Skip to main content

Recent Trends in Hydroxyapatite (HA) Synthesis and the Synthesis Report of Nanostructure HA by Hydrothermal Reaction

  • Chapter
  • First Online:
Novel Biomaterials for Regenerative Medicine

Abstract

This research summary the trend in synthesis of Hydroxyapatite (HA) using different route such as dry method and wet method (co-precipitation method; emulsion method, hydrolysis method, sol-gel method, hydrothermal method). In addition, the research group also report the technique to synthesis nano-structure HA by hydrothermal reaction using Ca(OH)2 and H3PO4 with the Ca/P molar ratio of 1.67. The mixture after homogenized for 2 h, follow by hydrothermal reaction at different hydrothermal temperature time (100 °C, 150 °C, and 180 °C) and different hydrothermal reaction time (0 h, 12 h and 24 h). The 180 °C-hydrothermal treated-HA has needle-like shape with the diameter of 10 ~ 20 nm and length of below 100 nm, which is similar with human bone. For the hydrothermal reaction, temperature is the key to form nanostructure HA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Driscoll P (2006) Advanced medical technology [Online]. [Accessed 2 Mar 2012]. Available from World Wide Web: http://mediligence.com/blog/?cat=5

  2. Zhao B, Hu H, Mandal SK, Haddon RC (2005) A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem Mater 17:3235–3241. http://sci-hub.tw/10.1021/cm0500399

    Article  CAS  Google Scholar 

  3. Wagner DE, Eisenmann KM, Nestor-Kalinoski AL, Bhaduri SB (2013) A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications. Acta Biomaterialia 9:8422–8432. http://sci-hub.tw/10.1016/j.actbio.2013.05.033

    Article  CAS  Google Scholar 

  4. Wei X, Yates MZ (2012) Yttrium-doped hydroxyapatite membranes with high proton conductivity. Chem Mater 24:1738–1743. http://sci-hub.tw/10.1021/cm203355h

    Article  CAS  Google Scholar 

  5. Watanabe Y, Ikoma T, Suetsugu Y, Yamada H, Tamura K, Komatsu Y, Tanaka J, Moriyoshi Y (2006) The densification of zeolite/apatite composites using a pulse electric current sintering method: a long-term assurance material for the disposal of radioactive waste. J Eur Ceram Soc 26:481–486 http://sci-hub.tw/10.1016/j.jeurceramsoc.2005.07.032

    Article  CAS  Google Scholar 

  6. Power AS (1969) Crystal chemistry of bone minerals. Phys Rev 49:760–792. http://sci-hub.tw/10.1152/physrev.1969.49.4.760

    Google Scholar 

  7. Radin SR, Ducheyne P (1993) The effect of calcium phosphate ceramic composition and structure on in-vitro behavior. J Biomed Mater Res 27:35. http://sci-hub.tw/10.1002/jbm.820270105

    Article  CAS  Google Scholar 

  8. Bett JAS, Christener LG, Hall WK (1967) Hydrogen held by solids XII. Hydroxyapatite catalysts. J Am Chem 89:5535. http://sci-hub.tw/10.1021/ja00998a003

    Article  CAS  Google Scholar 

  9. Joris SJ, Amberg CH et al (1971) J Phys Chem 75:3167. http://sci-hub.tw/10.1021/j100689a024

    Article  CAS  Google Scholar 

  10. Korber F, Trömel GZ (1932) The formation of HA through a solid-state reaction between tri-and tetracalcium phosphates. Electrochem Soc 38:578–580

    CAS  Google Scholar 

  11. Trömel GZ (1932) Untersuchungen über die Bildung eines halogenfreien Apatits aus basischen Calciumphosphaten. Physik Chem 158:422–432. http://sci-hub.tw/10.1515/zpch-1932-15832

    Google Scholar 

  12. Ikoma T, Yamazaki A, Nakamura S, Akao M (1999) Preparation and structure refinement of monoclinic hydroxyapatite. J Solid State Chem 144:272–276. http://sci-hub.tw/10.1006/jssc.1998.8120

    Article  CAS  Google Scholar 

  13. Tao J, Jiang W, Pan H, Xu X, Tang R (2007) Preparation of large-sized hydroxyapatite single crystals using homogeneous releasing controls. J Cryst Growth 308:151–158. http://sci-hub.tw/10.1016/j.jcrysgro.2007.08.009

    Article  CAS  Google Scholar 

  14. Zhang Y, Lu J (2008) A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent. Cryst Growth Des 8:2101–2107. http://sci-hub.tw/10.1021/cg060880e

    Article  CAS  Google Scholar 

  15. Shum HC, Bandyopadhyay A, Bose S, Weitz DA (2009) Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite. Chem Mater 21:5548–5555. http://sci-hub.tw/10.1021/cm9028935

    Article  CAS  Google Scholar 

  16. Zhou W, Wang M, Cheung W, Guo B, Jia D (2008) Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. J Mater Sci Mater Med 19:103–110. http://sci-hub.tw/10.1007/s10856-007-3156-9

    Article  CAS  Google Scholar 

  17. Ethirajan A, Ziener U, Chuvilin A, Kaiser U, Cölfen H, Landfester K (2008) Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process. Adv Funct Mater 18:2221–2227. http://sci-hub.tw/10.1002/adfm.200800048

    Article  CAS  Google Scholar 

  18. Sturgeon JL, Brown PW (2009) Effects of carbonate on hydroxyapatite formed from CaHPO4 and Ca4(PO4)2O. J Mater Sci Mater Med 20:1787–1794. http://sci-hub.tw/10.1007/s10856-009-3752-y

    Article  CAS  Google Scholar 

  19. Park H, Baek D, Park Y, Yoon S, Stevens R (2004) Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP. J Mater Sci 39:2531–2534

    Article  CAS  Google Scholar 

  20. Sakamoto K, Yamaguchi S, Nakahira A, Kaneno M, Okazaki M, Ichihara J, Tsunawaki Y, Elliott JC (2002) Shape-controlled synthesis of hydroxyapatite from α-tricalcium bis(orthophosphate) in organic-aqueous binary systems. J Mater Sci 37:1033–1041

    Article  CAS  Google Scholar 

  21. Durucan C, Brown PA (2000) α-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J Mater Sci Mater Med 11:365–371

    Article  CAS  Google Scholar 

  22. Graham S, Brown PW (1996) Reactions of octacalcium phosphate to form hydroxyapatite. J Cryst Growth 165:106–115. http://sci-hub.tw/10.1016/0022-0248(95)00994-9

    Article  CAS  Google Scholar 

  23. De Maeyer EAP, Verbeeck RMH, Pieters IY (1996) Effect of K+ on the stoichiometry of carbonated hydroxyapatite obtained by the jydrolysis of monetite. Inorg Chem 35:857–863. http://sci-hub.tw/10.1021/ic950916k

    Article  Google Scholar 

  24. Kim I, Kumta PN (2004) Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder. Mater Sci Eng B 111:232–236. http://sci-hub.tw/10.1016/j.mseb.2004.04.011

    Article  Google Scholar 

  25. Feng W, Mu-Sen L, Yu-Peng L, Yong-Xin Q (2005) A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett 59:916–919. http://sci-hub.tw/10.1016/j.matlet.2004.08.041

    Article  Google Scholar 

  26. Rajabi-Zamani AH, Behnamghader A, Kazemzadeh A (2008) Synthesis of nanocrystalline carbonated hydroxyapatite powder via nonalkoxide sol–gel method. Mater Sci Eng C 28:1326–1329. http://sci-hub.tw/10.1016/j.msec.2008.02.001

    Article  CAS  Google Scholar 

  27. Hsieh MF, Perng LH, Chin TS, Perng HG (2001) Phase purity of sol–gel-derived hydroxyapatite ceramic. Biomaterials 22:2601–2607. http://sci-hub.tw/10.1016/S0142-9612(00)00448-8

    Article  CAS  Google Scholar 

  28. Eshtiagh-Hosseini H, Housaindokht MR, Chahkandi M (2007) Effects of parameters of sol–gel process on the phase evolution of sol–gel-derived hydroxyapatite. Mater Chem Phys 106:310–316. http://sci-hub.tw/10.1016/j.matchemphys.2007.06.002

    Article  CAS  Google Scholar 

  29. Chen J, Wang Y, Chen X, Ren L, Lai C, He W, Zhang Q (2011) A simple sol-gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders. Mater Lett 65:1923–1926. http://sci-hub.tw/10.1016/j.matlet.2011.03.076

    Article  CAS  Google Scholar 

  30. Velu G, Gopal B (2009) Preparation of nanohydroxyapatite by a sol–gel method using alginic acid as a complexing agent. J Am Ceram Soc 92:2207–2211. http://sci-hub.tw/10.1111/j.1551-2916.2009.03221.x

    Article  CAS  Google Scholar 

  31. Zhang H, Zhang M (2011) Phase and thermal stability of hydroxyapatite whiskers precipitated using amine additives. Ceram Int 37:279–286. http://sci-hub.tw/10.1016/j.ceramint.2010.08.038

    Article  CAS  Google Scholar 

  32. Guo X, Xiao P, Liu J, Shen Z (2005) Fabrication of nanostructured hydroxyapatite via hydrothermal synthesis and spark plasma sintering. J Am Ceram Soc 88:1026–1029. http://sci-hub.tw/10.1111/j.1551-2916.2005.00198.x

    Article  CAS  Google Scholar 

  33. Tsiourvas D, Tsetsekou A, Kammenou MI, Boukos N (2011) Controlling the formation of hydroxyapatite nanorods with dendrimers. J Am Ceram Soc 94:2023–2029. http://sci-hub.tw/10.1111/j.1551-2916.2010.04342.x

    Article  CAS  Google Scholar 

  34. Zhang H, Darvell BW (2011) Biomaterials 7:2960–2968

    CAS  Google Scholar 

  35. Lin K, Liu X, Chang J, Zhu Y (2011) Facile synthesis of hydroxyapatite nanoparticles, nanowires and hollow nano-structured microspheres using similar structured hard-precursors. Nanoscale 3:3052–3055. http://sci-hub.tw/10.1039/c1nr10334b

    Article  CAS  Google Scholar 

  36. Lee DK, Park JY, Kim MR, Jang DJ (2011) Facile hydrothermal fabrication of hollow hexagonal hydroxyapatite prisms. CrystEngComm 13:5455–5459. http://sci-hub.tw/10.1039/C1CE05511A

    Article  CAS  Google Scholar 

  37. Zhu K, Yanagisawa K, Onda A, Kajiyoshi K, Qiu J (2009) Morphology variation of cadmium hydroxyapatite synthesized by high temperature mixing method under hydrothermal conditions. Mater Chem Phys 113:239–243. http://sci-hub.tw/10.1016/j.matchemphys.2008.07.049

    Article  CAS  Google Scholar 

  38. Cao H, Zhang L, Zheng H, Wang Z (2010) Hydroxyapatite nanocrystals for biomedical applications. J Phys Chem C 114:18352–18357. http://sci-hub.tw/10.1021/jp106078b

    Article  CAS  Google Scholar 

  39. Zhang G, Chen J, Yang S, Yu Q, Wang Z, Zhang Q (2011) Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method. Mater Lett 65:572–574. http://sci-hub.tw/10.1016/j.matlet.2010.10.078

    Article  CAS  Google Scholar 

  40. Pham Trung Kien, Tsuru Kanji, Kunio Ishikawa (2015) Development and characterization of porous calcium phosphate cement using α-tricalcium phosphate bead. In: Vo Van Toi, Tran Ha Lien Phuong (eds) 5th international conference on biomedical engineering in Vietnam. IFMBE proceedings, pp 507–510. http://sci-hub.tw/10.1007/978-3-319-11776-8_125

  41. Nguyen Viet Long, Masayuki Nogami, Yong Yang, Michitaka Ohtaki, Pham TrungKien, Cao Minh Thi (2014) Magnetic metal and oxide based nanoparticles and biomaterials for bioimaging probes for magnetic resonance imaging, Chapter 6. In: Govil JN (ed) Nanotechnology, Volume 12: bioimaging. Studium Press LLC, pp 205–221

    Google Scholar 

  42. Pham Trung Kien, Vang Nguyen Hoang Van, Tran Pham Quang Nguyen, Pham Thi Lan Thanh (2018) Evaluation effect of stirring mode on synthesize Hydroxyapatite crystallite used as bone substitute. In: The 6th international conference on biomedical engineering in Vietnam, Ho Chi Minh City, Vietnam, pp 331–334

    Google Scholar 

  43. Pham Trung Kien, Tsuru Kanji, Kunio Ishikawa (2015) Setting reaction of α-TCP spheres and an acidic calcium phosphate solution for the fabrication of fully interconnected macroporous calcium phosphate. Ceram Int 41:13525–13531. http://sci-hub.tw/10.1016/j.ceramint.2015.07.146

    Article  Google Scholar 

  44. Kien Pham Trung, Minh Do Quang, Thanh Pham ThiLan (2014) Iron-free hydroxyapatite powder from synthetic Ca(OH)2 and commercialized Ca(OH)2. Adv Mater Res 858:103–110

    Article  Google Scholar 

  45. Kunio Ishikawa, Kanji Tsuru, Trung Kien Pham, Michito Maruta, Shigeki Matsuya (2012) Fully-interconnected pore forming calcium phosphate cement. Key Eng Mater 493–494:832–835

    Google Scholar 

  46. Pham Trung Kien, Michito Maruta, Kanji Tsuru, Shigeki Matsuya, Kunio Ishikawa (2010) Effect of phosphate solution on setting reaction of α-TCP spheres. J Aust Ceram Soc 46(2):63–67

    Google Scholar 

  47. Radzali Othman, Ahmad Fauzi, Pham Trung Kien, Kunio Ishikawa, Do Quang Minh (2007) Preparation and characterization of β-tricalcium phosphate. Malaysia J Microsc 3:193–198

    Google Scholar 

Download references

Acknowledgement

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number B2015-20a-01. Some of the material characterization facility is supported by National key lab for Polymer and Composite Materials-HCMUT, VAST and HUFI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Trung Kien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kien, P.T., Phu, H.D., Linh, N.V.V., Quyen, T.N., Hoa, N.T. (2018). Recent Trends in Hydroxyapatite (HA) Synthesis and the Synthesis Report of Nanostructure HA by Hydrothermal Reaction. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_18

Download citation

Publish with us

Policies and ethics