Skip to main content

Mussel-Inspired Biomaterials for Cell and Tissue Engineering

  • Chapter
  • First Online:
Novel Biomaterials for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1077))

Abstract

In designing biomaterial for regenerative medicine or tissue engineering, there are a variety of issues to consider including biocompatibility, biochemical reactivity, and cellular interaction etc. Mussel-inspired biomaterials have received much attention because of its appealing features including strong adhesiveness on moist surfaces, enhancement of cell adhesion, immobilization of bioactive molecules and its amenability to post-functionalization via catechol chemistry. In this review chapter, we give a brief introduction on the basic principles of mussel-inspired polydopamine coating, catechol conjugation, and discuss how their features play a vital role in biomedical application. Special emphasis is placed on tissue engineering and regenerative applications. We aspire to give readers of this book a comprehensive insight into mussel-inspired biomaterials that can facilitate them make significant contributions in this promising field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson TH, Yu J, Estrada A, Hammer MU, Waite JH, Israelachvili JN (2010) The contribution of DOPA to substrate–peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films. Adv Funct Mater 20(23):4196–4205. https://doi.org/10.1002/adfm.201000932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Annabi N, Yue K, Tamayol A, Khademhosseini A (2015) Elastic sealants for surgical applications. Eur J Pharm Biopharm 95(Pt A):27–39. https://doi.org/10.1016/j.ejpb.2015.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beckwith KM, Sikorski P (2013) Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels. Biofabrication 5(4):045009. https://doi.org/10.1088/1758-5082/5/4/045009

    Article  CAS  PubMed  Google Scholar 

  4. Bernsmann F, Ball V, Addiego F, Ponche A, Michel M, Gracio JJ et al (2011) Dopamine−melanin film deposition depends on the used oxidant and buffer solution. Langmuir 27(6):2819–2825. https://doi.org/10.1021/la104981s

    Article  CAS  PubMed  Google Scholar 

  5. Bridelli MG, Crippa PR (2010) Infrared and water sorption studies of the hydration structure and mechanism in natural and synthetic melanin. J Phys Chem B 114(29):9381–9390. https://doi.org/10.1021/jp101833k

    Article  CAS  PubMed  Google Scholar 

  6. Burzio LA, Waite JH (2000) Cross-linking in adhesive Quinoproteins: studies with model Decapeptides. Biochemistry 39(36):11147–11153. https://doi.org/10.1021/bi0002434

    Article  CAS  PubMed  Google Scholar 

  7. Cha HJ, Hwang DS, Lim S (2008) Development of bioadhesives from marine mussels. Biotechnol J 3(5):631–638. https://doi.org/10.1002/biot.200700258

    Article  CAS  PubMed  Google Scholar 

  8. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428. https://doi.org/10.1126/science.276.5317.1425

    Article  CAS  PubMed  Google Scholar 

  9. Chien CY, Tsai WB (2013) Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces 5(15):6975–6983. https://doi.org/10.1021/am401071f

    Article  CAS  PubMed  Google Scholar 

  10. Chien H-W, Kuo W-H, Wang M-J, Tsai S-W, Tsai W-B (2012) Tunable micropatterned substrates based on poly(dopamine) deposition via microcontact printing. Langmuir 28(13):5775–5782. https://doi.org/10.1021/la300147p

    Article  CAS  PubMed  Google Scholar 

  11. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003. https://doi.org/10.1038/nmat2013

    Article  CAS  PubMed  Google Scholar 

  12. Ding Y, Yang Z, Bi CWC, Yang M, Zhang J, Xu SL et al (2014) Modulation of protein adsorption, vascular cell selectivity and platelet adhesion by mussel-inspired surface functionalization. J Mater Chem B 2(24):3819–3829. https://doi.org/10.1039/c4tb00386a

    Article  CAS  PubMed  Google Scholar 

  13. Fan X, Lin L, Dalsin JL, Messersmith PB (2005) Biomimetic anchor for surface-initiated polymerization from metal substrates. J Am Chem Soc 127(45):15843–15847. https://doi.org/10.1021/ja0532638

    Article  CAS  PubMed  Google Scholar 

  14. Hafner D, Ziegler L, Ichwan M, Zhang T, Schneider M, Schiffmann M et al (2016) Mussel-inspired polymer carpets: direct Photografting of polymer brushes on Polydopamine Nanosheets for controlled cell adhesion. Adv Mater 28(7):1489–1494. https://doi.org/10.1002/adma.201504033

