Skip to main content

Tissue-Inspired Interfacial Coatings for Regenerative Medicine

  • Chapter
  • First Online:
Book cover Novel Biomaterials for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1077))

Abstract

Biomedical devices have come a long way since they were first introduced as a medically interventional methodology in treating various types of diseases. Different techniques were employed to make the devices more biocompatible and promote tissue repair; such as chemical surface modifications, using novel materials as the bulk of a device, physical topological manipulations and so forth. One of the strategies that recently gained a lot of attention is the use of tissue-inspired biomaterials that are coated on the surface of biomedical devices via different coating techniques, such as the use of extracellular matrix (ECM) coatings, extracted cell membrane coatings, and so on. In this chapter, we will give a general overview of the different types of tissue-inspired coatings along with a summary of recent studies reported in this scientific arena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hay ED (1981) Extracellular matrix. J Cell Biol 91(3 Pt 2):205s–223s

    Article  CAS  Google Scholar 

  2. Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development (Cambridge, England) 117(4):1183–1198

    CAS  Google Scholar 

  3. Mecham RP (2001) Overview of extracellular matrix. Curr Protoc Cell Biol Chapter 10, Unit 10.1

    Google Scholar 

  4. Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585

    Article  CAS  Google Scholar 

  5. Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21(7):667–681

    Article  CAS  Google Scholar 

  6. Shekaran A, Garcia AJ (2011) Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 96(1):261–272

    Article  Google Scholar 

  7. Loeser RF, Sadiev S, Tan L, Goldring MB (2000) Integrin expression by primary and immortalized human chondrocytes: evidence of a differential role for alpha1beta1 and alpha2beta1 integrins in mediating chondrocyte adhesion to types II and VI collagen. Osteoarthr Cartil 8(2):96–105

    Article  CAS  Google Scholar 

  8. Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R (1996) Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87(6):1069–1078

    Article  CAS  Google Scholar 

  9. Stegemann JP, Hong H, Nerem RM (2005) Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J Appl Physiol 98(6):2321–2327

    Article  Google Scholar 

  10. Xu J, Shi GP (2014) Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta 1842(11):2106–2119

    Article  CAS  Google Scholar 

  11. Tersteeg C, Roest M, Mak-Nienhuis EM, Ligtenberg E, Hoefer IE, de Groot PG, Pasterkamp G (2012) A fibronectin-fibrinogen-tropoelastin coating reduces smooth muscle cell growth but improves endothelial cell function. J Cell Mol Med 16(9):2117–2126

    Article  CAS  Google Scholar 

  12. Rosenbloom J, Abrams WR, Mecham R (1993) Extracellular matrix 4: the elastic fiber. FASEB J 7(13):1208–1218

    Article  CAS  Google Scholar 

  13. Dejana E, Lampugnani MG, Giorgi M, Gaboli M, Marchisio PC (1990) Fibrinogen induces endothelial cell adhesion and spreading via the release of endogenous matrix proteins and the recruitment of more than one integrin receptor. Blood 75(7):1509–1517

    CAS  PubMed  Google Scholar 

  14. Bramfeldt H, Vermette P (2009) Enhanced smooth muscle cell adhesion and proliferation on protein-modified polycaprolactone-based copolymers. J Biomed Mater Res A 88(2):520–530

    Article  Google Scholar 

  15. Naito M, Hayashi T, Kuzuya M, Funaki C, Asai K, Kuzuya F (1990) Effects of fibrinogen and fibrin on the migration of vascular smooth muscle cells in vitro. Atherosclerosis 83(1):9–14

    Article  CAS  Google Scholar 

  16. Myllyharju J, Kivirikko KI (2001) Collagens and collagen-related diseases. Ann Med 33(1):7–21

    Article  CAS  Google Scholar 

  17. González-Santiago L, López-Ongil S, Rodríguez-Puyol M, Rodríguez-Puyol D (2002) Decreased Nitric Oxide Synthesis in Human Endothelial Cells Cultured on Type I Collagen. Circ Res 90(5):539–545

    Article  Google Scholar 

  18. Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2(2):67–77

    Article  CAS  Google Scholar 

  19. Uchida N, Sivaraman S, Amoroso NJ, Wagner WR, Nishiguchi A, Matsusaki M, Akashi M, Nagatomi J (2016) Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications. J Biomed Mater Res A 104(1):94–103

    Article  Google Scholar 

  20. Huang Y, Luo Q, Zha G, Zhang J, Li X, Zhao S, Li X (2014) Biomimetic ECM coatings for controlled release of rhBMP-2: construction and biological evaluation. Biomat Sci 2(7):980–989

    Article  CAS  Google Scholar 

  21. Grzesik WJ, Robey PG (1994) Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res 9(4):487–496

    Article  CAS  Google Scholar 

  22. Liu Y, Huse RO, Groot KD, Buser D, Hunziker EB (2007) Delivery mode and efficacy of BMP-2 in association with implants. J Dent Res 86(1):84–89

    Article  CAS  Google Scholar 

  23. Zhang X, Dong J (2015) Direct comparison of different coating matrix on the hepatic differentiation from adipose-derived stem cells. Biochem Biophys Res Commun 456(4):938–944

    Article  CAS  Google Scholar 

  24. Joyce NC (2003) Proliferative capacity of the corneal endothelium. Prog Retin Eye Res 22(3):359–389

    Article  CAS  Google Scholar 

  25. Bourne WM, Nelson LR, Hodge DO (1994) Continued endothelial cell loss ten years after lens implantation. Ophthalmology 101(6):1014–1022 discussion 1022-3

    Article  CAS  Google Scholar 

  26. Friberg TR, Guibord NM (1999) Corneal endothelial cell loss after multiple vitreoretinal procedures and the use of silicone oil. Ophthalmic Surg Lasers 30(7):528–534

    CAS  PubMed  Google Scholar 

  27. Yachimori R, Matsuura T, Hayashi K, Hayashi H (2004) Increased intraocular pressure and corneal endothelial cell loss following phacoemulsification surgery. Ophthalmic Surg Lasers Imaging 35(6):453–459

    PubMed  Google Scholar 

  28. Sengler U, Spelsberg H, Reinhard T, Sundmacher R, Adams O, Auw-Haedrich C, Witschel H (1999) Herpes simplex virus (HSV-1) infection in a donor cornea. Br J Ophthalmol 83(12):1405

    Article  CAS  Google Scholar 

  29. Koo S, Muhammad R, Peh GSL, Mehta JS, Yim EKF (2014) Micro- and nanotopography with extracellular matrix coating modulate human corneal endothelial cell behavior. Acta Biomater 10(5):1975–1984

    Article  CAS  Google Scholar 

  30. Jacobson K, Sheets ED, Simson R (1995) Revisiting the fluid mosaic model of membranes. Science (New York, NY) 268(5216):1441–1442

    Article  CAS  Google Scholar 

  31. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395(6697):82–86

    Article  CAS  Google Scholar 

  32. Maxfield FR (2002) Plasma membrane microdomains. Curr Opin Cell Biol 14(4):483–487

    Article  CAS  Google Scholar 

  33. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science (New York, NY) 175(4023):720–731

    Article  CAS  Google Scholar 

  34. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438(7068):578–580

    Article  CAS  Google Scholar 

  35. van Meer G (2005) Cellular lipidomics. EMBO J 24(18):3159–3165

    Article  Google Scholar 

  36. Coskun U, Simons K (2011) Cell membranes: the lipid perspective. Structure (London, England: 1993) 19(11):1543–1548

    Article  CAS  Google Scholar 

  37. Verhoven B, Schlegel RA, Williamson P (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med 182(5):1597–1601

    Article  CAS  Google Scholar 

  38. Rothlein R, Dustin ML, Marlin SD, Springer TA (1986) A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol (Baltimore, MD: 1950) 137(4):1270–1274

    CAS  Google Scholar 

  39. Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW (2005) ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood 106(2):584–592

    Article  CAS  Google Scholar 

  40. Alimperti S, Andreadis ST (2015) CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res 14(3):270–282

    Article  CAS  Google Scholar 

  41. Jackman JA, Tabaei SR, Zhao Z, Yorulmaz S, Cho N-J (2015) Self-assembly formation of lipid bilayer coatings on bare aluminum oxide: overcoming the force of interfacial water. ACS Appl Mater Interfaces 7(1):959–968

    Article  CAS  Google Scholar 

  42. Elnaggar MA, Subbiah R, Han DK, Joung YK (2017) Lipid-based carriers for controlled delivery of nitric oxide. Expert Opin Drug Deliv:1–13

    Google Scholar 

  43. Elnaggar MA, Seo SH, Gobaa S, Lim KS, Bae I-H, Jeong MH, Han DK, Joung YK (2016) Nitric oxide releasing coronary stent: a new approach using layer-by-layer coating and liposomal encapsulation. Small 12(43):6012–6023

    Article  CAS  Google Scholar 

  44. Vafaei S, Tabaei SR, Biswas KH, Groves JT, Cho NJ (2017) Dynamic Cellular Interactions with Extracellular Matrix Triggered by Biomechanical Tuning of Low-Rigidity, Supported Lipid Membranes. Adv Healthcare Mater 6(10)

    Google Scholar 

  45. Weng KC, Stålgren JJR, Duval DJ, Risbud SH, Frank CW (2004) Fluid biomembranes supported on nanoporous aerogel/xerogel substrates. Langmuir ACS J Surf Colloids 20(17):7232–7239

    Article  CAS  Google Scholar 

  46. Reviakine I, Rossetti FF, Morozov AN, Textor M (2005) Investigating the properties of supported vesicular layers on titanium dioxide by quartz crystal microbalance with dissipation measurements. J Chem Phys 122(20):204711

    Article  Google Scholar 

  47. Keller CA, Kasemo B (1998) Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J 75(3):1397–1402

    Article  CAS  Google Scholar 

  48. Cho N-J, Jackman JA, Liu M, Frank CW (2011) pH-driven assembly of various supported lipid platforms: a comparative study on silicon oxide and titanium oxide. Langmuir ACS J Surf Colloids 27(7):3739–3748

    Article  CAS  Google Scholar 

  49. van Weerd J, Karperien M, Jonkheijm P (2015) Supported Lipid Bilayers for the Generation of Dynamic Cell–Material Interfaces. Adv Healthc Mater 4(18):2743–2779

    Article  Google Scholar 

  50. Fang RH, Hu CM, Luk BT, Gao W, Copp JA, Tai Y, O'Connor DE, Zhang L (2014) Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 14(4):2181–2188

    Article  CAS  Google Scholar 

  51. Dehaini D, Wei X, Fang RH, Masson S, Angsantikul P, Luk BT, Zhang Y, Ying M, Jiang Y, Kroll AV, Gao W, Zhang L (2017) Erythrocyte–platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater 29(16):1606209–n/a

    Google Scholar 

  52. Rao L, Bu L-L, Cai B, Xu J-H, Li A, Zhang W-F, Sun Z-J, Guo S-S, Liu W, Wang T-H, Zhao X-Z (2016) Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv Mater 28(18):3460–3466

    Article  CAS  Google Scholar 

  53. Chen W, Zhang Q, Luk BT, Fang RH, Liu Y, Gao W, Zhang L (2016) Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function. Nanoscale 8(19):10364–10370

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Ki Joung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elnaggar, M.A., Joung, Y.K. (2018). Tissue-Inspired Interfacial Coatings for Regenerative Medicine. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_22

Download citation

Publish with us

Policies and ethics