Skip to main content

Modification of Titanium Implant and Titanium Dioxide for Bone Tissue Engineering

  • Chapter
  • First Online:
Novel Biomaterials for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1077))

Abstract

Bone tissue engineering using titanium (Ti) implant and titanium dioxide (TiO2) with their modification is gaining increasing attention. Ti has been adopted as an implant material in dental and orthopedic fields due to its superior properties. However, it still requires modification in order to achieve robust osteointegration between the Ti implant and surrounding bone. To modify the Ti implant, numerous methods have been introduced to fabricate porous implant surfaces with a variety of coating materials. Among these, plasma spraying of hydroxyapatite (HA) has been the most commonly used with commercial success. Meanwhile, TiO2 nanotubes have been actively studied as the coating material for implants, and promising results have been reported about improving osteogenic activity around implants recently. Also porous three-dimensional constructs based on TiO2 have been proposed as scaffolding material with high biocompatibility and osteoconductivity in large bone defects. However, the use of the TiO2 scaffolds in load-bearing environment is somewhat limited. In order to optimize the TiO2 scaffolds, studies have tried to combine various materials with TiO2 scaffolds including drug, mesenchymal stem cells, Al2O3-SiO2 solid and HA. This article will shortly introduce the properties of Ti and Ti-based implants with their modification, and review the progress of bone tissue engineering using the TiO2 nanotubes and scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adell R, Eriksson B, Lekholm U, Branemark PI, Jemt T (1990) Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 5(4):347–359

    CAS  PubMed  Google Scholar 

  2. Amini AA, Nair LS (2012) Injectable hydrogels for bone and cartilage repair. Biomed Mater 7(2):024105. https://doi.org/10.1088/1748-6041/7/2/024105

    Article  CAS  PubMed  Google Scholar 

  3. Andersen OZ, Offermanns V, Sillassen M, Almtoft KP, Andersen IH, Sorensen S, Foss M (2013) Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials 34(24):5883–5890. https://doi.org/10.1016/j.biomaterials.2013.04.031

    Article  CAS  PubMed  Google Scholar 

  4. Awad NK, Edwards SL, Morsi YS (2017) A review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implants. Mater Sci Eng C Mater Biol Appl 76:1401–1412. https://doi.org/10.1016/j.msec.2017.02.150

    Article  CAS  PubMed  Google Scholar 

  5. Bae SE, Choi J, Joung YK, Park K, Han DK (2012) Controlled release of bone morphogenetic protein (BMP)-2 from nanocomplex incorporated on hydroxyapatite-formed titanium surface. J Control Release 160(3):676–684. https://doi.org/10.1016/j.jconrel.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  6. Bauer S, Park J, Faltenbacher J, Berger S, von der Mark K, Schmuki P (2009) Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays. Integr Biol (Camb) 1(8–9):525–532. https://doi.org/10.1039/b908196h

    Article  CAS  Google Scholar 

  7. Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S (2010) Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92(3):1218–1224. https://doi.org/10.1002/jbm.a.32463

    Article  CAS  PubMed  Google Scholar 

  8. Capello WN, D’Antonio JA, Manley MT, Feinberg JR (1998) Hydroxyapatite in total hip arthroplasty. Clinical results and critical issues. Clin Orthop Relat Res 355:200–211

    Article  Google Scholar 

  9. Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11(6):471–491. https://doi.org/10.1016/j.spinee.2011.04.023

    Article  PubMed  Google Scholar 

  10. Carter DR, Hayes WC (1976) Bone compressive strength: the influence of density and strain rate. Science 194(4270):1174–1176

    Article  CAS  PubMed  Google Scholar 

  11. Chen XB, Li YC, Du Plessis J, Hodgson PD, Wen C (2009) Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomater 5(5):1808–1820. https://doi.org/10.1016/j.actbio.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  12. Chien CY, Tsai WB (2013) Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces 5(15):6975–6983. https://doi.org/10.1021/am401071f

    Article  CAS  PubMed  Google Scholar 

  13. Choi BH, Choi YS, Kang DG, Kim BJ, Song YH, Cha HJ (2010) Cell behavior on extracellular matrix mimic materials based on mussel adhesive protein fused with functional peptides. Biomaterials 31(34):8980–8988. https://doi.org/10.1016/j.biomaterials.2010.08.027

    Article  CAS  PubMed  Google Scholar 

  14. Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmen A, Ellingsen JE (2006) Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Biomaterials 27(6):926–936. https://doi.org/10.1016/j.biomaterials.2005.07.009

    Article  CAS  PubMed  Google Scholar 

  15. Daculsi G, Legeros RZ, Nery E, Lynch K, Kerebel B (1989) Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res 23(8):883–894. https://doi.org/10.1002/jbm.820230806

    Article  CAS  PubMed  Google Scholar 

  16. Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(Suppl 2):S3–S15. https://doi.org/10.1016/j.injury.2011.06.015

    Article  PubMed  Google Scholar 

  17. Elizabeth E, Baranwal G, Krishnan AG, Menon D, Nair M (2014) ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. Nanotechnology 25(11):115101. https://doi.org/10.1088/0957-4484/25/11/115101

    Article  CAS  PubMed  Google Scholar 

  18. Ferreira JR, Hirsch ML, Zhang L, Park Y, Samulski RJ, Hu WS, Ko CC (2013) Three-dimensional multipotent progenitor cell aggregates for expansion, osteogenic differentiation and ‘in vivo’ tracing with AAV vector serotype 6. Gene Ther 20(2):158–168. https://doi.org/10.1038/gt.2012.16

    Article  CAS  PubMed  Google Scholar 

  19. Fostad G, Hafell B, Førde A, Dittmann R, Sabetrasekh R, Will J, Ellingsen JE, Lyngstadaas SP, Haugen HJ (2009) Loadable TiO2 scaffolds—a correlation study between processing parameters, micro CT analysis and mechanical strength. J Eur Ceram Soc 29(13):2773–2781. https://doi.org/10.1016/j.jeurceramsoc.2009.03.017

    Article  CAS  Google Scholar 

  20. Frandsen CJ, Brammer KS, Jin S (2013) Variations to the nanotube surface for bone regeneration. Int J Biomater 2013:513680. https://doi.org/10.1155/2013/513680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frayssinet P, Hardy D, Rouquet N, Giammara B, Guilhem A, Hanker J (1992) New observations on middle term hydroxyapatite-coated titanium alloy hip prostheses. Biomaterials 13(10):668–674

    Article  CAS  PubMed  Google Scholar 

  22. Gao Y, Zou S, Liu X, Bao C, Hu J (2009) The effect of surface immobilized bisphosphonates on the fixation of hydroxyapatite-coated titanium implants in ovariectomized rats. Biomaterials 30(9):1790–1796. https://doi.org/10.1016/j.biomaterials.2008.12.025

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Alonso MC, Saldana L, Valles G, Gonzalez-Carrasco JL, Gonzalez-Cabrero J, Martinez ME, Gil-Garay E, Munuera L (2003) In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials 24(1):19–26

    Article  CAS  PubMed  Google Scholar 

  24. Gaviria L, Salcido JP, Guda T, Ong JL (2014) Current trends in dental implants. J Korean Assoc Oral Maxillofac Surg 40(2):50–60. https://doi.org/10.5125/jkaoms.2014.40.2.50

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gerhardt LC, Jell GM, Boccaccini AR (2007) Titanium dioxide (TiO(2)) nanoparticles filled poly(D,L lactid acid) (PDLLA) matrix composites for bone tissue engineering. J Mater Sci Mater Med 18(7):1287–1298. https://doi.org/10.1007/s10856-006-0062-5

