaterials 33(33):8343–8352.  https://doi.org/10.1016/j.biomaterials.2012.08.011 CrossRefPubMedGoogle Scholar
  37. 37.
    Liu Q, Yu B, Ye W, Zhou F (2011) Highly selective uptake and release of charged molecules by pH-responsive Polydopamine microcapsules. Macromol Biosci 11(9):1227–1234.  https://doi.org/10.1002/mabi.201100061 CrossRefPubMedGoogle Scholar
  38. 38.
    Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114(9):5057–5115.  https://doi.org/10.1021/cr400407a CrossRefPubMedGoogle Scholar
  39. 39.
    Luo R, Tang L, Zhong S, Yang Z, Wang J, Weng Y et al (2013) In vitro investigation of enhanced hemocompatibility and endothelial cell proliferation associated with quinone-rich polydopamine coating. ACS Appl Mater Interfaces 5(5):1704–1714.  https://doi.org/10.1021/am3027635 CrossRefPubMedGoogle Scholar
  40. 40.
    Ma H, Luo J, Sun Z, Xia L, Shi M, Liu M et al (2016) 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials 111:138–148.  https://doi.org/10.1016/j.biomaterials.2016.10.005 CrossRefPubMedGoogle Scholar
  41. 41.
    Madhurakkat Perikamana SK, Lee J, Lee YB, Shin YM, Lee EJ, Mikos AG, Shin H (2015) Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromolecules 16(9):2541–2555.  https://doi.org/10.1021/acs.biomac.5b00852 CrossRefPubMedGoogle Scholar
  42. 42.
    Malisova B, Tosatti S, Textor M, Gademann K, Zürcher S (2010) Poly(ethylene glycol) Adlayers immobilized to metal oxide substrates through catechol derivatives: influence of assembly conditions on formation and stability. Langmuir 26(6):4018–4026.  https://doi.org/10.1021/la903486z CrossRefPubMedGoogle Scholar
  43. 43.
    Meredith P, Sarna T (2006) The physical and chemical properties of eumelanin. Pigment Cell Res 19(6):572–594.  https://doi.org/10.1111/j.1600-0749.2006.00345.x CrossRefPubMedGoogle Scholar
  44. 44.
    Perikamana SKM, Shin YM, Lee JK, Lee YB, Heo Y, Ahmad T et al (2017) Graded functionalization of biomaterial surfaces using mussel-inspired adhesive coating of polydopamine. Colloids Surf B Biointerfaces 159:546–556.  https://doi.org/10.1016/j.colsurfb.2017.08.022 CrossRefPubMedGoogle Scholar
  45. 45.
    Poh CK, Shi Z, Lim TY, Neoh KG, Wang W (2010) The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials 31(7):1578–1585.  https://doi.org/10.1016/j.biomaterials.2009.11.042 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Redfern PC, Zapol P, Curtiss LA, Rajh T, Thurnauer MC (2003) Computational studies of catechol and water interactions with titanium oxide nanoparticles. J Phys Chem B 107(41):11419–11427.  https://doi.org/10.1021/jp0303669 CrossRefGoogle Scholar
  47. 47.
    Rim NG, Kim SJ, Shin YM, Jun I, Lim DW, Park JH, Shin H (2012) Mussel-inspired surface modification of poly(L-lactide) electrospun fibers for modulation of osteogenic differentiation of human mesenchymal stem cells. Colloids Surf B Biointerfaces 91:189–197.  https://doi.org/10.1016/j.colsurfb.2011.10.057 CrossRefPubMedGoogle Scholar
  48. 48.
    Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN (2015) A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater 27(9):1607–1614.  https://doi.org/10.1002/adma.201405076 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ryu JH, Hong S, Lee H (2015) Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: a mini review. Acta Biomater 27:101–115.  https://doi.org/10.1016/j.actbio.2015.08.043 CrossRefPubMedGoogle Scholar
  50. 50.
    Ryu JH, Lee Y, Kong WH, Kim TG, Park TG, Lee H (2011b) Catechol-functionalized chitosan/Pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules 12(7):2653–2659.  https://doi.org/10.1021/bm200464x CrossRefPubMedGoogle Scholar
  51. 51.
    Ryu S, Lee Y, Hwang J-W, Hong S, Kim C, Park TG et al (2011a) High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv Mater 23(17):1971–1975.  https://doi.org/10.1002/adma.201004228 CrossRefPubMedGoogle Scholar
  52. 52.
    Scognamiglio F, Travan A, Rustighi I, Tarchi P, Palmisano S, Marsich E et al (2016) Adhesive and sealant interfaces for general surgery applications. J Biomed Mater Res B Appl Biomater 104(3):626–639.  https://doi.org/10.1002/jbm.b.33409 CrossRefPubMedGoogle Scholar
  53. 53.
    Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D (2013) Catechol-based biomimetic functional materials. Adv Mater 25(5):653–701.  https://doi.org/10.1002/adma.201202343 CrossRefPubMedGoogle Scholar
  54. 54.
    Sever MJ, Weisser JT, Monahan J, Srinivasan S, Wilker JJ (2004) Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angew Chem Int Ed Engl 43(4):448–450.  https://doi.org/10.1002/anie.200352759 CrossRefPubMedGoogle Scholar
  55. 55.
    Sileika TS, Kim H-D, Maniak P, Messersmith PB (2011) Antibacterial performance of Polydopamine-modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces 3(12):4602–4610.  https://doi.org/10.1021/am200978h CrossRefPubMedGoogle Scholar
  56. 56.
    Spotnitz WD, Burks S (2008) Hemostats, sealants, and adhesives: components of the surgical toolbox. Transfusion 48(7):1502–1516.  https://doi.org/10.1111/j.1537-2995.2008.01703.x CrossRefPubMedGoogle Scholar
  57. 57.
    Sun X, Cheng L, Zhao J, Jin R, Sun B, Shi Y et al (2014) bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing. J Mater Chem B 2(23):3636–3645.  https://doi.org/10.1039/c3tb21814g CrossRefGoogle Scholar
  58. 58.
    Waite JH, Andersen NH, Jewhurst S, Sun C (2005) Mussel adhesion: finding the tricks worth mimicking. J Adhes 81(3–4):297–317.  https://doi.org/10.1080/00218460590944602 CrossRefGoogle Scholar
  59. 59.
    Waite JH, Tanzer ML (1981) Polyphenolic substance of Mytilus edulis: novel adhesive containing L-Dopa and Hydroxyproline. Science 212(4498):1038–1040.  https://doi.org/10.1126/science.212.4498.1038 CrossRefPubMedGoogle Scholar
  60. 60.
    Wang J, Tahir MN, Kappl M, Tremel W, Metz N, Barz M et al (2008) Influence of binding-site density in wet bioadhesion. Adv Mater 20(20):3872–3876.  https://doi.org/10.1002/adma.200801140 CrossRefGoogle Scholar
  61. 61.
    Weng Y, Song Q, Zhou Y, Zhang L, Wang J, Chen J et al (2011) Immobilization of selenocystamine on TiO2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents. Biomaterials 32(5):1253–1263.  https://doi.org/10.1016/j.biomaterials.2010.10.039 CrossRefPubMedGoogle Scholar
  62. 62.
    Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953.  https://doi.org/10.1016/j.biomaterials.2008.04.023 CrossRefPubMedGoogle Scholar
  63. 63.
    Wu C, Han P, Liu X, Xu M, Tian T, Chang J, Xiao Y (2014) Mussel-inspired bioceramics with self-assembled Ca-P/polydopamine composite nanolayer: preparation, formation mechanism, improved cellular bioactivity and osteogenic differentiation of bone marrow stromal cells. Acta Biomater 10(1):428–438.  https://doi.org/10.1016/j.actbio.2013.10.013 CrossRefPubMedGoogle Scholar
  64. 64.
    Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X et al (2004) Dopamine as a robust anchor to immobilize functional molecules on the Iron oxide Shell of magnetic nanoparticles. J Am Chem Soc 126(32):9938–9939.  https://doi.org/10.1021/ja0464802 CrossRefPubMedGoogle Scholar
  65. 65.
    Xu LQ, Yang WJ, Neoh K-G, Kang E-T, Fu GD (2010) Dopamine-induced reduction and functionalization of graphene oxide Nanosheets. Macromolecules 43(20):8336–8339.  https://doi.org/10.1021/ma101526k CrossRefGoogle Scholar
  66. 66.
    Yang Z, Tu Q, Zhu Y, Luo R, Li X, Xie Y et al (2012) Mussel-inspired coating of polydopamine directs endothelial and smooth muscle cell fate for re-endothelialization of vascular devices. Adv Healthc Mater 1(5):548–559.  https://doi.org/10.1002/adhm.201200073 CrossRefPubMedGoogle Scholar
  67. 67.
    Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40(7):4244–4258.  https://doi.org/10.1039/C1CS15026J CrossRefPubMedGoogle Scholar
  68. 68.
    You I, Kang SM, Byun Y, Lee H (2011) Enhancement of blood compatibility of poly(urethane) substrates by mussel-inspired adhesive heparin coating. Bioconjug Chem 22(7):1264–1269.  https://doi.org/10.1021/bc2000534 CrossRefPubMedGoogle Scholar
  69. 69.
    Yu B, Liu J, Liu S, Zhou F (2010) Pdop layer exhibiting zwitterionicity: a simple electrochemical interface for governing ion permeability. Chem Commun 46(32):5900–5902.  https://doi.org/10.1039/C0CC00596G CrossRefGoogle Scholar
  70. 70.
    Zhang H, Bre LP, Zhao T, Zheng Y, Newland B, Wang W (2014) Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive. Biomaterials 35(2):711–719.  https://doi.org/10.1016/j.biomaterials.2013.10.017 CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang L, Shi J, Jiang Z, Jiang Y, Qiao S, Li J et al (2011) Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chem 13(2):300–306.  https://doi.org/10.1039/C0GC00432D CrossRefGoogle Scholar
  72. 72.
    Zhang S, Xu K, Darabi MA, Yuan Q, Xing M (2016) Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection. Mater Sci Eng C Mater Biol Appl 69:496–504.  https://doi.org/10.1016/j.msec.2016.06.044 CrossRefPubMedGoogle Scholar
  73. 73.
    Zhang W, Yang FK, Han Y, Gaikwad R, Leonenko Z, Zhao B (2013) Surface and Tribological behaviors of the bioinspired Polydopamine thin films under dry and wet conditions. Biomacromolecules 14(2):394–405.  https://doi.org/10.1021/bm3015768 CrossRefPubMedGoogle Scholar
  74. 74.
    Zhao H, Waite JH (2006) Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J Biol Chem 281(36):26150–26158.  https://doi.org/10.1074/jbc.M604357200 CrossRefPubMedGoogle Scholar
  75. 75.
    Zhao X, Han Y, Li J, Cai B, Gao H, Feng W, … Li D (2017) BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth. Mat Sci Eng C 78(Suppl C):658–666.  https://doi.org/10.1016/j.msec.2017.03.186 CrossRefGoogle Scholar
  76. 76.
    Zhe W, Dong C, Sefei Y, Dawei Z, Kui X, Xiaogang L (2016) Facile incorporation of hydroxyapatite onto an anodized Ti surface via a mussel inspired polydopamine coating. Appl Surf Sci 378:496–503.  https://doi.org/10.1016/j.apsusc.2016.03.094 CrossRefGoogle Scholar
  77. 77.
    Zhong S, Luo R, Wang X, Tang L, Wu J, Wang J et al (2014) Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell. Colloids Surf B Biointerfaces 116:553–560.  https://doi.org/10.1016/j.colsurfb.2014.01.030 CrossRefPubMedGoogle Scholar
  78. 78.
    Zhou Y-Z, Cao Y, Liu W, Chu CH, Li Q-L (2012) Polydopamine-induced tooth remineralization. ACS Appl Mater Interfaces 4(12):6901–6910.  https://doi.org/10.1021/am302041b CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Biomedical and Tissue Engineering Laboratory, Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations