A Novel Strategy for Simple and Robust Expansion of Human Pluripotent Stem Cells Using Botulinum Hemagglutinin

  • Mee-Hae Kim
  • Masahiro Kino-okaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)


Clinical and industrial application of human pluripotent stem cells (hPSCs) has been hindered by the lack of robust strategies to sustain cultures in an undifferentiated state. Here, we describe a simple and robust method to culture and propagate hPSCs, which we anticipate will remove major roadblocks in investigating the basic properties of undifferentiated hPSCs and accelerate cell-based manufacturing. We also provide an overview of the use of botulinum hemagglutinin, an inhibitor of E-cadherin, to maintain and expand various hPSC lines in an undifferentiated state in different culture conditions. Hemagglutinin selectively removes cells that have lost the undifferentiated state, dissociates aggregates in situ, and is easy to use, scalable, and reproducible.


Human pluripotent stem cells Botulinum hemagglutinin E-cadherin disruption Removal of differentiated cells Undifferentiated state High-density culture Suspension culture 



This work was supported by “Development of cell manufacturing and processing system for industrialization of regenerative medicine” (No. P14006), a project commissioned by Japan Agency for Medical Research and Development.


  1. 1.
    Abbasalizadeh S, Larijani MR, Samadian A, Baharvand H (2012) Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tiss Eng Part C Methods 18(11):831–851. CrossRefGoogle Scholar
  2. 2.
    Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y, Shariki K, Peri M, Blais I, Slutsky G, Revel M, Itskovitz-Eldor J (2010) Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev 6(2):248–259. CrossRefPubMedGoogle Scholar
  3. 3.
    Baum B, Georgiou M (2011) Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 192(6):907–917. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, Husain M, Zandstra PW (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26(9):2300–2310. CrossRefGoogle Scholar
  5. 5.
    Balzac F, Avolio M, Degani S, Kaverina I, Torti M, Silengo L, Small JV, Retta SF (2005) E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J Cell Sci 118(20):4765–4783. CrossRefPubMedGoogle Scholar
  6. 6.
    Cavey M, Lecuit T (2009) Molecular bases of cell–cell junctions stability and dynamics. Cold Spring Harb Perspect Biol 1(5):a002998. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chang BS, Choi YJ, Kim JH (2015) Collagen complexes increase the efficiency of iPS cells generated using fibroblasts from adult mice. J Reprod Dev 61(2):145–153. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200(3):249–258. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hogan C, Serpente N, Cogram P, Hosking CR, Bialucha CU, Feller SM, Braga VM, Birchmeier W, Fujita Y (2004) Rap1 regulates the formation of E-cadherin-based cell–cell contacts. Mol Cell Biol 24(15):6690–6700. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Haraguchi Y, Matsuura K, Shimizu T, Yamato M, Okano T (2015) Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. J Tiss Eng Regen Med 9(12):1363–1375. CrossRefGoogle Scholar
  11. 11.
    Hunt MM, Meng G, Rancourt DE, Gates ID, Kallos MS (2014) Factorial experimental design for the culture of human embryonic stem cells as aggregates in stirred suspension bioreactors reveals the potential for interaction effects between bioprocess parameters. Tissue Eng Part C Methods 20(1):76–89. CrossRefPubMedGoogle Scholar
  12. 12.
    Kim M-H, Kino-oka M (2015) Maintenance of an undifferentiated state of human induced pluripotent stem cells through migration-dependent regulation of the balance between cell-cell and cell-substrate interactions. J Biosci Bioeng 119(6):617–622. CrossRefPubMedGoogle Scholar
  13. 13.
    Kim M-H, Kino-oka M (2014) Switching between self-renewal and lineage commitment of human induced pluripotent stem cells via cell-substrate and cell-cell interactions on a dendrimer-immobilized surface. Biomaterials 35(22):5670–5678. CrossRefPubMedGoogle Scholar
  14. 14.
    Kim M-H, Kino-oka M (2018) Bioprocessing strategies for pluripotent stem cells based on Waddington’s epigenetic landscape. Trends Biotechnol 36(1):89–104. CrossRefPubMedGoogle Scholar
  15. 15.
    Kim M-H, Matsubara Y, Fujinaga Y, Kino-oka M (2017a) A simple and robust method for culturing human-induced pluripotent stem cells in an undifferentiated state using botulinum hemagglutinin. Biotechnol J 13(2). CrossRefGoogle Scholar
  16. 16.
    Kim M-H, Masuda E, Kino-oka M (2014) Kinetic analysis of deviation from the undifferentiated state in colonies of human induced pluripotent stem cells on feeder layers. Biotechnol Bioeng 111(6):1128–1138. CrossRefPubMedGoogle Scholar
  17. 17.
    Kim M-H, Sugawara Y, Fujinaga Y, Kino-oka M (2017b) Botulinum hemagglutinin-mediated selective removal of cells deviating from the undifferentiated state in hiPSC colonies. Sci Rep 7(1):93. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kimbrel EA, Lanza R (2015) Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 14(10):681–692. CrossRefPubMedGoogle Scholar
  19. 19.
    Knox AL, Brown NH (2002) Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science 295(5558):1285–1288. CrossRefPubMedGoogle Scholar
  20. 20.
    Kopecki Z, O’Neill GM, Arkell RM, Cowin AJ (2011) Regulation of focal adhesions by Flightless I involves inhibition of paxillin phosphorylation via a Rac1-dependent pathway. J Invest Dermatol 131(7):1450–1459. CrossRefPubMedGoogle Scholar
  21. 21.
    Kovacs EM, Ali RG, McCormack AJ, Yap AS (2002) E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J Biol Chem 277(8):6708–6718. CrossRefPubMedGoogle Scholar
  22. 22.
    Krtolica A, Genbacev O, Escobedo C, Zdravkovic T, Nordstrom A, Vabuena D, Nath A, Simon C, Mostov K, Fisher SJ (2007) Disruption of apical-basal polarity of human embryonic stem cells enhances hematoendothelial differentiation. Stem Cells 25(9):2215–2223. CrossRefPubMedGoogle Scholar
  23. 23.
    Lee K, Zhong X, Gu S, Kruel AM, Dorner MB, Perry K, Rummel A, Dong M, Jin R (2014) Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. Science 344(6190):1405–1410. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li L, Wang S, Jezierski A, Moalim-Nour L, Mohib K, Parks RJ, Retta SF, Wang L (2010) A unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. Stem Cells 28(2):247–257. CrossRefPubMedGoogle Scholar
  25. 25.
    Li L, Bennett SA, Wang L (2012) Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr 6(1):59–70. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mellman I, Nelson WJ (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9(11):833–845. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nath SC, Horie M, Nagamori E, Kino-oka M (2017a) Size- and time-dependent growth properties of human induced pluripotent stem cells in the culture of single aggregate. J Biosci Bioeng 124(4):469–475. CrossRefPubMedGoogle Scholar
  28. 28.
    Nath SC, Tokura T, Kim MH, Kino-oka M (2017b) Botulinum hemagglutinin-mediated in situ break-up of human induced pluripotent stem cell aggregates for high-density suspension culture. Biotechnol Bioeng 115(4):910–920. CrossRefGoogle Scholar
  29. 29.
    Nie Y, Walsh P, Clarke DL, Rowley JA, Fellner T (2014) Scalable passaging of adherent human pluripotent stem cells. PLoS One 9(1):e88012. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Retta SF, Balzac F, Avolio M (2006) Rap1: a turnabout for the crosstalk between cadherins and integrins. Eur J Cell Biol 85(3-4):283–293. CrossRefPubMedGoogle Scholar
  31. 31.
    Ohgushi M, Matsumura M, Eiraku M, Murakami K, Aramaki T, Nishiyama A, Muguruma K, Nakano T, Suga H, Ueno M, Ishizaki T, Suemori H, Narumiya S, Niwa H, Sasai Y (2010) Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell 7(2):225–239. CrossRefPubMedGoogle Scholar
  32. 32.
    Olmer R, Haase A, Merkert S, Cui W, Palecek J, Ran C, Kirschning A, Scheper T, Glage S, Miller K, Curnow EC, Hayes ES, Martin U (2010) Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res 5(1):51–64. CrossRefPubMedGoogle Scholar
  33. 33.
    Olmer R, Lange A, Selzer S, Kasper C, Haverich A, Martin U, Zweigerdt R (2012) Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tiss Eng Part C Methods 18(10):772–784. CrossRefGoogle Scholar
  34. 34.
    Otsuji TG, Bin J, Yoshimura A, Tomura M, Tateyama D, Minami I, Yoshikawa Y, Aiba K, Heuser JE, Nishino T, Hasegawa K, Nakatsuji N (2014) A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Reports 2(5):734–745. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Paull D, Sevilla A, Zhou H, Hahn AK, Kim H, Napolitano C, Tsankov A, Shang L, Krumholz K, Jagadeesan P, Woodard CM, Sun B, Vilboux T, Zimmer M, Forero E, Moroziewicz DN, Martinez H, Malicdan MC, Weiss KA, Vensand LB, Dusenberry CR, Polus H, Sy KT, Kahler DJ, Gahl WA, Solomon SL, Chang S, Meissner A, Eggan K, Noggle SA (2015) Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat Methods 12(9):885–892. CrossRefGoogle Scholar
  36. 36.
    Price LS, Hajdo-Milasinovic A, Zhao J, Zwartkruis FJ, Collard JG, Bos JL (2004) Rap1 regulates E-cadherin-mediated cell–cell adhesion. J Biol Chem 279(34):35127–35132. CrossRefPubMedGoogle Scholar
  37. 37.
    Sachlos E, Auguste DT (2008) Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials 29(34):4471–4480. CrossRefPubMedGoogle Scholar
  38. 38.
    Sathananthan H, Pera M, Trounson A (2002) The fine structure of human embryonic stem cells. Reprod Biomed Online 4(1):56–61CrossRefGoogle Scholar
  39. 39.
    Singh H, Mok P, Balakrishnan T, Rahmat SN, Zweigerdt R (2010) Upscaling single cell-inoculated suspension culture. Stem Cell Res 4(3):165–179. CrossRefPubMedGoogle Scholar
  40. 40.
    Sugawara Y, Matsumura T, Takegahara Y, Jin Y, Tsukasaki Y, Takeichi M, Fujinaga Y (2010) Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. J Cell Biol 189(4):691–700. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sugawara Y, Fujinaga Y (2011) The botulinum toxin complex meets E-cadherin on the way to its destination. Cell Adh Migr 5(1):34–36. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sugawara Y, Yutani M, Amatsu S, Matsumura T, Fujinaga Y (2014) Functional dissection of the Clostridium botulinum type B hemagglutinin complex: identification of the carbohydrate and E-cadherin binding sites. PLoS One 9(10):e111170. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Suh HN, Han HJ (2011) Collagen I regulates the self-renewal of mouse embryonic stem cells through α2β1 integrin- and DDR1-dependent Bmi-1. J Cell Physiol 226(12):3422–3432CrossRefGoogle Scholar
  44. 44.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Trounson A (2006) The production and directed differentiation of human embryonic stem cells. Endocr Rev 27(2):208–219. CrossRefPubMedGoogle Scholar
  46. 46.
    Van Winkle AP, Gates ID, Kallos MS (2012) Mass transfer limitations in embryoid bodies during human embryonic stem cell differentiation. Cells Tissues Organs 196(1):34–47. CrossRefPubMedGoogle Scholar
  47. 47.
    Villa-Diaz LG, Ross AM, Lahaan J, Krebsbach PH (2013) Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31(1):1–7. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wakao S, Kitada M, Kuroda Y, Ogura F, Murakami T, Niwa A, Dezawa M (2012) Morphologic and gene expression criteria for identifying human induced pluripotent stem cells. PLoS One 7(12):e48677. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686. CrossRefGoogle Scholar
  50. 50.
    Wu J, Rostami MR, Olaya DPC, Tzanakakis ES (2014) Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures. PLoS One 9(7):e102486. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Xu Y, Zhu X, Hahm HS, Wei W, Hao E, Hayek A, Ding S (2010) Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci USA 107(18):8129–8134. CrossRefPubMedGoogle Scholar
  52. 52.
    Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U (2011) Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc 6(5):689–700. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations