Advertisement

Tissue-Inspired Interfacial Coatings for Regenerative Medicine

  • Mahmoud A. Elnaggar
  • Yoon Ki JoungEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)

Abstract

Biomedical devices have come a long way since they were first introduced as a medically interventional methodology in treating various types of diseases. Different techniques were employed to make the devices more biocompatible and promote tissue repair; such as chemical surface modifications, using novel materials as the bulk of a device, physical topological manipulations and so forth. One of the strategies that recently gained a lot of attention is the use of tissue-inspired biomaterials that are coated on the surface of biomedical devices via different coating techniques, such as the use of extracellular matrix (ECM) coatings, extracted cell membrane coatings, and so on. In this chapter, we will give a general overview of the different types of tissue-inspired coatings along with a summary of recent studies reported in this scientific arena.

Keywords

Interfacial coating Supported lipid bilayer Extracellular matrix Cellular membrane Tissue-mimetics 

References

  1. 1.
    Hay ED (1981) Extracellular matrix. J Cell Biol 91(3 Pt 2):205s–223sCrossRefGoogle Scholar
  2. 2.
    Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development (Cambridge, England) 117(4):1183–1198Google Scholar
  3. 3.
    Mecham RP (2001) Overview of extracellular matrix. Curr Protoc Cell Biol Chapter 10, Unit 10.1Google Scholar
  4. 4.
    Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585CrossRefGoogle Scholar
  5. 5.
    Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21(7):667–681CrossRefGoogle Scholar
  6. 6.
    Shekaran A, Garcia AJ (2011) Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 96(1):261–272CrossRefGoogle Scholar
  7. 7.
    Loeser RF, Sadiev S, Tan L, Goldring MB (2000) Integrin expression by primary and immortalized human chondrocytes: evidence of a differential role for alpha1beta1 and alpha2beta1 integrins in mediating chondrocyte adhesion to types II and VI collagen. Osteoarthr Cartil 8(2):96–105CrossRefGoogle Scholar
  8. 8.
    Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R (1996) Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87(6):1069–1078CrossRefGoogle Scholar
  9. 9.
    Stegemann JP, Hong H, Nerem RM (2005) Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J Appl Physiol 98(6):2321–2327CrossRefGoogle Scholar
  10. 10.
    Xu J, Shi GP (2014) Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta 1842(11):2106–2119CrossRefGoogle Scholar
  11. 11.
    Tersteeg C, Roest M, Mak-Nienhuis EM, Ligtenberg E, Hoefer IE, de Groot PG, Pasterkamp G (2012) A fibronectin-fibrinogen-tropoelastin coating reduces smooth muscle cell growth but improves endothelial cell function. J Cell Mol Med 16(9):2117–2126CrossRefGoogle Scholar
  12. 12.
    Rosenbloom J, Abrams WR, Mecham R (1993) Extracellular matrix 4: the elastic fiber. FASEB J 7(13):1208–1218CrossRefGoogle Scholar
  13. 13.
    Dejana E, Lampugnani MG, Giorgi M, Gaboli M, Marchisio PC (1990) Fibrinogen induces endothelial cell adhesion and spreading via the release of endogenous matrix proteins and the recruitment of more than one integrin receptor. Blood 75(7):1509–1517PubMedGoogle Scholar
  14. 14.
    Bramfeldt H, Vermette P (2009) Enhanced smooth muscle cell adhesion and proliferation on protein-modified polycaprolactone-based copolymers. J Biomed Mater Res A 88(2):520–530CrossRefGoogle Scholar
  15. 15.
    Naito M, Hayashi T, Kuzuya M, Funaki C, Asai K, Kuzuya F (1990) Effects of fibrinogen and fibrin on the migration of vascular smooth muscle cells in vitro. Atherosclerosis 83(1):9–14CrossRefGoogle Scholar
  16. 16.
    Myllyharju J, Kivirikko KI (2001) Collagens and collagen-related diseases. Ann Med 33(1):7–21CrossRefGoogle Scholar
  17. 17.
    González-Santiago L, López-Ongil S, Rodríguez-Puyol M, Rodríguez-Puyol D (2002) Decreased Nitric Oxide Synthesis in Human Endothelial Cells Cultured on Type I Collagen. Circ Res 90(5):539–545CrossRefGoogle Scholar
  18. 18.
    Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2(2):67–77CrossRefGoogle Scholar
  19. 19.
    Uchida N, Sivaraman S, Amoroso NJ, Wagner WR, Nishiguchi A, Matsusaki M, Akashi M, Nagatomi J (2016) Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications. J Biomed Mater Res A 104(1):94–103CrossRefGoogle Scholar
  20. 20.
    Huang Y, Luo Q, Zha G, Zhang J, Li X, Zhao S, Li X (2014) Biomimetic ECM coatings for controlled release of rhBMP-2: construction and biological evaluation. Biomat Sci 2(7):980–989CrossRefGoogle Scholar
  21. 21.
    Grzesik WJ, Robey PG (1994) Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res 9(4):487–496CrossRefGoogle Scholar
  22. 22.
    Liu Y, Huse RO, Groot KD, Buser D, Hunziker EB (2007) Delivery mode and efficacy of BMP-2 in association with implants. J Dent Res 86(1):84–89CrossRefGoogle Scholar
  23. 23.
    Zhang X, Dong J (2015) Direct comparison of different coating matrix on the hepatic differentiation from adipose-derived stem cells. Biochem Biophys Res Commun 456(4):938–944CrossRefGoogle Scholar
  24. 24.
    Joyce NC (2003) Proliferative capacity of the corneal endothelium. Prog Retin Eye Res 22(3):359–389CrossRefGoogle Scholar
  25. 25.
    Bourne WM, Nelson LR, Hodge DO (1994) Continued endothelial cell loss ten years after lens implantation. Ophthalmology 101(6):1014–1022 discussion 1022-3CrossRefGoogle Scholar
  26. 26.
    Friberg TR, Guibord NM (1999) Corneal endothelial cell loss after multiple vitreoretinal procedures and the use of silicone oil. Ophthalmic Surg Lasers 30(7):528–534PubMedGoogle Scholar
  27. 27.
    Yachimori R, Matsuura T, Hayashi K, Hayashi H (2004) Increased intraocular pressure and corneal endothelial cell loss following phacoemulsification surgery. Ophthalmic Surg Lasers Imaging 35(6):453–459PubMedGoogle Scholar
  28. 28.
    Sengler U, Spelsberg H, Reinhard T, Sundmacher R, Adams O, Auw-Haedrich C, Witschel H (1999) Herpes simplex virus (HSV-1) infection in a donor cornea. Br J Ophthalmol 83(12):1405CrossRefGoogle Scholar
  29. 29.
    Koo S, Muhammad R, Peh GSL, Mehta JS, Yim EKF (2014) Micro- and nanotopography with extracellular matrix coating modulate human corneal endothelial cell behavior. Acta Biomater 10(5):1975–1984CrossRefGoogle Scholar
  30. 30.
    Jacobson K, Sheets ED, Simson R (1995) Revisiting the fluid mosaic model of membranes. Science (New York, NY) 268(5216):1441–1442CrossRefGoogle Scholar
  31. 31.
    Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395(6697):82–86CrossRefGoogle Scholar
  32. 32.
    Maxfield FR (2002) Plasma membrane microdomains. Curr Opin Cell Biol 14(4):483–487CrossRefGoogle Scholar
  33. 33.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science (New York, NY) 175(4023):720–731CrossRefGoogle Scholar
  34. 34.
    Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438(7068):578–580CrossRefGoogle Scholar
  35. 35.
    van Meer G (2005) Cellular lipidomics. EMBO J 24(18):3159–3165CrossRefGoogle Scholar
  36. 36.
    Coskun U, Simons K (2011) Cell membranes: the lipid perspective. Structure (London, England: 1993) 19(11):1543–1548CrossRefGoogle Scholar
  37. 37.
    Verhoven B, Schlegel RA, Williamson P (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med 182(5):1597–1601CrossRefGoogle Scholar
  38. 38.
    Rothlein R, Dustin ML, Marlin SD, Springer TA (1986) A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol (Baltimore, MD: 1950) 137(4):1270–1274Google Scholar
  39. 39.
    Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW (2005) ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood 106(2):584–592CrossRefGoogle Scholar
  40. 40.
    Alimperti S, Andreadis ST (2015) CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res 14(3):270–282CrossRefGoogle Scholar
  41. 41.
    Jackman JA, Tabaei SR, Zhao Z, Yorulmaz S, Cho N-J (2015) Self-assembly formation of lipid bilayer coatings on bare aluminum oxide: overcoming the force of interfacial water. ACS Appl Mater Interfaces 7(1):959–968CrossRefGoogle Scholar
  42. 42.
    Elnaggar MA, Subbiah R, Han DK, Joung YK (2017) Lipid-based carriers for controlled delivery of nitric oxide. Expert Opin Drug Deliv:1–13Google Scholar
  43. 43.
    Elnaggar MA, Seo SH, Gobaa S, Lim KS, Bae I-H, Jeong MH, Han DK, Joung YK (2016) Nitric oxide releasing coronary stent: a new approach using layer-by-layer coating and liposomal encapsulation. Small 12(43):6012–6023CrossRefGoogle Scholar
  44. 44.
    Vafaei S, Tabaei SR, Biswas KH, Groves JT, Cho NJ (2017) Dynamic Cellular Interactions with Extracellular Matrix Triggered by Biomechanical Tuning of Low-Rigidity, Supported Lipid Membranes. Adv Healthcare Mater 6(10)Google Scholar
  45. 45.
    Weng KC, Stålgren JJR, Duval DJ, Risbud SH, Frank CW (2004) Fluid biomembranes supported on nanoporous aerogel/xerogel substrates. Langmuir ACS J Surf Colloids 20(17):7232–7239CrossRefGoogle Scholar
  46. 46.
    Reviakine I, Rossetti FF, Morozov AN, Textor M (2005) Investigating the properties of supported vesicular layers on titanium dioxide by quartz crystal microbalance with dissipation measurements. J Chem Phys 122(20):204711CrossRefGoogle Scholar
  47. 47.
    Keller CA, Kasemo B (1998) Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J 75(3):1397–1402CrossRefGoogle Scholar
  48. 48.
    Cho N-J, Jackman JA, Liu M, Frank CW (2011) pH-driven assembly of various supported lipid platforms: a comparative study on silicon oxide and titanium oxide. Langmuir ACS J Surf Colloids 27(7):3739–3748CrossRefGoogle Scholar
  49. 49.
    van Weerd J, Karperien M, Jonkheijm P (2015) Supported Lipid Bilayers for the Generation of Dynamic Cell–Material Interfaces. Adv Healthc Mater 4(18):2743–2779CrossRefGoogle Scholar
  50. 50.
    Fang RH, Hu CM, Luk BT, Gao W, Copp JA, Tai Y, O'Connor DE, Zhang L (2014) Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 14(4):2181–2188CrossRefGoogle Scholar
  51. 51.
    Dehaini D, Wei X, Fang RH, Masson S, Angsantikul P, Luk BT, Zhang Y, Ying M, Jiang Y, Kroll AV, Gao W, Zhang L (2017) Erythrocyte–platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater 29(16):1606209–n/aGoogle Scholar
  52. 52.
    Rao L, Bu L-L, Cai B, Xu J-H, Li A, Zhang W-F, Sun Z-J, Guo S-S, Liu W, Wang T-H, Zhao X-Z (2016) Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv Mater 28(18):3460–3466CrossRefGoogle Scholar
  53. 53.
    Chen W, Zhang Q, Luk BT, Fang RH, Liu Y, Gao W, Zhang L (2016) Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function. Nanoscale 8(19):10364–10370CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and TechnologySeoulSouth Korea
  2. 2.Division of Bio-Medical Science and TechnologyUniversity of Science and TechnologyDaejeonSouth Korea

Personalised recommendations