Advertisement

Collagen Type I: A Versatile Biomaterial

  • Shiplu Roy Chowdhury
  • Mohd Fauzi Mh Busra
  • Yogeswaran Lokanathan
  • Min Hwei Ng
  • Jia Xian Law
  • Ude Chinedu Cletus
  • Ruszymah Binti Haji IdrusEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)

Abstract

Collagen type I is the most abundant matrix protein in the human body and is highly demanded in tissue engineering, regenerative medicine, and pharmaceutical applications. To meet the uprising demand in biomedical applications, collagen type I has been isolated from mammalians (bovine, porcine, goat and rat) and non-mammalians (fish, amphibian, and sea plant) source using various extraction techniques. Recent advancement enables fabrication of collagen scaffolds in multiple forms such as film, sponge, and hydrogel, with or without other biomaterials. The scaffolds are extensively used to develop tissue substitutes in regenerating or repairing diseased or damaged tissues. The 3D scaffolds are also used to develop in vitro model and as a vehicle for delivering drugs or active compounds.

Keywords

Collagen type I Biomaterial Fabrication Tissue engineering Tissue substitutes In vitro model Drug delivery system 

References

  1. 1.
    Abou Neel EA, Bozec L, Knowles JC et al (2013) Collagen – emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 65:429–456.  https://doi.org/10.1016/j.addr.2012.08.010 CrossRefPubMedGoogle Scholar
  2. 2.
    Addad S, Exposito JY, Faye C et al (2011) Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs 9:967–983.  https://doi.org/10.3390/md9060967 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Alexandra PM, Rui LR, Rogério PP, Mariana C (2017) Skin tissue models. Academic, LondonGoogle Scholar
  4. 4.
    Amani H, Dougherty WR, Blome-Eberwein S (2006) Use of Transcyte and dermabrasion to treat burns reduces length of stay in burns of all size and etiology. Burns 32(7):828–832.  https://doi.org/10.1016/j.burns.2006.04.003 CrossRefPubMedGoogle Scholar
  5. 5.
    Anders S, Volz M, Frick H, Gellissen J (2013) A randomized, controlled trial comparing Autologous Matrix-Induced Chondrogenesis (AMIC®) to microfracture: analysis of 1- and 2-year follow-up data of 2 centers. Open Orthop J 3(7):133–143.  https://doi.org/10.2174/1874325001307010133 CrossRefGoogle Scholar
  6. 6.
    Awang MA, Firdaus MA, Busra MB, Chowdhury SR, Fadilah NR, Wan Hamirul WK, Reusmaazran MY, Aminuddin MY, Ruszymah BH (2014) Cytotoxic evaluation of biomechanically improved crosslinked ovine collagen on human dermal fibroblasts. Biomed Mater Eng 24:1715–1724.  https://doi.org/10.3233/BME-140983 CrossRefPubMedGoogle Scholar
  7. 7.
    Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53.  https://doi.org/10.1146/annurev-bioeng-071910-124743. CrossRefPubMedGoogle Scholar
  8. 8.
    Baek J-Y, Xing Z-C, Kwak G, Yoon K-B, Park S-Y, Park LS, Kang I-K (2012) Fabrication and characterization of collagen-immobilized porous PHBV/HA nanocomposite scaffolds for bone tissue engineering. J Nanomater 2012:171804.  https://doi.org/10.1155/2012/171804 CrossRefGoogle Scholar
  9. 9.
    Banerjee I, Mishra D, Das T et al (2012) Caprine (Goat) collagen: a potential biomaterial for skin tissue engineering. J Biomater Sci Polym Ed 23:355–373.  https://doi.org/10.1163/092050610X551943 CrossRefPubMedGoogle Scholar
  10. 10.
    Bell E, Ehrlich HP, Sher S, Merrill C, Sarber R, Hull B, Nakatsuji T, Church D, Buttle DJ (1981) Development and use of a living skin equivalent. Plast Reconstr Surg 67(3):386–392CrossRefGoogle Scholar
  11. 11.
    Bellas E, Seiberg M, Garlick J, Kaplan DL (2012) In vitro 3D full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Macromol Biosci 12(12):1627–1636.  https://doi.org/10.1002/mabi.201200262 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bersini S, Jeon JS, Dubini G, Arrigoni C, Chung S, Charest JL, Moretti M, Kamm RD (2014) A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35(8):2454–2461.  https://doi.org/10.1016/j.biomaterials.2013.11.050 CrossRefPubMedGoogle Scholar
  13. 13.
    Bertram U, Steiner D, Poppitz B, Dippold D, Kohn K, Beier JP, Detsch R, Boccaccini AR, Schubert DW, Horch RE, Arkudas A (2017) Vascular tissue engineering: effects of integrating collagen into a PCL based nanofiber material. Biomed Res Int 2017:9616939.  https://doi.org/10.1155/2017/9616939 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Black AF, Bouez C, Perrier E, Schlotmann K, Chapuis F, Damour O (2005) Optimization and characterization of an engineered human skin equivalent. Tissue Eng 11(5–6):723–733.  https://doi.org/10.1089/ten.2005.11.723 CrossRefPubMedGoogle Scholar
  15. 15.
    Blais M, Grenier M, Berthod F (2009) Improvement of nerve regeneration in tissue-engineered skin enriched with schwann cells. J Invest Dermatol 129(12):2895–2900.  https://doi.org/10.1038/jid.2009.159 CrossRefPubMedGoogle Scholar
  16. 16.
    Breen BA, Kraskiewicz H, Ronan R, Kshiragar A, Patar A, Sargeant T, Pandit A, McMahon SS (2017) Therapeutic effect of neurotrophin‑3 treatment in an injectable collagen scaffold following rat spinal cord hemisection injury. ACS Biomater Sci Eng 3(7):1287–1295.  https://doi.org/10.1021/acsbiomaterials.6b00167 CrossRefGoogle Scholar
  17. 17.
    Brittberg M (2010) Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med 38(6):1259–1271.  https://doi.org/10.1177/0363546509346395 CrossRefPubMedGoogle Scholar
  18. 18.
    Buehler MJ (2006) Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci U S A 103(33):12285–12290.  https://doi.org/10.1073/pnas.0603216103 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Caliari SR, Harley BA (2011) The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity. Biomaterials 32(23):5330–5340.  https://doi.org/10.1016/j.biomaterials.2011.04.021 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Carletti E, Motta A, Migliaresi C (2011) Scaffolds for tissue engineering and 3D cell culture. Methods Mol Biol 695:17–39.  https://doi.org/10.1007/978-1-60761-984-0_2 CrossRefPubMedGoogle Scholar
  21. 21.
    Catrina S, Gander B, Madduri S (2013) Nerve conduit scaffolds for discrete delivery of two neurotrophic factors. Eur J Pharm Biopharm 85(1):139–142.  https://doi.org/10.1016/j.ejpb.2013.03.030 CrossRefPubMedGoogle Scholar
  22. 22.
    Chemla ES, Morsy M (2009) Randomized clinical trial comparing decellularized bovine ureter with expanded polytetrafluoroethylene for vascular access. Br J Surg 96(1):34–39.  https://doi.org/10.1002/bjs.6434 CrossRefPubMedGoogle Scholar
  23. 23.
    Chen FM, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168.  https://doi.org/10.1016/j.progpolymsci.2015.02.004 CrossRefGoogle Scholar
  24. 24.
    Chiu LL, Radisic M (2010) Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials 31(2):226–241.  https://doi.org/10.1016/j.biomaterials.2009.09.039 CrossRefPubMedGoogle Scholar
  25. 25.
    Cholas RH, Hsu HP, Spector M (2012) The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model. Biomaterials 33(7):2050–2059.  https://doi.org/10.1016/j.biomaterials.2011.11.028 CrossRefPubMedGoogle Scholar
  26. 26.
    Chwalek K, Sood D, Cantley WL, White JD, Tang-Schomer M, Kaplan DL (2015) Engineered 3D silk-collagen-based model of polarized neural tissue. J Vis Exp 105:e52970.  https://doi.org/10.3791/52970 CrossRefGoogle Scholar
  27. 27.
    Ciardelli G, Gentile P, Chiono V, Mattioli-Belmonte M, Vozzi G, Barbani N, Giusti P (2010) Enzymatically crosslinked porous composite matrices for bone tissue regeneration. J Biomed Mater Res A 92(1):137–151.  https://doi.org/10.1002/jbm.a.32344 CrossRefPubMedGoogle Scholar
  28. 28.
    Connon CJ (2015) Approaches to corneal tissue engineering: top-down or bottom-up? Procedia Eng 110:15–20.  https://doi.org/10.1016/j.proeng.2015.07.004 CrossRefGoogle Scholar
  29. 29.
    Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792.  https://doi.org/10.1016/j.eurpolymj.2012.12.009 CrossRefGoogle Scholar
  30. 30.
    Dantzer E, Queruel P, Salinier L, Palmier B, Quinot JF (2003) Dermal regeneration template for deep hand burns: clinical utility for both early grafting and reconstructive surgery. Br J Plast Surg 56(8):764–774CrossRefGoogle Scholar
  31. 31.
    Devitt BM, Bell SW, Webster KE, Feller JA, Whitehead TS (2017) Surgical treatments of cartilage defects of the knee: systematic review of randomised controlled trials. Knee 24(3):508–517.  https://doi.org/10.1016/j.knee.2016.12.002 CrossRefPubMedGoogle Scholar
  32. 32.
    Driver VR, Lavery LA, Reyzelman AM, Dutra TG, Dove CR, Kotsis SV, Kim HM, Chung KC (2015) A clinical trial of integra template for diabetic foot ulcer treatment. Wound Repair Regen 23(6):891–900.  https://doi.org/10.1111/wrr.12357 CrossRefPubMedGoogle Scholar
  33. 33.
    Duan N, Geng X, Ye L, Zhang A, Feng Z, Guo L, Gu Y (2016) A vascular tissue engineering scaffold with core–shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation. Biomed Mater 11(3):035007.  https://doi.org/10.1088/1748-6041/11/3/035007 CrossRefPubMedGoogle Scholar
  34. 34.
    Eaglstein WH, Falanga V (1997) Tissue engineering and the development of Apligraf®, a human skin equivalent. Clin Ther 19(5):894–905.  https://doi.org/10.1016/S0149-2918(97)80043-4 CrossRefPubMedGoogle Scholar
  35. 35.
    Ebert JR, Fallon M, Wood DJ, Janes GC (2017) A prospective clinical and radiological evaluation at 5 years after arthroscopic matrix-induced autologous chondrocyte implantation. Am J Sports Med 45(1):59–69.  https://doi.org/10.1177/0363546516663493 CrossRefPubMedGoogle Scholar
  36. 36.
    Edmonds M, European and Australian Apligraf Diabetic Foot Ulcer Study Group (2009) Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Low Extrem Wounds 8(1):11–18.  https://doi.org/10.1177/1534734609331597 CrossRefPubMedGoogle Scholar
  37. 37.
    El-Sherbiny I, Yacoub M (2013) Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract 2013(3):316–342.  https://doi.org/10.5339/gcsp.2013.38 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Epstein NE (2013) Complications due to the use of BMP/INFUSE in spine surgery: the evidence continues to mount. Surg Neurol Int 4(Suppl 5):S343–S352.  https://doi.org/10.4103/2152-7806 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Exposito JY, Valcourt U, Cluzel C, Lethias C (2010) The fibrillar collagen family. Int J Mol Sci 11(2):407–426.  https://doi.org/10.3390/ijms11020407 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fagerholm P, Lagali NS, Carlsson DJ, Merrett K, Griffith M (2009) Corneal regeneration following implantation of a biomimetic tissue-engineered substitute. Clin Transl Sci 2(2):162–164.  https://doi.org/10.1111/j.1752-8062.2008.00083.x CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fagerholm P, Lagali NS, Ong JA, Merrett K, Jackson WB, Polarek JW, Suuronen EJ, Liu Y, Brunette I, Griffith M (2014) Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials 35(8):2420–2427.  https://doi.org/10.1016/j.biomaterials.2013.11.079 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Falabella AF, Valencia IC, Eaglstein WH, Schachner LA (2000) Tissue-engineered skin (Apligraf) in the healing of patients with epidermolysis bullosa wounds. Arch Dermatol 136(10):1225–1230CrossRefGoogle Scholar
  43. 43.
    Falanga V, Margolis D, Alvarez O, Auletta M, Maggiacomo F, Altman M, Jensen J, Sabolinski M, Hardin-Young J (1998) Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Arch Dermatol 134(3):293–300CrossRefGoogle Scholar
  44. 44.
    Fan J, Xiao Z, Zhang H, Chen B, Tang G, Hou X, Ding W, Wang B, Zhang P, Dai J, Xu R (2010) Linear ordered collagen scaffolds loaded with collagen-binding neurotrophin-3 promote axonal regeneration and partial functional recovery after complete spinal cord transection. J Neurotrauma 27(9):1671–1683.  https://doi.org/10.1089/neu.2010.1281 CrossRefPubMedGoogle Scholar
  45. 45.
    Farroha A, Frew Q, El-Muttardi N, Philp B, Dziewulski P (2013) The use of Biobrane® to dress split-thickness skin graft in paediatric burns. Ann Burns Fire Disasters 26(2):94–97PubMedPubMedCentralGoogle Scholar
  46. 46.
    Fauzi MB, Chowdhury SR, Aminuddin BS, Ruszymah BHI (2014) Fabrication of collagen type I scaffold for skin tissue engineering. Regenerative Res 3(2):59–60Google Scholar
  47. 47.
    Fauzi MB, Lokanathan Y, Aminuddin BS, Ruszymah BH, Chowdhury SR (2016) Ovine tendon collagen: extraction, characterisation and fabrication of thin films for tissue engineering applications. Mater Sci Eng C 68:163–171.  https://doi.org/10.1016/j.msec.2016.05.109 CrossRefGoogle Scholar
  48. 48.
    Fertala A, Shah MD, Hoffman RA, Arnold VW (2016) Designing recombinant collagens for biomedical applications. Current Tissue Eng 5(2):73–84.  https://doi.org/10.2174/2211542005666160616124053 CrossRefGoogle Scholar
  49. 49.
    Fujikawa S, Nakamura S, Koga K (1988) Genipin, a new type of protein crosslinking reagent from gardenia fruits. Agric Biol Chem 52(3):869–870.  https://doi.org/10.1080/00021369.1988.10868755 CrossRefGoogle Scholar
  50. 50.
    Gentleman MM, Gentleman E (2014) The role of surface free energy in osteoblast–biomaterial interactions. Int Mater Rev 59:417–429.  https://doi.org/10.1179/1743280414Y.0000000038 CrossRefGoogle Scholar
  51. 51.
    Gerding RL, Imbembo AL, Fratianne RB (1988) Biosynthetic skin substitute vs 1% silver sulfadiazine for treatment of inpatient partial-thickness thermal burns. J Trauma 28(8):1265–1269CrossRefGoogle Scholar
  52. 52.
    Ghezzi CE, Rnjak-Kovacina J, Kaplan DL (2015) Corneal tissue engineering: recent advances and future perspectives. Tissue Eng Part B Rev 21(3):278–287.  https://doi.org/10.1089/ten.TEB.2014.0397 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gille J, Behrens P, Schulz AP, Oheim R, Kienast B (2016) Matrix-associated autologous chondrocyte implantation: a clinical follow-up at 15 years. Cartilage 7(4):309–315.  https://doi.org/10.1177/1947603516638901 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gistelinck C, Gioia R, Gagliardi A, Tonelli F, Marchese L, Bianchi L, Landi C, Bini L, Huysseune A, Witten PE, Staes A, Gevaert K, De Rocker N, Menten B, Malfait F, Leikin S, Carra S, Tenni R, Rossi A, De Paepe A, Coucke P, Willaert A, Forlino A (2016) Zebrafish collagen type I: molecular and biochemical characterization of the major structural protein in bone and skin. Sci Rep 6:21540.  https://doi.org/10.1038/srep21540 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gohari S, Gambla C, Healey M, Spaulding G, Gordon KB, Swan J, Cook B, West DP, Lapiere JC (2002) Evaluation of tissue-engineered skin (human skin substitute) and secondary intention healing in the treatment of full thickness wounds after Mohs micrographic or excisional surgery. Dermatol Surg 28(12):1107–1114PubMedGoogle Scholar
  56. 56.
    Grabarek Z, Gergely J (1990) Zero-length crosslinking procedure with the use of active esters. Anal Biochem 185(1):131–135CrossRefGoogle Scholar
  57. 57.
    Greenwood JE, Clausen J, Kavanagh S (2009) Experience with biobrane: uses and caveats for success. Eplasty 9:e25PubMedPubMedCentralGoogle Scholar
  58. 58.
    Haid RW Jr, Branch CL Jr, Alexander JT, Burkus JK (2004) Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J 4(5):527–538.  https://doi.org/10.1016/j.spinee.2004.03.025 CrossRefPubMedGoogle Scholar
  59. 59.
    Hall AC, Guyton JE (2011) Textbook of medical physiology, 12th edn. Elsevier, Philadelphia, pp 957–960 ISBN 978-08089-2400-5Google Scholar
  60. 60.
    Han S, Wang B, Jin W, Xiao Z, Chen B, Xiao H, Ding W, Cao J, Ma F, Li X, Yuan B, Zhu T, Hou X, Wang J, Kong J, Liang W, Dai J (2014) The collagen scaffold with collagen binding BDNF enhances functional recovery by facilitating peripheral nerve infiltrating and ingrowth in canine complete spinal cord transection. Spinal Cord 52(12):867–873.  https://doi.org/10.1038/sc.2014.173 CrossRefPubMedGoogle Scholar
  61. 61.
    Harston A, Nyland J, Brand E, McGinnis M, Caborn DN (2012) Collagen meniscus implantation: a systematic review including rehabilitation and return to sports activity. Knee Surg Sports Traumatol Arthrosc 20(1):135–146.  https://doi.org/10.1007/s00167-011-1579-9 CrossRefPubMedGoogle Scholar
  62. 62.
    Haslik W, Kamolz LP, Nathschläger G, Andel H, Meissl G, Frey M (2007) First experiences with the collagen-elastin matrix Matriderm® as a dermal substitute in severe burn injuries of the hand. Burns 33(3):364–368.  https://doi.org/10.1016/j.burns.2006.07.021 CrossRefGoogle Scholar
  63. 63.
    Hassan NH, Sulong AF, Ng MH, Htwe O, Idrus RB, Roohi S, Naicker AS, Abdullah S (2012) Neural-differentiated mesenchymal stem cells incorporated into muscle stuffed vein scaffold forms a stable living nerve conduit. J Orthop Res 30(10):1674–1681.  https://doi.org/10.1002/jor.22102 CrossRefPubMedGoogle Scholar
  64. 64.
    Haugh MG, Jaasma MJ, O’Brien FJ (2009) The effect of dehydrothermal treatment on the mechanical and structural properties of collagen‐GAG scaffolds. J Biomed Mater Res A 89(2):363–369.  https://doi.org/10.1002/jbm.a.31955 CrossRefPubMedGoogle Scholar
  65. 65.
    Hayes DW Jr, Webb GE, Mandracchia VJ, John KJ (2001) Full-thickness burn of the foot: successful treatment with Apligraf. A case report. Clin Podiatr Med Surg 18(1):179–188PubMedGoogle Scholar
  66. 66.
    He Q, Zhao Y, Chen B, Xiao Z, Zhang J, Chen L, Chen W, Deng F, Dai J (2011) Improved cellularization and angiogenesis using collagen scaffolds chemically conjugated with vascular endothelial growth factor. Acta Biomater 7(3):1084–1093.  https://doi.org/10.1016/j.actbio.2010.10.022 CrossRefPubMedGoogle Scholar
  67. 67.
    Heimbach DM, Warden GD, Luterman A, Jordan MH, Ozobia N, Ryan CM, Voigt DW, Hickerson WL, Saffle JR, DeClement FA, Sheridan RL, Dimick AR (2003) Multicenter postapproval clinical trial of Integra® dermal regeneration template for burn treatment. J Burn Care Rehabil 24(1):42–48.  https://doi.org/10.1097/01.BCR.0000045659.08820.00 CrossRefPubMedGoogle Scholar
  68. 68.
    Jay L, Bourget JM, Goyer B, Singh K, Brunette I, Ozaki T, Proulx S (2015) Characterization of tissue-engineered posterior corneas using second- and third-harmonic generation microscopy. PLoS One 10(4):e0125564.  https://doi.org/10.1371/journal.pone.0125564 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL (2013) In vitro model of tumor cell extravasation. PLoS One 8(2):e56910.  https://doi.org/10.1371/journal.pone.0056910. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Karri VV, Kuppusamy G, Talluri SV, Mannemala SS, Kollipara R, Wadhwani AD, Mulukutla S, Raju KR, Malayandi R (2016) Curcumin loaded chitosan nanoparticles impregnated into collagen- alginate scaffolds for diabetic wound healing. Int J Biol Macromol 93(Pt B):1519–1529.  https://doi.org/10.1016/j.ijbiomac.2016.05.038 CrossRefPubMedGoogle Scholar
  71. 71.
    Kennealey PT, Elias N, Hertl M, Ko DS, Saidi RF, Markmann JF, Smoot EE, Schoenfeld DA, Kawai T (2011) A prospective, randomized comparison of bovine carotid artery and expanded polytetrafluoroethylene for permanent hemodialysis vascular access. J Vasc Surg 53(6):1640–1648.  https://doi.org/10.1016/j.jvs.2011.02.008 CrossRefPubMedGoogle Scholar
  72. 72.
    Kojima C, Suehiro T, Watanabe K, Ogawa M, Fukuhara A, Nishisaka E, Harada A, Kono K, Inui T, Magata Y (2013) Doxorubicin-conjugated dendrimer/collagen hybrid gels for metastasis-associated drug delivery systems. Acta Biomater 9(3):5673–5680.  https://doi.org/10.1016/j.actbio.2012.11.013 CrossRefPubMedGoogle Scholar
  73. 73.
    Kon E, Filardo G, Di Matteo B, Perdisa F, Marcacci M (2013) Matrix assisted autologous chondrocyte transplantation for cartilage treatment. Bone Joint Res 2(2):18–25.  https://doi.org/10.1302/2046-3758.22.2000092 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kumar RJ1, Kimble RM, Boots R, Pegg SP (2004) Treatment of partial-thickness burns: a prospective, randomized trial using TranscyteTM. ANZ J Surg 74(8):622–626.  https://doi.org/10.1111/j.1445-1433.2004.03106.x CrossRefPubMedGoogle Scholar
  75. 75.
    Kwansa AL, De Vita R, Freeman JW (2016) Tensile mechanical properties of collagen type I and its enzymatic crosslinks. Biophys Chem 214–215:1–10.  https://doi.org/10.1016/j.bpc.2016.04.001 CrossRefPubMedGoogle Scholar
  76. 76.
    Lal S, Barrow RE, Wolf SE, Chinkes DL, Hart DW, Heggers JP, Herndon DN (2000) BIiobrane® improves wound healing in burned children. Shock 14(3):314–318CrossRefGoogle Scholar
  77. 77.
    Lee JY, Giusti G, Friedrich PF, Archibald SJ, Kemnitzer JE, Patel J, Desai N, Bishop AT, Shin AY (2012a) The effect of collagen nerve conduits filled with collagen-glycosaminoglycan matrix on peripheral motor nerve regeneration in a rat model. J Bone Joint Surg Am 94(22):2084–2091.  https://doi.org/10.2106/JBJS.K.00658 CrossRefPubMedGoogle Scholar
  78. 78.
    Lee KY, Peters MC, Anderson KW, Mooney DJ (2000) Controlled growth factor release from synthetic extracellular matrices. Nature 408(6815):998–1000.  https://doi.org/10.1038/35050141 CrossRefPubMedGoogle Scholar
  79. 79.
    Lee SR, Kim JG, Nam SW (2012b) The tips and pitfalls of meniscus allograft transplantation. Knee Surg Relat Res 24(3):137–145.  https://doi.org/10.5792/ksrr.2012.24.3.137 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Lee SW, Kim SG (2014) Membrane for the guided bone regeneration. Maxillofac Plast Reconstr Surg 36(6):239–246.  https://doi.org/10.14402/jkamprs.2014.36.6.239 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    León-Mancilla BH, Araiza-Téllez MA, Flores-Flores JO, Piña-Barba MC (2016) Physico-chemical characterization of collagen scaffolds for tissue engineering. J Appl Res Technol 14(1):77–85.  https://doi.org/10.1016/J.JART.2016.01.001 CrossRefGoogle Scholar
  82. 82.
    Lesher AP, Curry RH, Evans J, Smith VA, Fitzgerald MT, Cina RA, Streck CJ, Hebra AV (2011) Effectiveness of Biobrane for treatment of partial-thickness burns in children. J Pediatr Surg 46(9):1759–1763.  https://doi.org/10.1016/j.jpedsurg.2011.03.070 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Li G, Simon MJ, Cancel LM, Shi ZD, Ji X, Tarbell JM, Morrison B, Fu BM (2010) Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies. Ann Biomed Eng 38(8):2499–2511.  https://doi.org/10.1007/s10439-010-0023-5 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Li H, Yun HY, Baek KJ, Kwon NS, Choi HR, Park KC, Kim DS (2017a) Avian collagen is useful for the construction of skin equivalents. Cells Tissues Organs 204(5-6):261–269.  https://doi.org/10.1159/000480659 CrossRefPubMedGoogle Scholar
  85. 85.
    Li S, Sengupta D, Chien S (2014) Vascular tissue engineering: from in vitro to in situ. Wiley Interdiscip Rev Syst Biol Med 6(1):61–76.  https://doi.org/10.1002/wsbm.1246 CrossRefPubMedGoogle Scholar
  86. 86.
    Li ST, Archibald SJ, Krarup C, Madison RD (1992) Peripheral nerve repair with collagen conduits. Clin Mater 9(3-4):195–200CrossRefGoogle Scholar
  87. 87.
    Li X, Han J, Zhao Y, Ding W, Wei J, Li J, Han S, Shang X, Wang B, Chen B, Xiao Z, Dai J (2016) Functionalized collagen scaffold implantation and cAMP administration collectively facilitate spinal cord regeneration. Acta Biomater 30:233–245.  https://doi.org/10.1016/j.actbio.2015.11.023 CrossRefPubMedGoogle Scholar
  88. 88.
    Liang X, Cai H, Hao Y, Sun G, Song Y, Chen W (2014) Sciatic nerve repair using adhesive bonding and a modified conduit. Neural Regen Res 9(6):594–601.  https://doi.org/10.4103/1673-5374.130099 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lienemann PS, Lutolf MP, Ehrbar M (2012) Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev 64(12):1078–1089.  https://doi.org/10.1016/j.addr.2012.03.010 CrossRefPubMedGoogle Scholar
  90. 90.
    Lindsey P, Echeverria A, Cheung M, Kfoury E, Bechara CF, Lin PH (2017) Lower extremity bypass using bovine carotid artery graft (Artegraft): an analysis of 124 cases with long-term results. World J Surg 42(1):295–301.  https://doi.org/10.1007/s00268-017-4161-x CrossRefGoogle Scholar
  91. 91.
    Liu D, Wei G, Li T et al (2015) Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin. Food Chem 172:836–843.  https://doi.org/10.1016/j.foodchem.2014.09.147 CrossRefPubMedGoogle Scholar
  92. 92.
    Liu T, Houle JD, Xu J, Chan BP, Chew SY (2012a) Nanofibrous collagen nerve conduits for spinal cord repair. Tissue Eng Part A 18(9-10):1057–1066.  https://doi.org/10.1089/ten.TEA.2011.0430 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Liu Y, Ren L, Yao H, Wang Y (2012b) Collagen films with suitable physical properties and biocompatibility for corneal tissue engineering prepared by ion leaching technique. Mater Lett 87:1–4.  https://doi.org/10.1016/j.matlet.2012.07.091 CrossRefGoogle Scholar
  94. 94.
    Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502.  https://doi.org/10.1089/ten.teb.2012.0437 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Lohana P, Hassan S, Watson SB (2014) Integra™ in burns reconstruction: our experience and report of an unusual immunological reaction. Ann Burns Fire Disasters 27(1):17–21PubMedPubMedCentralGoogle Scholar
  96. 96.
    Lu C, Meng D, Cao J, Xiao Z, Cui Y, Fan J, Cui X, Chen B, Yao Y, Zhang Z, Ma J, Pan J, Dai J (2015) Collagen scaffolds combined with collagen-binding ciliary neurotrophic factor facilitate facial nerve repair in mini-pigs. J Biomed Mater Res A 103(5):1669–1676.  https://doi.org/10.1002/jbm.a.35305 CrossRefPubMedGoogle Scholar
  97. 97.
    Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12):pii: a005058.  https://doi.org/10.1101/cshperspect.a005058 CrossRefGoogle Scholar
  98. 98.
    Lukish JR, Eichelberger MR, Newman KD, Pao M, Nobuhara K, Keating M, Golonka N, Pratsch G, Misra V, Valladares E, Johnson P, Gilbert JC, Powell DM, Hartman GE (2001) The use of a bioactive skin substitute decreases length of stay for pediatric burn patients. J Pediatr Surg 36(8):1118–1121.  https://doi.org/10.1053/jpsu.2001.25678 CrossRefPubMedGoogle Scholar
  99. 99.
    Marín-Pareja N, Cantini M, González-García C, Salvagni E, Salmerón-Sánchez M, Ginebra MP (2015) Different organization of type I collagen immobilized on silanized and nonsilanized titanium surfaces affects fibroblast adhesion and fibronectin secretion. ACS Appl Mater Interfaces 7(37):20667–20677.  https://doi.org/10.1021/acsami.5b05420 CrossRefPubMedGoogle Scholar
  100. 100.
    Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V (2006) Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 57(1):24–31.  https://doi.org/10.1016/j.ejrad.2005.08.009 CrossRefPubMedGoogle Scholar
  101. 101.
    McClure MJ, Sell SA, Simpson DG, Walpoth BH, Bowlin GL (2010) A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study. Acta Biomater 6(7):2422–2433.  https://doi.org/10.1016/j.actbio.2009.12.029 CrossRefPubMedGoogle Scholar
  102. 102.
    Merrett K, Fagerholm P, McLaughlin CR, Dravida S, Lagali N, Shinozaki N, Watsky MA, Munger R, Kato Y, Li F, Marmo CJ, Griffith M (2008) Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Invest Ophthalmol Vis Sci 49(9):3887–3894.  https://doi.org/10.1167/iovs.07-1348 CrossRefPubMedGoogle Scholar
  103. 103.
    Michelacci YM (2003) Collagens and proteoglycans of the corneal extracellular matrix. Braz J Med Biol Res 36(8):1037–1046CrossRefGoogle Scholar
  104. 104.
    Min JH, Yun IS, Lew DH, Roh TS, Lee WJ (2014) The use of matriderm and autologous skin graft in the treatment of full thickness skin defects. Arch Plast Surg 41(4):330–336.  https://doi.org/10.5999/aps.2014.41.4.330 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Miranda-Nieves D, Chaikof EL (2017) Collagen and elastin biomaterials for the fabrication of engineered living tissues. ACS Biomater Sci Eng 3(5):694–711.  https://doi.org/10.1021/acsbiomaterials.6b00250 CrossRefGoogle Scholar
  106. 106.
    Miyagi Y, Chiu LL, Cimini M, Weisel RD, Radisic M, Li RK (2011) Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials 32(5):1280–1290.  https://doi.org/10.1016/j.biomaterials.2010.10.007 CrossRefPubMedGoogle Scholar
  107. 107.
    Moore AM, Kasukurthi R, Magill CK, Farhadi HF, Borschel GH, Mackinnon SE (2009) Limitations of conduits in peripheral nerve repairs. Hand (NY) 4(2):180–186.  https://doi.org/10.1007/s11552-008-9158-3 CrossRefGoogle Scholar
  108. 108.
    Muhart M, McFalls S, Kirsner RS, Elgart GW, Kerdel F, Sabolinski ML, Hardin-Young J, Eaglstein WH (1999) Behavior of tissue-engineered skin: a comparison of a living skin equivalent, autograft, and occlusive dressing in human donor sites. Arch Dermatol 135(8):913–918CrossRefGoogle Scholar
  109. 109.
    Nelson CG, Bonner KF (2013) Inside-out meniscus repair. Arthrosc Tech 2(4):e453–e460.  https://doi.org/10.1016/j.eats.2013.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Nguyen DH, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA, Chen CS (2013) Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci U S A 110(17):6712–6717.  https://doi.org/10.1073/pnas.1221526110 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Noordenbos J, Doré C, Hansbrough JF (1999) Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J Burn Care Rehabil 20(4):275–281CrossRefGoogle Scholar
  112. 112.
    O’brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95.  https://doi.org/10.1016/S1369-7021(11)70058-X CrossRefGoogle Scholar
  113. 113.
    Odedra D, Chiu LL, Shoichet M, Radisic M (2011) Endothelial cells guided by immobilized gradients of vascular endothelial growth factor on porous collagen scaffolds. Acta Biomater 7(8):3027–3035.  https://doi.org/10.1016/j.actbio.2011.05.002 CrossRefPubMedGoogle Scholar
  114. 114.
    Ouyang Y, Huang C, Zhu Y, Fan C, Ke Q (2013) Fabrication of seamless electrospun collagen/PLGA conduits whose walls comprise highly longitudinal aligned nanofibers for nerve regeneration. J Biomed Nanotechnol 9(6):931–943CrossRefGoogle Scholar
  115. 115.
    Palao R, Gómez P, Huguet P (2003) Burned breast reconstructive surgery with Integra dermal regeneration template. Br J Plast Surg 56(3):252–259CrossRefGoogle Scholar
  116. 116.
    Papalia R, Franceschi F, Balzani LD, D’Adamio S, Maffulli N, Denaro V (2013) Scaffolds for partial meniscal replacement: an updated systematic review. Br Med Bull 107:19–40.  https://doi.org/10.1093/bmb/ldt007 CrossRefPubMedGoogle Scholar
  117. 117.
    Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887.  https://doi.org/10.3390/ma3031863 CrossRefGoogle Scholar
  118. 118.
    Pati F, Adhikari B, Dhara S (2010) Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour Technol 101(10):3737–3742.  https://doi.org/10.1016/j.biortech.2009.12.133 CrossRefPubMedGoogle Scholar
  119. 119.
    Perumal S, Antipova O, Orgel JP (2008) Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc Natl Acad Sci U S A 105(8):2824–2829.  https://doi.org/10.1073/pnas.0710588105 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRefGoogle Scholar
  121. 121.
    Price BL, Lovering AM, Bowling FL, Dobson CB (2016) Development of a novel collagen wound model to simulate the activity and distribution of antimicrobials in soft tissue during diabetic foot infection. Antimicrob Agents Chemother 60(11):6880–6889.  https://doi.org/10.1128/AAC.01064-16 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Rabiatul AR, Lokanathan Y, Rohaina CM, Chowdhury SR, Aminuddin BS, Ruszymah BH (2015) Surface modification of electrospun poly (methyl methacrylate)(PMMA) nanofibers for the development of in vitro respiratory epithelium model. J Biomater Sci Polym Ed 26(17):1297–1311.  https://doi.org/10.1080/09205063.2015.1088183 CrossRefPubMedGoogle Scholar
  123. 123.
    Ravi S, Chaikof EL (2010) Biomaterials for vascular tissue engineering. Regen Med 5(1):107–120.  https://doi.org/10.2217/rme.09.77 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33(6):362–369.  https://doi.org/10.1016/j.tibtech.2015.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Regnier M, Schweizer J, Michel S, Bailly C, Prunieras M (1986) Expression of high molecular weight (67K) keratin in human keratinocytes cultured on dead de-epidermized dermis. Exp Cell Res 165(1):63–72CrossRefGoogle Scholar
  126. 126.
    Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3(1):a004978.  https://doi.org/10.1101/cshperspect.a004978 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Rodkey WG (2010) Menaflex (TM) collagen meniscus implant: basic science. In: The meniscus. Springer, Berlin, pp 367–371CrossRefGoogle Scholar
  128. 128.
    Rogers AD, Adams S, Rode H (2011) The introduction of a protocol for the use of biobrane for facial burns in children. Plast Surg Int 2011:858093.  https://doi.org/10.1155/2011/858093 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341(1):126–140.  https://doi.org/10.1016/j.ydbio.2009.10.026 CrossRefGoogle Scholar
  130. 130.
    Ryssel H, Gazyakan E, Germann G, Ohlbauer M (2008) The use of MatriDerm® in early excision and simultaneous autologous skin grafting in burns-a pilot study. Burns 34(1):93–97.  https://doi.org/10.1016/j.burns.2007.01.018 CrossRefPubMedGoogle Scholar
  131. 131.
    Safandowska M, Pietrucha K (2013) Effect of fish collagen modification on its thermal and rheological properties. Int J Biol Macromol 53:32–37.  https://doi.org/10.1016/j.ijbiomac.2012.10.026 CrossRefPubMedGoogle Scholar
  132. 132.
    Santos MH, Silva RM, Dumont VC, Neves JS, Mansur HS, Heneine LG (2013) Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications. Mater Sci Eng C 33(2):790–800.  https://doi.org/10.1016/j.msec.2012.11.003 CrossRefGoogle Scholar
  133. 133.
    Sasaki N, Bos C, Escoffre JM, Storm G, Moonen C (2015) Development of a tumor tissue-mimicking model with endothelial cell layer and collagen gel for evaluating drug penetration. Int J Pharm 482(1-2):118–122.  https://doi.org/10.1016/j.ijpharm.2015.01.039 CrossRefPubMedGoogle Scholar
  134. 134.
    Sasmal P, Begam H (2014) Extraction of type-I collagen from sea fish and synthesis of hap/collagen composite. Procedia Mater Sci 5:1136–1140.  https://doi.org/10.1016/j.mspro.2014.07.408 CrossRefGoogle Scholar
  135. 135.
    Schmidli J, Savolainen H, Heller G, Widmer MK, Then-Schlagau U, Baumgartner I, Carrel TP (2004) Bovine mesenteric vein graft (ProCol) in critical limb ischaemia with tissue loss and infection. Eur J Vasc Endovasc Surg 27(3):251–253.  https://doi.org/10.1016/j.ejvs.2003.12.001 CrossRefPubMedGoogle Scholar
  136. 136.
    Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347.  https://doi.org/10.1146/annurev.bioeng.5.011303.120731 CrossRefGoogle Scholar
  137. 137.
    Schmidt MM, Dornelles RCP, Mello RO, Kubota EH, Mazutti MA, Kempka AP, Demiate IM (2016) Collagen extraction process. Int Food Res J 23(3):913–922Google Scholar
  138. 138.
    Schoof H, Apel J, Heschel I, Rau G (2001) Control of pore structure and size in freeze‐dried collagen sponges. J Biomed Mater Res 58(4):352–357CrossRefGoogle Scholar
  139. 139.
    Schröder A, Imig H, Peiper U, Neidel J, Petereit A (1988) Results of a bovine collagen vascular graft (Solcograft-P) in infra-inguinal positions. Eur J Vasc Surg 2(5):315–321CrossRefGoogle Scholar
  140. 140.
    Schuette HB, Kraeutler MJ, McCarty EC (2017) Matrix-assisted autologous chondrocyte transplantation in the knee: a systematic review of mid- to long-term clinical outcomes. Orthop J Sports Med 5(6):2325967117709250.  https://doi.org/10.1177/2325967117709250 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Schulz A, Depner C, Lefering R, Kricheldorff J, Kästner S, Fuchs PC, Demir E (2016) A prospective clinical trial comparing Biobrane® Dressilk® and PolyMem® dressings on partial-thickness skin graft donor sites. Burns 42(2):345–355.  https://doi.org/10.1016/j.burns.2014.12.016 CrossRefPubMedGoogle Scholar
  142. 142.
    Shahabeddin L, Berthod F, Damour O, Collombel C (1990) Characterization of skin reconstructed on a chitosan-cross-linked collagen-glycosaminoglycan matrix. Skin Pharmacol 3(2):107–114CrossRefGoogle Scholar
  143. 143.
    Shahrokhi S, Arno A, Jeschke MG (2014) The use of dermal substitutes in burn surgery: acute phase. Wound Repair Regen 22(1):14–22.  https://doi.org/10.1111/wrr.12119 CrossRefPubMedGoogle Scholar
  144. 144.
    Shen YH, Shoichet MS, Radisic M (2008) Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater 4(3):477–489.  https://doi.org/10.1016/j.actbio.2007.12.011 CrossRefPubMedGoogle Scholar
  145. 145.
    Shilo S, Roth S, Amzel T, Harel-Adar T, Tamir E, Grynspan F, Shoseyov O (2013) Cutaneous wound healing after treatment with plant-derived human recombinant collagen flowable gel. Tissue Eng Part A 19(13-14):1519–1526.  https://doi.org/10.1089/ten.TEA.2012.0345 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Shoseyov O, Posen Y, Grynspan F (2013) Human recombinant type I collagen produced in plants. Tissue Eng Part A 19(13-14):1527–1533.  https://doi.org/10.1089/ten.tea.2012.0347 CrossRefPubMedGoogle Scholar
  147. 147.
    Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958.  https://doi.org/10.1146/annurev.biochem.77.032207.120833 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Silvipriya KS, Krishna Kumar K, Bhat AR, Dinesh Kumar B, John A, Lakshmanan P (2015) Collagen: animal sources and biomedical application. J Appl Pharm Sci 5(3):123–127.  https://doi.org/10.7324/JAPS.2015.50322 CrossRefGoogle Scholar
  149. 149.
    Solanki NS1, Nowak KM, Mackie IP, Greenwood JE (2010) Using Biobrane: techniques to make life easier. Eplasty 10:e70PubMedPubMedCentralGoogle Scholar
  150. 150.
    Stachel I, Schwarzenbolz U, Henle T, Meyer M (2010) Cross-linking of type I collagen with microbial transglutaminase: identification of cross-linking sites. Biomacromolecules 11(3):698–705.  https://doi.org/10.1021/bm901284x CrossRefPubMedGoogle Scholar
  151. 151.
    Steffens GC, Yao C, Prével P, Markowicz M, Schenck P, Noah EM, Pallua N (2004) Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor. Tissue Eng 10(9-10):1502–1509.  https://doi.org/10.1089/ten.2004.10.1502 CrossRefPubMedGoogle Scholar
  152. 152.
    Steinwachs M, Peter CK (2007) Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: a prospective study with a 3-year follow-up. Arthroscopy 23(4):381–387.  https://doi.org/10.1016/j.arthro.2006.12.003 CrossRefPubMedGoogle Scholar
  153. 153.
    Still J, Glat P, Silverstein P, Griswold J, Mozingo D (2003) The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 29(8):837–841CrossRefGoogle Scholar
  154. 154.
    Subia B, Kundu J, Kundu S (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. INTECH Open Access Publisher 141–158.  https://doi.org/10.5772/8581 Google Scholar
  155. 155.
    Subramanian B, Rudym D, Cannizzaro C, Perrone R, Zhou J, Kaplan DL (2010) Tissue-engineered three-dimensional in vitro models for normal and diseased kidney. Tissue Eng Part A 16(9):2821–2831.  https://doi.org/10.1089/ten.TEA.2009.0595 CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Sulong AF, Hassan NH, Hwei NM, Lokanathan Y, Naicker AS, Abdullah S, Yusof MR, Htwe O, Idrus R, Haflah N (2014) Collagen-coated polylactic-glycolic acid (PLGA) seeded with neural-differentiated human mesenchymal stem cells as a potential nerve conduit. Adv Clin Exp Med 23(3):353–362CrossRefGoogle Scholar
  157. 157.
    Sun J, Vijayavenkataraman S, Liu H (2017) An overview of scaffold design and fabrication technology for engineered knee meniscus. Materials 10(1):E29.  https://doi.org/10.3390/ma10010029 CrossRefPubMedGoogle Scholar
  158. 158.
    Sung JH, Yu J, Luo D, Shuler ML, March JC (2011) Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11(3):389–392.  https://doi.org/10.1039/c0lc00273a CrossRefPubMedGoogle Scholar
  159. 159.
    Szot CS, Buchanan CF, Freeman JW, Rylander MN (2011) 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials 32(31):7905–7912.  https://doi.org/10.1016/j.biomaterials.2011.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Tabata Y, Miyao M, Ozeki M, Ikada Y (2000) Controlled release of vascular endothelial growth factor by use of collagen hydrogels. J Biomater Sci Polym Ed 11(9):915–930CrossRefGoogle Scholar
  161. 161.
    Techatanawat S, Surarit R, Suddhasthira T, Khovidhunkit SOP (2011) Type I collagen extracted from rat-tail and bovine Achilles tendon for dental application: a comparative study. Asian Biomed 5:787–798.  https://doi.org/10.5372/1905-7415.0506.111 CrossRefGoogle Scholar
  162. 162.
    Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27.  https://doi.org/10.1016/j.addr.2015.11.001 CrossRefGoogle Scholar
  163. 163.
    Tian Z, Li C, Duan L, Li G (2014) Physicochemical properties of collagen solutions cross-linked by glutaraldehyde. Connect Tissue Res 55(3):239–247.  https://doi.org/10.3109/03008207.2014.898066 CrossRefPubMedGoogle Scholar
  164. 164.
    Tuan RS (2007) A second-generation autologous chondrocyte implantation approach to the treatment of focal articular cartilage defects. Arthritis Res Ther 9(5):109.  https://doi.org/10.1186/ar2310 CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    van Zuijlen PP, van Trier AJ, Vloemans JF, Groenevelt F, Kreis RW, Middelkoop E (2000) Graft survival and effectiveness of dermal substitution in burns and reconstructive surgery in a one-stage grafting model. Plast Reconstr Surg 106(3):615–623CrossRefGoogle Scholar
  166. 166.
    Veeruraj A, Arumugam M, Balasubramanian T (2013) Isolation and characterization of thermostable collagen from the marine eel-fish (Evenchelys macrura). Process Biochem 48:1592–1602.  https://doi.org/10.1016/j.procbio.2013.07.011 CrossRefGoogle Scholar
  167. 167.
    Veves A, Falanga V, Armstrong DG, Sabolinski ML (2001) Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers. Diabetes Care 24:290–295CrossRefGoogle Scholar
  168. 168.
    Vigneswari S, Murugaiyah V, Kaur G, Khalil HA, Amirul A (2016) Simultaneous dual syringe electrospinning system using benign solvent to fabricate nanofibrous P (3HB-co-4HB)/collagen peptides construct as potential leave-on wound dressing. Mater Sci Eng C Mater Biol Appl 66:147–155.  https://doi.org/10.1016/j.msec.2016.03.102 CrossRefPubMedGoogle Scholar
  169. 169.
    Wang J, Sun B, Tian L, He X, Gao Q, Wu T, Ramakrishna S, Zheng J, Mo X (2017) Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton’s jelly of human umbilical cord. Mater Sci Eng C Mater Biol Appl 70(Pt 1):637–645.  https://doi.org/10.1016/j.msec.2016.09.044 CrossRefPubMedGoogle Scholar
  170. 170.
    Weber RA, Breidenbach WC, Brown RE, Jabaley ME, Mass DP (2000) A Randomized prospective study of Polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg 106(5):1036–1045CrossRefGoogle Scholar
  171. 171.
    Weigert R, Choughri H, Casoli V (2010) Management of severe hand wounds with integra® dermal regeneration template. J Hand Surg Eur 36(3):185–193.  https://doi.org/10.1177/1753193410387329 CrossRefGoogle Scholar
  172. 172.
    Whitford C, Movchan NV, Studer H, Elsheikh A (2017) A viscoelastic anisotropic hyperelastic constitutive model of the human cornea. Biomech Model Mechanobiol.  https://doi.org/10.1007/s10237-017-0942-2 CrossRefGoogle Scholar
  173. 173.
    Wichuda J, Sunthorn C, Busarakum P (2016) Comparison of the properties of collagen extracted from dried jellyfish and dried squid. Afr J Biotechnol 15(16):642–648.  https://doi.org/10.5897/AJB2016.15210 CrossRefGoogle Scholar
  174. 174.
    Wu T, Zhang J, Wang Y, Li D, Sun B, El-Hamshary H, Yin M, Mo X (2018) Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl 82:121–129.  https://doi.org/10.1016/j.msec.2017.08.072 CrossRefPubMedGoogle Scholar
  175. 175.
    Li X, Tan J, Xiao Z, Zhao Y, Han S, Liu D, Yin W, Li J, Li J, Wanggou S, Chen B, Ren C, Jiang X, Dai J (2017b) Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury. Sci Rep 7:43559.  https://doi.org/10.1038/srep43559 CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Yang H, Shu Z (2014) The extraction of collagen protein from pigskin. J Chem Pharm Res 6(2):683–687Google Scholar
  177. 177.
    Younesi M, Donmez BO, Islam A, Akkus O (2016) Heparinized collagen sutures for sustained delivery of PDGF-BB: delivery profile and effects on tendon-derived cells In-Vitro. Acta Biomater 41:100–109.  https://doi.org/10.1016/j.actbio.2016.05.036 CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Zahari NK, Idrus RBH, Chowdhury SR (2017) Laminin-Coated Poly(Methyl Methacrylate) (PMMA) nanofiber scaffold facilitates the enrichment of skeletal muscle myoblast population. Int J Mol Sci 18(11):E2242.  https://doi.org/10.3390/ijms18112242 CrossRefPubMedGoogle Scholar
  179. 179.
    Zaulyanov L1, Kirsner RS (2007) A review of a bi-layered living cell treatment (Apligraf ®) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging 2(1):93–98CrossRefGoogle Scholar
  180. 180.
    Zhang F, Wang A, Li Z, He S, Shao L (2011) Preparation and characterisation of collagen from freshwater fish scales. Food Nutr Sci 2(8):818–823.  https://doi.org/10.4236/fns.2011.28112 CrossRefGoogle Scholar
  181. 181.
    Zhang J, Duan R (2017) Characterisation of acid-soluble and pepsin-solubilised collagen from frog (Rana nigromaculata) skin. Int J Biol Macromol 101:638–642.  https://doi.org/10.1016/j.ijbiomac.2017.03.143 CrossRefPubMedGoogle Scholar
  182. 182.
    Zhang Z, Zhong X, Ji H, Tang Z, Bai J, Yao M, Hou J, Zheng M, Wood DJ, Sun J, Zhou SF, Liu A (2014) Matrix-induced autologous chondrocyte implantation for the treatment of chondral defects of the knees in Chinese patients. Drug Des Devel Ther 5(8):2439–2448.  https://doi.org/10.2147/DDDT.S71356 CrossRefGoogle Scholar
  183. 183.
    Zhou J, Cao C, Ma X, Lin J (2010) Electrospinning of silk fibroin and collagen for vascular tissue engineering. Int J Biol Macromol 47(4):514–519.  https://doi.org/10.1016/j.ijbiomac.2010.07.010 CrossRefPubMedGoogle Scholar
  184. 184.
    Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626.  https://doi.org/10.1586/erd.11.27 CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Zuyderhoff EM, Dupont-Gillain CC (2011) Nano-organized collagen layers obtained by adsorption on phase-separated polymer thin films. Langmuir 28(4):2007–2014.  https://doi.org/10.1021/la203842q CrossRefPubMedGoogle Scholar
  186. 186.
    Zwingenberger S, Langanke R, Vater C, Lee G, Niederlohmann E, Sensenschmidt M, Jacobi A, Bernhardt R, Muders M, Rammelt S, Knaack S, Gelinsky M, Günther KP, Goodman SB, Stiehler M (2016) The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model. J Biomed Mater Res A 104(9):2126–2134.  https://doi.org/10.1002/jbm.a.35744 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shiplu Roy Chowdhury
    • 1
  • Mohd Fauzi Mh Busra
    • 1
  • Yogeswaran Lokanathan
    • 1
  • Min Hwei Ng
    • 1
  • Jia Xian Law
    • 1
  • Ude Chinedu Cletus
    • 2
  • Ruszymah Binti Haji Idrus
    • 3
    Email author
  1. 1.Tissue Engineering Centre, Faculty of MedicineUniversity Kebangsaan MalaysiaKuala LumpurMalaysia
  2. 2.Bioartificial Organ and Regenerative Medicine UnitNational Defence University of MalaysiaKuala LumpurMalaysia
  3. 3.Department of Physiology, Faculty of MedicineUniversity Kebangsaan MalaysiaKuala LumpurMalaysia

Personalised recommendations