    Article  CAS  PubMed  Google Scholar 

  15. Hamming LM, Fan XW, Messersmith PB, Brinson LC (2008) Mimicking mussel adhesion to improve interfacial properties in composites. Compos Sci Technol 68(9):2042–2048. https://doi.org/10.1016/j.compscitech.2008.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han L, Lu X, Liu K, Wang K, Fang L, Weng L-T et al (2017) Mussel-inspired adhesive and tough hydrogel based on Nanoclay confined dopamine polymerization. ACS Nano 11(3):2561–2574. https://doi.org/10.1021/acsnano.6b05318

    Article  CAS  PubMed  Google Scholar 

  17. Hou J, Liu T, Chen R, Liu J, Chen J, Zhao C et al (2017) Guided protein/cell patterning on superhydrophilic polymer brushes functionalized with mussel-inspired polydopamine coatings. Chem Commun 53(50):6708–6711. https://doi.org/10.1039/C7CC02460F

    Article  CAS  Google Scholar 

  18. Hwang DS, Sim SB, Cha HJ (2007) Cell adhesion biomaterial based on mussel adhesive protein fused with RGD peptide. Biomaterials 28(28):4039–4046. https://doi.org/10.1016/j.biomaterials.2007.05.028

    Article  CAS  PubMed  Google Scholar 

  19. Jeon EY, Choi B-H, Jung D, Hwang BH, Cha HJ (2017) Natural healing-inspired collagen-targeting surgical protein glue for accelerated scarless skin regeneration. Biomaterials 134(Suppl C):154–165. https://doi.org/10.1016/j.biomaterials.2017.04.041

    Article  CAS  PubMed  Google Scholar 

  20. Kastrup CJ, Nahrendorf M, Figueiredo JL, Lee H, Kambhampati S, Lee T et al (2012) Painting blood vessels and atherosclerotic plaques with an adhesive drug depot. Proc Natl Acad Sci 109(52):21444–21449. https://doi.org/10.1073/pnas.1217972110

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim BJ, Cheong H, Choi E-S, Yun S-H, Choi B-H, Park K-S et al (2017) Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. J Biomed Mater Res A 105(1):218–225. https://doi.org/10.1002/jbm.a.35903

    Article  CAS  PubMed  Google Scholar 

  22. Kim, K., Kim, K., Ryu, J. H., & Lee, H. (2015). Chitosan-catechol: a polymer with long-lasting mucoadhesive properties. Biomaterials 52(Suppl C):161–170. https://doi.org/10.1016/j.biomaterials.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  23. Kim K, Ryu JH, Lee DY, Lee H (2013) Bio-inspired catechol conjugation converts water-insoluble chitosan into a highly water-soluble, adhesive chitosan derivative for hydrogels and LbL assembly. Biomater Sci 1(7):783. https://doi.org/10.1039/c3bm00004d

    Article  CAS  PubMed  Google Scholar 

  24. Ko E, Yang K, Shin J, Cho S-W (2013) Polydopamine-assisted Osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules 14(9):3202–3213. https://doi.org/10.1021/bm4008343

    Article  CAS  PubMed  Google Scholar 

  25. Ku SH, Lee JS, Park CB (2010a) Spatial control of cell adhesion and patterning through mussel-inspired surface modification by polydopamine. Langmuir 26(19):15104–15108. https://doi.org/10.1021/la102825p

    Article  CAS  PubMed  Google Scholar 

  26. Ku SH, Park CB (2010) Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 31(36):9431–9437. https://doi.org/10.1016/j.biomaterials.2010.08.071

    Article  CAS  PubMed  Google Scholar 

  27. Ku SH, Ryu J, Hong SK, Lee H, Park CB (2010b) General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials 31(9):2535–2541. https://doi.org/10.1016/j.biomaterials.2009.12.020

    Article  CAS  PubMed  Google Scholar 

  28. Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132. https://doi.org/10.1146/annurev-matsci-062910-100429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007a) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430. https://doi.org/10.1126/science.1147241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee H, Lee BP, Messersmith PB (2007b) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151):338–341. https://doi.org/10.1038/nature05968

    Article  CAS  PubMed  Google Scholar 

  31. Lee H, Lee KD, Pyo KB, Park SY, Lee H (2010) Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates. Langmuir 26(6):3790–3793. https://doi.org/10.1021/la904909h

    Article  CAS  PubMed  Google Scholar 

  32. Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21(4):431–434. https://doi.org/10.1002/adma.200801222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci U S A 103(35):12999–13003. https://doi.org/10.1073/pnas.0605552103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee K, Oh MH, Lee MS, Nam YS, Park TG, Jeong JH (2013) Stabilized calcium phosphate nano-aggregates using a dopa-chitosan conjugate for gene delivery. Int J Pharm 445(1):196–202. https://doi.org/10.1016/j.ijpharm.2013.01.014

    Article  CAS  PubMed  Google Scholar 

  35. Lee SJ, Lee D, Yoon TR, Kim HK, Jo HH, Park JS et al (2016) Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater 40:182–191. https://doi.org/10.1016/j.actbio.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  36. Lee YB, Shin YM, Lee J-H, Jun I, Kang JK, Park J-C, Shin H (2012) Polydopamine-mediated immobilization of multiple bioactive molecules for the development of functional vascular graft materials. Biomaterials 33(33):8343–8352. https://doi.org/10.1016/j.biomaterials.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  37. Liu Q, Yu B, Ye W, Zhou F (2011) Highly selective uptake and release of charged molecules by pH-responsive Polydopamine microcapsules. Macromol Biosci 11(9):1227–1234. https://doi.org/10.1002/mabi.201100061

    Article  CAS  PubMed  Google Scholar 

  38. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114(9):5057–5115. https://doi.org/10.1021/cr400407a

    Article  CAS  PubMed  Google Scholar 

  39. Luo R, Tang L, Zhong S, Yang Z, Wang J, Weng Y et al (2013) In vitro investigation of enhanced hemocompatibility and endothelial cell proliferation associated with quinone-rich polydopamine coating. ACS Appl Mater Interfaces 5(5):1704–1714. https://doi.org/10.1021/am3027635

    Article  CAS  PubMed  Google Scholar 

  40. Ma H, Luo J, Sun Z, Xia L, Shi M, Liu M et al (2016) 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials 111:138–148. https://doi.org/10.1016/j.biomaterials.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  41. Madhurakkat Perikamana SK, Lee J, Lee YB, Shin YM, Lee EJ, Mikos AG, Shin H (2015) Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromolecules 16(9):2541–2555. https://doi.org/10.1021/acs.biomac.5b00852

    Article  CAS  PubMed  Google Scholar 

  42. Malisova B, Tosatti S, Textor M, Gademann K, Zürcher S (2010) Poly(ethylene glycol) Adlayers immobilized to metal oxide substrates through catechol derivatives: influence of assembly conditions on formation and stability. Langmuir 26(6):4018–4026. https://doi.org/10.1021/la903486z

    Article  CAS  PubMed  Google Scholar 

  43. Meredith P, Sarna T (2006) The physical and chemical properties of eumelanin. Pigment Cell Res 19(6):572–594. https://doi.org/10.1111/j.1600-0749.2006.00345.x

    Article  CAS  PubMed  Google Scholar 

  44. Perikamana SKM, Shin YM, Lee JK, Lee YB, Heo Y, Ahmad T et al (2017) Graded functionalization of biomaterial surfaces using mussel-inspired adhesive coating of polydopamine. Colloids Surf B Biointerfaces 159:546–556. https://doi.org/10.1016/j.colsurfb.2017.08.022

    Article  CAS  PubMed  Google Scholar 

  45. Poh CK, Shi Z, Lim TY, Neoh KG, Wang W (2010) The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials 31(7):1578–1585. https://doi.org/10.1016/j.biomaterials.2009.11.042

    Article  CAS  PubMed  Google Scholar 

  46. Redfern PC, Zapol P, Curtiss LA, Rajh T, Thurnauer MC (2003) Computational studies of catechol and water interactions with titanium oxide nanoparticles. J Phys Chem B 107(41):11419–11427. https://doi.org/10.1021/jp0303669

    Article  CAS  Google Scholar 

  47. Rim NG, Kim SJ, Shin YM, Jun I, Lim DW, Park JH, Shin H (2012) Mussel-inspired surface modification of poly(L-lactide) electrospun fibers for modulation of osteogenic differentiation of human mesenchymal stem cells. Colloids Surf B Biointerfaces 91:189–197. https://doi.org/10.1016/j.colsurfb.2011.10.057

    Article  CAS  PubMed  Google Scholar 

  48. Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN (2015) A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater 27(9):1607–1614. https://doi.org/10.1002/adma.201405076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ryu JH, Hong S, Lee H (2015) Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: a mini review. Acta Biomater 27:101–115. https://doi.org/10.1016/j.actbio.2015.08.043

    Article  CAS  PubMed  Google Scholar 

  50. Ryu JH, Lee Y, Kong WH, Kim TG, Park TG, Lee H (2011b) Catechol-functionalized chitosan/Pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules 12(7):2653–2659. https://doi.org/10.1021/bm200464x

    Article  CAS  PubMed  Google Scholar 

  51. Ryu S, Lee Y, Hwang J-W, Hong S, Kim C, Park TG et al (2011a) High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv Mater 23(17):1971–1975. https://doi.org/10.1002/adma.201004228

    Article  CAS  PubMed  Google Scholar 

  52. Scognamiglio F, Travan A, Rustighi I, Tarchi P, Palmisano S, Marsich E et al (2016) Adhesive and sealant interfaces for general surgery applications. J Biomed Mater Res B Appl Biomater 104(3):626–639. https://doi.org/10.1002/jbm.b.33409

    Article  CAS  PubMed  Google Scholar 

  53. Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D (2013) Catechol-based biomimetic functional materials. Adv Mater 25(5):653–701. https://doi.org/10.1002/adma.201202343

    Article  CAS  PubMed  Google Scholar 

  54. Sever MJ, Weisser JT, Monahan J, Srinivasan S, Wilker JJ (2004) Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angew Chem Int Ed Engl 43(4):448–450. https://doi.org/10.1002/anie.200352759

    Article  PubMed  Google Scholar 

  55. Sileika TS, Kim H-D, Maniak P, Messersmith PB (2011) Antibacterial performance of Polydopamine-modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces 3(12):4602–4610. https://doi.org/10.1021/am200978h

    Article  CAS  PubMed  Google Scholar 

  56. Spotnitz WD, Burks S (2008) Hemostats, sealants, and adhesives: components of the surgical toolbox. Transfusion 48(7):1502–1516. https://doi.org/10.1111/j.1537-2995.2008.01703.x

    Article  PubMed  Google Scholar 

  57. Sun X, Cheng L, Zhao J, Jin R, Sun B, Shi Y et al (2014) bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing. J Mater Chem B 2(23):3636–3645. https://doi.org/10.1039/c3tb21814g

    Article  CAS  PubMed  Google Scholar 

  58. Waite JH, Andersen NH, Jewhurst S, Sun C (2005) Mussel adhesion: finding the tricks worth mimicking. J Adhes 81(3–4):297–317. https://doi.org/10.1080/00218460590944602

    Article  CAS  Google Scholar 

  59. Waite JH, Tanzer ML (1981) Polyphenolic substance of Mytilus edulis: novel adhesive containing L-Dopa and Hydroxyproline. Science 212(4498):1038–1040. https://doi.org/10.1126/science.212.4498.1038

    Article  CAS  PubMed  Google Scholar 

  60. Wang J, Tahir MN, Kappl M, Tremel W, Metz N, Barz M et al (2008) Influence of binding-site density in wet bioadhesion. Adv Mater 20(20):3872–3876. https://doi.org/10.1002/adma.200801140

    Article  CAS  Google Scholar 

  61. Weng Y, Song Q, Zhou Y, Zhang L, Wang J, Chen J et al (2011) Immobilization of selenocystamine on TiO2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents. Biomaterials 32(5):1253–1263. https://doi.org/10.1016/j.biomaterials.2010.10.039

    Article  CAS  PubMed  Google Scholar 

  62. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953. https://doi.org/10.1016/j.biomaterials.2008.04.023

    Article  CAS  PubMed  Google Scholar 

  63. Wu C, Han P, Liu X, Xu M, Tian T, Chang J, Xiao Y (2014) Mussel-inspired bioceramics with self-assembled Ca-P/polydopamine composite nanolayer: preparation, formation mechanism, improved cellular bioactivity and osteogenic differentiation of bone marrow stromal cells. Acta Biomater 10(1):428–438. https://doi.org/10.1016/j.actbio.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  64. Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X et al (2004) Dopamine as a robust anchor to immobilize functional molecules on the Iron oxide Shell of magnetic nanoparticles. J Am Chem Soc 126(32):9938–9939. https://doi.org/10.1021/ja0464802

    Article  CAS  PubMed  Google Scholar 

  65. Xu LQ, Yang WJ, Neoh K-G, Kang E-T, Fu GD (2010) Dopamine-induced reduction and functionalization of graphene oxide Nanosheets. Macromolecules 43(20):8336–8339. https://doi.org/10.1021/ma101526k

    Article  CAS  Google Scholar 

  66. Yang Z, Tu Q, Zhu Y, Luo R, Li X, Xie Y et al (2012) Mussel-inspired coating of polydopamine directs endothelial and smooth muscle cell fate for re-endothelialization of vascular devices. Adv Healthc Mater 1(5):548–559. https://doi.org/10.1002/adhm.201200073

    Article  CAS  PubMed  Google Scholar 

  67. Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40(7):4244–4258. https://doi.org/10.1039/C1CS15026J

    Article  CAS  PubMed  Google Scholar 

  68. You I, Kang SM, Byun Y, Lee H (2011) Enhancement of blood compatibility of poly(urethane) substrates by mussel-inspired adhesive heparin coating. Bioconjug Chem 22(7):1264–1269. https://doi.org/10.1021/bc2000534

    Article  CAS  PubMed  Google Scholar 

  69. Yu B, Liu J, Liu S, Zhou F (2010) Pdop layer exhibiting zwitterionicity: a simple electrochemical interface for governing ion permeability. Chem Commun 46(32):5900–5902. https://doi.org/10.1039/C0CC00596G

    Article  CAS  Google Scholar 

  70. Zhang H, Bre LP, Zhao T, Zheng Y, Newland B, Wang W (2014) Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive. Biomaterials 35(2):711–719. https://doi.org/10.1016/j.biomaterials.2013.10.017

    Article  CAS  PubMed  Google Scholar 

  71. Zhang L, Shi J, Jiang Z, Jiang Y, Qiao S, Li J et al (2011) Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chem 13(2):300–306. https://doi.org/10.1039/C0GC00432D

    Article  CAS  Google Scholar 

  72. Zhang S, Xu K, Darabi MA, Yuan Q, Xing M (2016) Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection. Mater Sci Eng C Mater Biol Appl 69:496–504. https://doi.org/10.1016/j.msec.2016.06.044

    Article  CAS  PubMed  Google Scholar 

  73. Zhang W, Yang FK, Han Y, Gaikwad R, Leonenko Z, Zhao B (2013) Surface and Tribological behaviors of the bioinspired Polydopamine thin films under dry and wet conditions. Biomacromolecules 14(2):394–405. https://doi.org/10.1021/bm3015768

    Article  CAS  PubMed  Google Scholar 

  74. Zhao H, Waite JH (2006) Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J Biol Chem 281(36):26150–26158. https://doi.org/10.1074/jbc.M604357200

    Article  CAS  PubMed  Google Scholar 

  75. Zhao X, Han Y, Li J, Cai B, Gao H, Feng W, … Li D (2017) BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth. Mat Sci Eng C 78(Suppl C):658–666. https://doi.org/10.1016/j.msec.2017.03.186

    Article  CAS  Google Scholar 

  76. Zhe W, Dong C, Sefei Y, Dawei Z, Kui X, Xiaogang L (2016) Facile incorporation of hydroxyapatite onto an anodized Ti surface via a mussel inspired polydopamine coating. Appl Surf Sci 378:496–503. https://doi.org/10.1016/j.apsusc.2016.03.094

    Article  CAS  Google Scholar 

  77. Zhong S, Luo R, Wang X, Tang L, Wu J, Wang J et al (2014) Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell. Colloids Surf B Biointerfaces 116:553–560. https://doi.org/10.1016/j.colsurfb.2014.01.030

    Article  CAS  PubMed  Google Scholar 

  78. Zhou Y-Z, Cao Y, Liu W, Chu CH, Li Q-L (2012) Polydopamine-induced tooth remineralization. ACS Appl Mater Interfaces 4(12):6901–6910. https://doi.org/10.1021/am302041b

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, M., Yu, J. (2018). Mussel-Inspired Biomaterials for Cell and Tissue Engineering. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_24

Download citation

Publish with us

Policies and ethics