    Article  CAS  PubMed  Google Scholar 

  26. Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–3183. https://doi.org/10.1016/j.biomaterials.2013.01.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gultepe E, Nagesha D, Sridhar S, Amiji M (2010) Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev 62(3):305–315. https://doi.org/10.1016/j.addr.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  28. Guo CY, Hong Tang AT, Hon Tsoi JK, Matinlinna JP (2014) Effects of different blasting materials on charge generation and decay on titanium surface after sandblasting. J Mech Behav Biomed Mater 32:145–154. https://doi.org/10.1016/j.jmbbm.2013.12.026

    Article  CAS  PubMed  Google Scholar 

  29. Haugen H, Will J, Köhler A, Hopfner U, Aigner J, Wintermantel E (2004) Ceramic TiO2-foams: characterisation of a potential scaffold. J Eur Ceram Soc 24(4):661–668. https://doi.org/10.1016/S0955-2219(03)00255-3

    Article  CAS  Google Scholar 

  30. Haugen HJ, Monjo M, Rubert M, Verket A, Lyngstadaas SP, Ellingsen JE, Rønold HJ, Wohlfahrt JC (2013) Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model. Acta Biomater 9(2):5390–5399. https://doi.org/10.1016/j.actbio.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  31. He J, Huang T, Gan L, Zhou Z, Jiang B, Wu Y, Wu F, Gu Z (2012) Collagen-infiltrated porous hydroxyapatite coating and its osteogenic properties: in vitro and in vivo study. J Biomed Mater Res A 100(7):1706–1715. https://doi.org/10.1002/jbm.a.34121

    Article  CAS  PubMed  Google Scholar 

  32. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017. https://doi.org/10.1126/science.1067404

    Article  CAS  PubMed  Google Scholar 

  33. Hing KA, Annaz B, Saeed S, Revell PA, Buckland T (2005) Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med 16(5):467–475. https://doi.org/10.1007/s10856-005-6988-1

    Article  CAS  PubMed  Google Scholar 

  34. Holbig E, Dubrovinsky L, Miyajima N, Swamy V, Wirth R, Prakapenka V, Kuznetsov A (2008) Stiffening of nanoscale anatase Ti0. 9Zr0. 1O2 upon multiple compression cycles. J Phys Chem Solids 69(9):2230–2233. https://doi.org/10.1016/j.jpcs.2008.04.022

    Article  CAS  Google Scholar 

  35. Hong S, Yang K, Kang B, Lee C, Song IT, Byun E, Park KI, Cho S, Lee H (2013) Hyaluronic acid catechol: a biopolymer exhibiting a pH-dependent adhesive or cohesive property for human neural stem cell engineering. Adv Funct Mater 23:1774–1780. https://doi.org/10.1002/adfm.201202365

    Article  CAS  Google Scholar 

  36. Hu Y, Cai K, Luo Z, Zhang R, Yang L, Deng L, Jandt KD (2009) Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layer technique. Biomaterials 30(21):3626–3635. https://doi.org/10.1016/j.biomaterials.2009.03.037

    Article  CAS  PubMed  Google Scholar 

  37. Jain A, Kumar S, Aggarwal AN, Jajodia N (2015) Augmentation of bone healing in delayed and atrophic nonunion of fractures of long bones by partially decalcified bone allograft (decal bone). Indian J Orthop 49(6):637–642. https://doi.org/10.4103/0019-5413.168764

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jokinen M, Patsi M, Rahiala H, Peltola T, Ritala M, Rosenholm JB (1998) Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method. J Biomed Mater Res 42(2):295–302

    Article  CAS  PubMed  Google Scholar 

  39. Kaluderovic MR, Schreckenbach JP, Graf HL (2016) Titanium dental implant surfaces obtained by anodic spark deposition – from the past to the future. Mater Sci Eng C Mater Biol Appl 69:1429–1441. https://doi.org/10.1016/j.msec.2016.07.068

    Article  CAS  PubMed  Google Scholar 

  40. Kim SS, Gwak SJ, Kim BS (2008) Orthotopic bone formation by implantation of apatite-coated poly(lactide-co-glycolide)/hydroxyapatite composite particulates and bone morphogenetic protein-2. J Biomed Mater Res A 87(1):245–253. https://doi.org/10.1002/jbm.a.31782

    Article  CAS  PubMed  Google Scholar 

  41. Kimura Y, Miyazaki N, Hayashi N, Otsuru S, Tamai K, Kaneda Y, Tabata Y (2010) Controlled release of bone morphogenetic protein-2 enhances recruitment of osteogenic progenitor cells for de novo generation of bone tissue. Tissue Eng Part A 16(4):1263–1270. https://doi.org/10.1089/ten.TEA.2009.0322

    Article  CAS  PubMed  Google Scholar 

  42. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23(7):844–854. https://doi.org/10.1016/j.dental.2006.06.025

    Article  CAS  PubMed  Google Scholar 

  43. Lee JS, Kim K, Park JP, Cho SW, Lee H (2017) Role of pyridoxal 5′-phosphate at the titanium implant Interface in vivo: increased Hemophilicity, inactive platelet adhesion, and osteointegration. Adv Healthc Mater 6(5). https://doi.org/10.1002/adhm.201600962

    Article  Google Scholar 

  44. LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98

    Article  Google Scholar 

  45. Leivo J, Meretoja V, Vippola M, Levanen E, Vallittu P, Mantyla TA (2006) Sol-gel derived aluminosilicate coatings on alumina as substrate for osteoblasts. Acta Biomater 2(6):659–668. https://doi.org/10.1016/j.actbio.2006.06.001

    Article  PubMed  Google Scholar 

  46. Lewallen EA, Riester SM, Bonin CA, Kremers HM, Dudakovic A, Kakar S, Cohen RC, Westendorf JJ, Lewallen DG, van Wijnen AJ (2015) Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B Rev 21(2):218–230. https://doi.org/10.1089/ten.TEB.2014.0333

    Article  PubMed  Google Scholar 

  47. Lewandowska-Lancucka J, Fiejdasz S, Rodzik L, Koziel M, Nowakowska M (2015) Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering. Biomed Mater 10(1):015020. https://doi.org/10.1088/1748-6041/10/1/015020

    Article  CAS  PubMed  Google Scholar 

  48. Lifland MI, Kim DK, Okazaki K (1993) Mechanical properties of a Ti-6A1-4V dental implant produced by electro-discharge compaction. Clin Mater 14(1):13–19

    Article  CAS  PubMed  Google Scholar 

  49. Lin L, Wang H, Ni M, Rui Y, Cheng T, Cheng C, Pan X, Li G, Lin C (2014) Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures. J Orthop Translat 2(1):35–42. https://doi.org/10.1016/j.jot.2013.08.001

    Article  Google Scholar 

  50. Liu Y, Wu G, de Groot K (2010) Biomimetic coatings for bone tissue engineering of critical-sized defects. J R Soc Interface 7(Suppl 5):S631–S647. https://doi.org/10.1098/rsif.2010.0115.focus

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B (1999) Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 10(2):111–120

    Article  CAS  PubMed  Google Scholar 

  52. Maquet V, Jerome R (1997) Design of macroporous biodegradable polymer scaffolds for cell transplantation. Mater Sci Forum 250:15–42. https://doi.org/10.4028/www.scientific.net/MSF.250.15

    Article  CAS  Google Scholar 

  53. Mas-Moruno C, Espanol M, Montufar EB, Mestres G, Aparicio C, Javier GF, Ginebra M (2013) Bioactive ceramic and metallic surfaces for bone engineering. Biomater Surf Sci 12:337–374. https://doi.org/10.1002/9783527649600.ch12

    Article  Google Scholar 

  54. Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC (2009) Biology of implant osseointegration. J Musculoskelet Neuronal Interact 9(2):61–71

    CAS  PubMed  Google Scholar 

  55. Miyazaki M, Tsumura H, Wang JC, Alanay A (2009) An update on bone substitutes for spinal fusion. Eur Spine J 18(6):783–799. https://doi.org/10.1007/s00586-009-0924-x

    Article  PubMed  PubMed Central  Google Scholar 

  56. Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31(3):461–466. https://doi.org/10.1016/j.biomaterials.2009.09.063

    Article  CAS  PubMed  Google Scholar 

  57. Naga SM, El-Kady AM, El-Maghraby HF, Awaad M, Detsch R, Boccaccini AR (2014) Novel porous Al2O3-SiO2-TiO2 bone grafting materials: formation and characterization. J Biomater Appl 28(6):813–824. https://doi.org/10.1177/0885328213483634

    Article  CAS  PubMed  Google Scholar 

  58. Nair M, Elizabeth E (2015) Applications of Titania nanotubes in bone biology. J Nanosci Nanotechnol 15(2):939–955

    Article  CAS  PubMed  Google Scholar 

  59. Nayab SN, Jones FH, Olsen I (2005) Effects of calcium ion implantation on human bone cell interaction with titanium. Biomaterials 26(23):4717–4727. https://doi.org/10.1016/j.biomaterials.2004.11.044

    Article  CAS  PubMed  Google Scholar 

  60. Nishiguchi S, Kato H, Neo M, Oka M, Kim HM, Kokubo T, Nakamura T (2001) Alkali- and heat-treated porous titanium for orthopedic implants. J Biomed Mater Res 54(2):198–208

    Article  CAS  PubMed  Google Scholar 

  61. Nygren H, Eriksson C, Lausmaa J (1997a) Adhesion and activation of platelets and polymorphonuclear granulocyte cells at TiO2 surfaces. J Lab Clin Med 129(1):35–46

    Article  CAS  PubMed  Google Scholar 

  62. Nygren H, Tengvall P, Lundstrom I (1997b) The initial reactions of TiO2 with blood. J Biomed Mater Res 34(4):487–492

    Article  CAS  PubMed  Google Scholar 

  63. Pagel M, Hassert R, John T, Braun K, Wießler M, Abel B, Beck-Sickinger AG (2016) Multifunctional coating improves cell adhesion on titanium by using cooperatively acting peptides. Angew Chem Int Ed Engl 55(15):4826–4830. https://doi.org/10.1002/anie.201511781

    Article  CAS  PubMed  Google Scholar 

  64. Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686–1691. https://doi.org/10.1021/nl070678d

    Article  CAS  PubMed  Google Scholar 

  65. Park JW, Kim YJ, Jang JH, Song H (2010) Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces. Clin Oral Implants Res 21(11):1278–1287. https://doi.org/10.1111/j.1600-0501.2010.01944.x

    Article  PubMed  Google Scholar 

  66. Petrie TA, Raynor JE, Dumbauld DW, Lee TT, Jagtap S, Templeman KL, Collard DM, García AJ (2010) Multivalent integrin-specific ligands enhance tissue healing and biomaterial integration. Sci Transl Med 2(45):45ra60. https://doi.org/10.1126/scitranslmed.3001002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20(1):1–25

    Article  CAS  PubMed  Google Scholar 

  68. Popat KC, Leoni L, Grimes CA, Desai TA (2007) Influence of engineered Titania nanotubular surfaces on bone cells. Biomaterials 28(21):3188–3197. https://doi.org/10.1016/j.biomaterials.2007.03.020

    Article  CAS  PubMed  Google Scholar 

  69. Pullisaar H, Reseland JE, Haugen HJ, Brinchmann JE, Ostrup E (2014) Simvastatin coating of TiO(2) scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Biochem Biophys Res Commun 447(1):139–144. https://doi.org/10.1016/j.bbrc.2014.03.133

    Article  CAS  PubMed  Google Scholar 

  70. Qiao C, Zhang K, Jin H, Miao L, Shi C, Liu X, Yuan A, Liu J, Li D, Zheng C, Zhang G, Li X, Yang B, Sun H (2013) Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo. Int J Nanomedicine 8:2985–2995. https://doi.org/10.2147/ijn.s45184

    Article  PubMed  PubMed Central  Google Scholar 

  71. Richardson WC Jr, Klawitter JJ, Sauer BW, Pruitt JR, Hulbert SF (1975) Soft tissue response to four dense ceramic materials and two clinically used biomaterials. J Biomed Mater Res 9(4):73–80. https://doi.org/10.1002/jbm.820090411

    Article  CAS  PubMed  Google Scholar 

  72. Sabetrasekh R, Tiainen H, Reseland JE, Will J, Ellingsen JE, Lyngstadaas SP, Haugen HJ (2010) Impact of trace elements on biocompatibility of titanium scaffolds. Biomed Mater 5(1):15003. https://doi.org/10.1088/1748-6041/5/1/015003

    Article  CAS  PubMed  Google Scholar 

  73. Sabetrasekh R, Tiainen H, Lyngstadaas SP, Reseland J, Haugen H (2011) A novel ultra-porous titanium dioxide ceramic with excellent biocompatibility. J Biomater Appl 25(6):559–580. https://doi.org/10.1177/0885328209354925

    Article  CAS  PubMed  Google Scholar 

  74. Saleh MM, Touny AH, Al-Omair MA, Saleh MM (2016) Biodegradable/biocompatible coated metal implants for orthopedic applications. Biomed Mater Eng 27(1):87–99. https://doi.org/10.3233/bme-161568

    Article  CAS  PubMed  Google Scholar 

  75. Smith YR, Ray RS, Carlson K, Sarma B, Misra M (2013) Self-ordered titanium dioxide nanotube arrays: anodic synthesis and their photo/electro-catalytic applications. Materials (Basel) 6(7):2892–2957. https://doi.org/10.3390/ma6072892

    Article  CAS  Google Scholar 

  76. Thieme M, Wieters KP, Bergner F, Scharnweber D, Worch H, Ndop J, Kim TJ, Grill W (2001) Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants. J Mater Sci Mater Med 12(3):225–231

    Article  CAS  PubMed  Google Scholar 

  77. Tiainen H, Lyngstadaas SP, Ellingsen JE, Haugen HJ (2010) Ultra-porous titanium oxide scaffold with high compressive strength. J Mater Sci Mater Med 21(10):2783–2792. https://doi.org/10.1007/s10856-010-4142-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tiainen H, Wohlfahrt JC, Verket A, Lyngstadaas SP, Haugen HJ (2012) Bone formation in TiO2 bone scaffolds in extraction sockets of minipigs. Acta Biomater 8(6):2384–2391. https://doi.org/10.1016/j.actbio.2012.02.020

    Article  CAS  PubMed  Google Scholar 

  79. Vasilev K, Simovic S, Losic D, Griesser HJ, Griesser S, Anselme K, Ploux L (2010) Platforms for controlled release of antibacterial agents facilitated by plasma polymerization. Conf Proc IEEE Eng Med Biol Soc 2010:811–814. https://doi.org/10.1109/iembs.2010.5626566

    Article  Google Scholar 

  80. von der Mark K, Park J, Bauer S, Schmuki P (2010) Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res 339(1):131–153. https://doi.org/10.1007/s00441-009-0896-5

    Article  CAS  PubMed  Google Scholar 

  81. von Wilmowsky C, Bauer S, Lutz R, Meisel M, Neukam FW, Toyoshima T, Schmuki P, Nkenke E, Schlegel KA (2009) In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. J Biomed Mater Res B Appl Biomater 89(1):165–171. https://doi.org/10.1002/jbm.b.31201

    Article  CAS  Google Scholar 

  82. von Wilmowsky C, Bauer S, Roedl S, Neukam FW, Schmuki P, Schlegel KA (2012) The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo. Clin Oral Implants Res 23(3):359–366. https://doi.org/10.1111/j.1600-0501.2010.02139.x

    Article  Google Scholar 

  83. Wagoner Johnson AJ, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7(1):16–30. https://doi.org/10.1016/j.actbio.2010.07.012

    Article  CAS  PubMed  Google Scholar 

  84. Wang X, Li Y, Hodgson PD, Wen C (2010) Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering. Tissue Eng Part A 16(1):309–316. https://doi.org/10.1089/ten.TEA.2009.0074

    Article  CAS  PubMed  Google Scholar 

  85. Wang N, Li H, Lu W, Li J, Wang J, Zhang Z, Liu Y (2011) Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 32(29):6900–6911. https://doi.org/10.1016/j.biomaterials.2011.06.023

    Article  CAS  PubMed  Google Scholar 

  86. Wang Q, Huang JY, Li HQ, Chen Z, Zhao AZ, Wang Y, Zhang KQ, Sun HT, Al-Deyab SS, Lai YK (2016) TiO2 nanotube platforms for smart drug delivery: a review. Int J Nanomedicine 11:4819–4834. https://doi.org/10.2147/ijn.s108847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wei Q, Zhang F, Li J, Li B, Zhao C (2010) Oxidant-induced dopamine polymerization for multifunctional coatings. Polym Chem 1:1430–1433. https://doi.org/10.1039/C0PY00215A

    Article  CAS  Google Scholar 

  88. Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Processing of biocompatible porous Ti and mg. Scr Mater 45(10):1147–1153. https://doi.org/10.1016/S1359-6462(01)01132-0

    Article  CAS  Google Scholar 

  89. Wongwitwichot P, Kaewsrichan J, Chua KH, Ruszymah BH (2010) Comparison of TCP and TCP/HA hybrid scaffolds for osteoconductive activity. Open Biomed Eng J 4:279–285. https://doi.org/10.2174/1874120701004010279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yelin E, Weinstein S, King T (2016) The burden of musculoskeletal diseases in the United States. Semin Arthritis Rheum 46(3):259–260. https://doi.org/10.1016/j.semarthrit.2016.07.013

    Article  PubMed  Google Scholar 

  91. Yu J, Wei W, Menyo MS, Masic A, Waite JH, Israelachvili JN (2013) Adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH. Biomacromolecules 14(4):1072–1077. https://doi.org/10.1021/bm301908y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zena JW, van Williams G, Frederik C, Russell G, Gwendolen CR (2015) Porous titanium for dental implant application. Metals 5(4):1902–1920. https://doi.org/10.3390/met5041902

    Article  CAS  Google Scholar 

  93. Zhang BG, Myers DE, Wallace GG, Brandt M, Choong PF (2014) Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci 15(7):11878–11921. https://doi.org/10.3390/ijms150711878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou Y, Ni Y, Liu Y, Zeng B, Xu Y, Ge W (2010) The role of simvastatin in the osteogenesis of injectable tissue-engineered bone based on human adipose-derived stromal cells and platelet-rich plasma. Biomaterials 31(20):5325–5335. https://doi.org/10.1016/j.biomaterials.2010.03.037

    Article  CAS  PubMed  Google Scholar 

  95. Zhu X, Zhang H, Zhang X, Ning C, Wang Y (2017) In vitro study on the osteogenesis enhancement effect of BMP-2 incorporated biomimetic apatite coating on titanium surfaces. Dent Mater J 36(5):677–685. https://doi.org/10.4012/dmj.2016-189

    Article  PubMed  Google Scholar 

  96. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 62(2):175–184. https://doi.org/10.1002/jbm.10270

    Article  CAS  PubMed  Google Scholar 

  97. Zwilling V, Aucouturier M, Darque-Ceretti E (1999) Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim Acta 45(6):921–929. https://doi.org/10.1016/S0013-4686(99)00283-2

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, South Korea (grant number HI16C1559) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number NRF-2016R1D1A1A02937040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soonchul Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahn, TK. et al. (2018). Modification of Titanium Implant and Titanium Dioxide for Bone Tissue Engineering. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_19

Download citation

Publish with us

Policies and ethics