Skip to main content

A Novel Strategy for Simple and Robust Expansion of Human Pluripotent Stem Cells Using Botulinum Hemagglutinin

  • Chapter
  • First Online:
Novel Biomaterials for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1077))

Abstract

Clinical and industrial application of human pluripotent stem cells (hPSCs) has been hindered by the lack of robust strategies to sustain cultures in an undifferentiated state. Here, we describe a simple and robust method to culture and propagate hPSCs, which we anticipate will remove major roadblocks in investigating the basic properties of undifferentiated hPSCs and accelerate cell-based manufacturing. We also provide an overview of the use of botulinum hemagglutinin, an inhibitor of E-cadherin, to maintain and expand various hPSC lines in an undifferentiated state in different culture conditions. Hemagglutinin selectively removes cells that have lost the undifferentiated state, dissociates aggregates in situ, and is easy to use, scalable, and reproducible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasalizadeh S, Larijani MR, Samadian A, Baharvand H (2012) Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tiss Eng Part C Methods 18(11):831–851. https://doi.org/10.1089/ten.TEC.2012.0161

    Article  CAS  Google Scholar 

  2. Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y, Shariki K, Peri M, Blais I, Slutsky G, Revel M, Itskovitz-Eldor J (2010) Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev 6(2):248–259. https://doi.org/10.1007/s12015-010-9149-y

    Article  Google Scholar 

  3. Baum B, Georgiou M (2011) Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 192(6):907–917. https://doi.org/10.1083/jcb.201009141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, Husain M, Zandstra PW (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26(9):2300–2310. https://doi.org/10.1634/stemcells.2008-0183

    Article  PubMed  Google Scholar 

  5. Balzac F, Avolio M, Degani S, Kaverina I, Torti M, Silengo L, Small JV, Retta SF (2005) E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J Cell Sci 118(20):4765–4783. https://doi.org/10.1242/jcs.02584

    Article  CAS  PubMed  Google Scholar 

  6. Cavey M, Lecuit T (2009) Molecular bases of cell–cell junctions stability and dynamics. Cold Spring Harb Perspect Biol 1(5):a002998. https://doi.org/10.1101/cshperspect.a002998

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chang BS, Choi YJ, Kim JH (2015) Collagen complexes increase the efficiency of iPS cells generated using fibroblasts from adult mice. J Reprod Dev 61(2):145–153. https://doi.org/10.1262/jrd.2014-081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200(3):249–258. https://doi.org/10.1046/j.1469-7580.2002.00030.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hogan C, Serpente N, Cogram P, Hosking CR, Bialucha CU, Feller SM, Braga VM, Birchmeier W, Fujita Y (2004) Rap1 regulates the formation of E-cadherin-based cell–cell contacts. Mol Cell Biol 24(15):6690–6700. https://doi.org/10.1128/MCB.24.15.6690-6700.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haraguchi Y, Matsuura K, Shimizu T, Yamato M, Okano T (2015) Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. J Tiss Eng Regen Med 9(12):1363–1375. https://doi.org/10.1002/term.1761

    Article  CAS  Google Scholar 

  11. Hunt MM, Meng G, Rancourt DE, Gates ID, Kallos MS (2014) Factorial experimental design for the culture of human embryonic stem cells as aggregates in stirred suspension bioreactors reveals the potential for interaction effects between bioprocess parameters. Tissue Eng Part C Methods 20(1):76–89. https://doi.org/10.1089/ten.TEC.2013.0040

    Article  PubMed  Google Scholar 

  12. Kim M-H, Kino-oka M (2015) Maintenance of an undifferentiated state of human induced pluripotent stem cells through migration-dependent regulation of the balance between cell-cell and cell-substrate interactions. J Biosci Bioeng 119(6):617–622. https://doi.org/10.1016/j.jbiosc.2014.10.024

    Article  CAS  PubMed  Google Scholar 

  13. Kim M-H, Kino-oka M (2014) Switching between self-renewal and lineage commitment of human induced pluripotent stem cells via cell-substrate and cell-cell interactions on a dendrimer-immobilized surface. Biomaterials 35(22):5670–5678. https://doi.org/10.1016/j.biomaterials.2014.03.085

    Article  CAS  PubMed  Google Scholar 

  14. Kim M-H, Kino-oka M (2018) Bioprocessing strategies for pluripotent stem cells based on Waddington’s epigenetic landscape. Trends Biotechnol 36(1):89–104. https://doi.org/10.1016/j.tibtech.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  15. Kim M-H, Matsubara Y, Fujinaga Y, Kino-oka M (2017a) A simple and robust method for culturing human-induced pluripotent stem cells in an undifferentiated state using botulinum hemagglutinin. Biotechnol J 13(2). https://doi.org/10.1002/biot.201700384

    Article  Google Scholar 

  16. Kim M-H, Masuda E, Kino-oka M (2014) Kinetic analysis of deviation from the undifferentiated state in colonies of human induced pluripotent stem cells on feeder layers. Biotechnol Bioeng 111(6):1128–1138. https://doi.org/10.1002/bit.25188

    Article  CAS  PubMed  Google Scholar 

  17. Kim M-H, Sugawara Y, Fujinaga Y, Kino-oka M (2017b) Botulinum hemagglutinin-mediated selective removal of cells deviating from the undifferentiated state in hiPSC colonies. Sci Rep 7(1):93. https://doi.org/10.1038/s41598-017-00083-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kimbrel EA, Lanza R (2015) Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 14(10):681–692. https://doi.org/10.1038/nrd4738

    Article  CAS  PubMed  Google Scholar 

  19. Knox AL, Brown NH (2002) Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science 295(5558):1285–1288. https://doi.org/10.1126/science.1067549

    Article  CAS  PubMed  Google Scholar 

  20. Kopecki Z, O’Neill GM, Arkell RM, Cowin AJ (2011) Regulation of focal adhesions by Flightless I involves inhibition of paxillin phosphorylation via a Rac1-dependent pathway. J Invest Dermatol 131(7):1450–1459. https://doi.org/10.1038/jid.2011.69

    Article  CAS  PubMed  Google Scholar 

  21. Kovacs EM, Ali RG, McCormack AJ, Yap AS (2002) E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J Biol Chem 277(8):6708–6718. https://doi.org/10.1074/jbc.M109640200

    Article  CAS  PubMed  Google Scholar 

  22. Krtolica A, Genbacev O, Escobedo C, Zdravkovic T, Nordstrom A, Vabuena D, Nath A, Simon C, Mostov K, Fisher SJ (2007) Disruption of apical-basal polarity of human embryonic stem cells enhances hematoendothelial differentiation. Stem Cells 25(9):2215–2223. https://doi.org/10.1634/stemcells.2007-0230

    Article  CAS  PubMed  Google Scholar 

  23. Lee K, Zhong X, Gu S, Kruel AM, Dorner MB, Perry K, Rummel A, Dong M, Jin R (2014) Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. Science 344(6190):1405–1410. https://doi.org/10.1126/science.1253823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li L, Wang S, Jezierski A, Moalim-Nour L, Mohib K, Parks RJ, Retta SF, Wang L (2010) A unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. Stem Cells 28(2):247–257. https://doi.org/10.1002/stem.289

    Article  CAS  PubMed  Google Scholar 

  25. Li L, Bennett SA, Wang L (2012) Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr 6(1):59–70. https://doi.org/10.4161/cam.19583

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mellman I, Nelson WJ (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9(11):833–845. https://doi.org/10.1038/nrm2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nath SC, Horie M, Nagamori E, Kino-oka M (2017a) Size- and time-dependent growth properties of human induced pluripotent stem cells in the culture of single aggregate. J Biosci Bioeng 124(4):469–475. https://doi.org/10.1016/j.jbiosc.2017.05.006

    Article  CAS  PubMed  Google Scholar 

  28. Nath SC, Tokura T, Kim MH, Kino-oka M (2017b) Botulinum hemagglutinin-mediated in situ break-up of human induced pluripotent stem cell aggregates for high-density suspension culture. Biotechnol Bioeng 115(4):910–920. https://doi.org/10.1002/bit.26526

    Article  CAS  Google Scholar 

  29. Nie Y, Walsh P, Clarke DL, Rowley JA, Fellner T (2014) Scalable passaging of adherent human pluripotent stem cells. PLoS One 9(1):e88012. https://doi.org/10.1371/journal.pone.0088012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Retta SF, Balzac F, Avolio M (2006) Rap1: a turnabout for the crosstalk between cadherins and integrins. Eur J Cell Biol 85(3-4):283–293. https://doi.org/10.1016/j.ejcb.2005.09.007

    Article  CAS  PubMed  Google Scholar 

  31. Ohgushi M, Matsumura M, Eiraku M, Murakami K, Aramaki T, Nishiyama A, Muguruma K, Nakano T, Suga H, Ueno M, Ishizaki T, Suemori H, Narumiya S, Niwa H, Sasai Y (2010) Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell 7(2):225–239. https://doi.org/10.1016/j.stem.2010.06.018

    Article  CAS  PubMed  Google Scholar 

  32. Olmer R, Haase A, Merkert S, Cui W, Palecek J, Ran C, Kirschning A, Scheper T, Glage S, Miller K, Curnow EC, Hayes ES, Martin U (2010) Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res 5(1):51–64. https://doi.org/10.1016/j.scr.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  33. Olmer R, Lange A, Selzer S, Kasper C, Haverich A, Martin U, Zweigerdt R (2012) Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tiss Eng Part C Methods 18(10):772–784. https://doi.org/10.1089/ten.TEC.2011.0717

    Article  CAS  Google Scholar 

  34. Otsuji TG, Bin J, Yoshimura A, Tomura M, Tateyama D, Minami I, Yoshikawa Y, Aiba K, Heuser JE, Nishino T, Hasegawa K, Nakatsuji N (2014) A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Reports 2(5):734–745. https://doi.org/10.1016/j.stemcr.2014.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paull D, Sevilla A, Zhou H, Hahn AK, Kim H, Napolitano C, Tsankov A, Shang L, Krumholz K, Jagadeesan P, Woodard CM, Sun B, Vilboux T, Zimmer M, Forero E, Moroziewicz DN, Martinez H, Malicdan MC, Weiss KA, Vensand LB, Dusenberry CR, Polus H, Sy KT, Kahler DJ, Gahl WA, Solomon SL, Chang S, Meissner A, Eggan K, Noggle SA (2015) Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat Methods 12(9):885–892. https://doi.org/10.1038/nmeth.3507

    Article  CAS  PubMed  Google Scholar 

  36. Price LS, Hajdo-Milasinovic A, Zhao J, Zwartkruis FJ, Collard JG, Bos JL (2004) Rap1 regulates E-cadherin-mediated cell–cell adhesion. J Biol Chem 279(34):35127–35132. https://doi.org/10.1074/jbc.M404917200

    Article  CAS  PubMed  Google Scholar 

  37. Sachlos E, Auguste DT (2008) Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials 29(34):4471–4480. https://doi.org/10.1016/j.biomaterials.2008.08.012

    Article  CAS  PubMed  Google Scholar 

  38. Sathananthan H, Pera M, Trounson A (2002) The fine structure of human embryonic stem cells. Reprod Biomed Online 4(1):56–61

    Article  PubMed  Google Scholar 

  39. Singh H, Mok P, Balakrishnan T, Rahmat SN, Zweigerdt R (2010) Upscaling single cell-inoculated suspension culture. Stem Cell Res 4(3):165–179. https://doi.org/10.1016/j.scr.2010.03.001

    Article  CAS  PubMed  Google Scholar 

  40. Sugawara Y, Matsumura T, Takegahara Y, Jin Y, Tsukasaki Y, Takeichi M, Fujinaga Y (2010) Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. J Cell Biol 189(4):691–700. https://doi.org/10.1083/jcb.200910119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sugawara Y, Fujinaga Y (2011) The botulinum toxin complex meets E-cadherin on the way to its destination. Cell Adh Migr 5(1):34–36. https://doi.org/10.4161/cam.5.1.13574

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sugawara Y, Yutani M, Amatsu S, Matsumura T, Fujinaga Y (2014) Functional dissection of the Clostridium botulinum type B hemagglutinin complex: identification of the carbohydrate and E-cadherin binding sites. PLoS One 9(10):e111170. https://doi.org/10.1371/journal.pone.0111170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Suh HN, Han HJ (2011) Collagen I regulates the self-renewal of mouse embryonic stem cells through α2β1 integrin- and DDR1-dependent Bmi-1. J Cell Physiol 226(12):3422–3432

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  45. Trounson A (2006) The production and directed differentiation of human embryonic stem cells. Endocr Rev 27(2):208–219. https://doi.org/10.1210/er.2005-0016

    Article  PubMed  Google Scholar 

  46. Van Winkle AP, Gates ID, Kallos MS (2012) Mass transfer limitations in embryoid bodies during human embryonic stem cell differentiation. Cells Tissues Organs 196(1):34–47. https://doi.org/10.1159/000330691

    Article  PubMed  Google Scholar 

  47. Villa-Diaz LG, Ross AM, Lahaan J, Krebsbach PH (2013) Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31(1):1–7. https://doi.org/10.1002/stem.1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wakao S, Kitada M, Kuroda Y, Ogura F, Murakami T, Niwa A, Dezawa M (2012) Morphologic and gene expression criteria for identifying human induced pluripotent stem cells. PLoS One 7(12):e48677. https://doi.org/10.1371/journal.pone.0048677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686. https://doi.org/10.1038/nbt1310

    Article  CAS  PubMed  Google Scholar 

  50. Wu J, Rostami MR, Olaya DPC, Tzanakakis ES (2014) Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures. PLoS One 9(7):e102486. https://doi.org/10.1371/journal.pone.0102486

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xu Y, Zhu X, Hahm HS, Wei W, Hao E, Hayek A, Ding S (2010) Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci USA 107(18):8129–8134. https://doi.org/10.1073/pnas.1002024107

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U (2011) Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc 6(5):689–700. https://doi.org/10.1038/nprot.2011.318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by “Development of cell manufacturing and processing system for industrialization of regenerative medicine” (No. P14006), a project commissioned by Japan Agency for Medical Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Kino-oka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, MH., Kino-oka, M. (2018). A Novel Strategy for Simple and Robust Expansion of Human Pluripotent Stem Cells Using Botulinum Hemagglutinin. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_2

Download citation

Publish with us

Policies and ethics