Advertisement

Medical Applications of Collagen and Hyaluronan in Regenerative Medicine

  • Lynn L. H. HuangEmail author
  • Ying-Hui Amy Chen
  • Zheng-Ying Zhuo
  • Ya-Ting Hsieh
  • Chia-Ling Yang
  • Wei-Ting Chen
  • Jhih-Ying Lin
  • You-Xin Lin
  • Jian-Ting Jiang
  • Chao-Hsung Zhuang
  • Yi-Ching Wang
  • Hanhhieu Nguyendac
  • Kai-Wei Lin
  • Wen-Lung Liu
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)

Abstract

In order to develop and commercialize for the regenerative medicinal products, smart biomaterials with biocompatibility must be needed. In this chapter, we introduce collagen and hyaluronic acid (HA) as extracellular matrix as well as deal with the molecular mechanism as microenvironment, mechanistic effects, and gene expression. Application of collagen and HA have been reviewed in the area of orthopedics, orthopedics, ophthalmology, dermatology and plastic surgery. Finally, the ongoing and commercial products of collagen and HA for regenerative medicine have been introduced.

Keywords

Collagen Hyaluronic acid Biomaterial 

References

  1. 1.
    (2007) Premarket notification 510(k) summary. U S food and drug administration K070496Google Scholar
  2. 2.
    Adiguzel E, Hou G, Sabatini PBendeck M (2013) Type viii collagen signals via β1 integrin and rhoa to regulate mmp-2 expression and smooth muscle cell migration. Matrix Biol 32(6):332–341.  https://doi.org/10.1016/j.matbio.2013.03.004 CrossRefPubMedGoogle Scholar
  3. 3.
    Aleksander-Konert E, Paduszyński P, Zajdel A, Dzierżewicz Z, Wilczok A (2016) In vitro chondrogenesis of Wharton’s jelly mesenchymal stem cells in hyaluronic acid-based hydrogels. Cell Mol Biol Lett 21:11.  https://doi.org/10.1186/s11658-016-0016-y.eCollection2016
  4. 4.
    Bard JB, Hay ED (1975) The behavior of fibroblasts from the developing avian cornea. Morphology and movement in situ and in vitro. J Cell Biol 67(2PT.1):400–418CrossRefGoogle Scholar
  5. 5.
    Bartlett RS, Guille JT, Chen X, Christensen MB, Wang SF, Thibeault SL (2016) Mesenchymal stromal cell injection promotes vocal fold scar repair without long-term engraftment. Cytotherapy 18(10):1284–1296.  https://doi.org/10.1016/j.jcyt.2016.07.005 CrossRefGoogle Scholar
  6. 6.
    Baumann LS, Shamban AT, Lupo MP, Monheit GD, Thomas JA, Murphy DK, Walker PS, Group. JvZNFS (2007) Comparison of smooth-gel hyaluronic acid dermal fillers with cross-linked bovine collagene: a multicenter, double-masked, randomized, within-subject study. Dermatol Surg 33(Suppl 2):S128–S135Google Scholar
  7. 7.
    Beasley KL, Weiss MA, Weiss RA (2009) Hyaluronic acid fillers: a comprehensive review. Facial Plast Surg 25:86–94CrossRefGoogle Scholar
  8. 8.
    Bonafé F, Govoni M, Giordano E, Caldarera CM, Guarnieri C, Muscari C (2014) Hyaluronan and cardiac regeneration. J Biomed Sci 21:100.  https://doi.org/10.1186/s12929-014-0100-4 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bourguignon LYW (2008) Hyaluronan-mediated cd44 activation of rho gtpase signaling and cytoskeleton function promotes tumor progression. Seinars in Cancer Biol 18(4):251–259.  https://doi.org/10.1016/j.semcancer.2008.03.007 CrossRefGoogle Scholar
  10. 10.
    Bourguignon LYW, Zhu H, Shao LChen YW (2000) Cd44 interaction with tiam1 promotes rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J Biol Chem 275(3):1829–1838.  https://doi.org/10.1074/jbc.275.3.1829 CrossRefPubMedGoogle Scholar
  11. 11.
    Cardoso V, Quelemes P, Amorin A, Primo F, Gobo G, Tedesco A, Mafud A, Mascarenhas Y, Corrêa J, Kuckelhaus S, Eiras C, Leite J, Silva D, dos Santos Júnior J (2014) Collagen-based silver nanoparticles for biological applications: synthesis and characterization. J Nanobiotechnol 12(36):1–9.  https://doi.org/10.1186/s12951-014-0036-6 CrossRefGoogle Scholar
  12. 12.
    Carruthers J, Carruthers A (2003) A prospective, randomized, parallel group study analyzing the effect of btx-a (botox) and nonanimal sourced hyaluronic acid (nasha, restylane) in combination compared with nasha (restylane) alone in severe glabellar rhytides in adult female subjects: treatment of severe glabellar rhytides with a hyaluronic acid derivative compared with the dervative and btx-a. Dermatol Surg 29:802–809PubMedGoogle Scholar
  13. 13.
    Carvalhaes L, Gervásio O, Guatimosim C, Heljasvaara R, Sormunen R, Pihlajaniemi T, Kitten G (2006) Collagen xviii/endostatin is associated with the epithelial-mesenchymal transformation in the atrioventricular valves during cardiac development. Dev Dyn 235(1):132–142.  https://doi.org/10.1002/dvdy.20556 CrossRefPubMedGoogle Scholar
  14. 14.
    Chae JJ, Mulreany DG, Guo Q, Lu Q, Choi JS, Strehin I, Espinoza FA, Schein O, Trexler MM, Bower KS, Elisseeff JH (2014) Application of a collagen-based membrane and chondroitin sulfate-based hydrogel adhesive for the potential repair of severe ocular surface injuries. Mil Med 179(6):686–694. https://doi/org/10.7205/MILMED-D-13-00360 CrossRefGoogle Scholar
  15. 15.
    Cheema U, Ananta M, Mudera V (2011) Collagen: applications of a natural polymer in regenerative medicine. In: Eberli D (ed) Regenerative medicine and tissue engineering – cells and biomaterials. InTech, RijekaGoogle Scholar
  16. 16.
    Chen X, Thibeault S (2013) Effect of DMSO concentration, cell density and needle gauge on the viability of cryopreserved cells in three dimensional hyaluronan hydrogel. Conf Proc IEEE Eng Med Biol Soc 2013:6228–6231. https://doi.org/10.1109/EMBC.2013.6610976
  17. 17.
    Chen X, Thibeault SL (2016) Cell-cell interaction between vocal fold fibroblasts and bone marrow mesenchymal stromal cells in three-dimensional hyaluronan hydrogel. J Tissue Eng Regen Med 10(5):437–446. https://doi.org/10.1002/term.1757. Epub 2013 May 8CrossRefGoogle Scholar
  18. 18.
    Chen D, Qu Y, Hua , Zhang L, Liu Z, Pflugfelder SC, Li DQ (2017) A hyaluronan hydrogel scaffoldbased xeno-free culture system for ex vivo expansion of human corneal epithelial stem cells. Eye (Lond) 31(6):962–971. https://doi.org/10.1038/eye.2017.8. Epub 2017 Feb 17CrossRefGoogle Scholar
  19. 19.
    Cheng X, Tsao C, Sylvia V, Cornet D, Nicolella D, Bredbenner T, Christy R (2014) Platelet-derived growth-factor-releasing aligned collagen-nanoparticle fibers promote the proliferation and tenogenic differentiation of adipose-derived stem cells. Acta Biomater 10(3):1360–1369.  https://doi.org/10.1016/j.actbio.2013.11.017 CrossRefPubMedGoogle Scholar
  20. 20.
    Dicker K, Gurski L, Pradhan-Bhatt S, Witt R, Farach-Carson M, Jia X (2014) Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 10(4):1558–1580.  https://doi.org/10.1016/j.actbio CrossRefPubMedGoogle Scholar
  21. 21.
    Espandar L, Bunnell B, Wang GY, Gregory P, McBride C, Moshirfar M (2012) Adipose-derived stem cells on hyaluronic acid-derived scaffold: a new horizon in bioengineered cornea. Arch Ophthalmol 130(2):202–208.  https://doi.org/10.1001/archopthalmol.2011.1398 CrossRefGoogle Scholar
  22. 22.
    Farndale RW, Sixma JJ, Barnes MJ, de Groot PG (2004)The role of collagen in thrombosis and hemostasis. J Thromb Haemost 2(4):561–573CrossRefGoogle Scholar
  23. 23.
    FDA U Microsoft word – restylane silk patient brochure update 13 june 14.Docx. Administration USfadGoogle Scholar
  24. 24.
  25. 25.
    Fraser JR, Laurent TC, Laurent BG (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242(1):27–33CrossRefGoogle Scholar
  26. 26.
    Funt D, Pavicic T (2013) Dermal fillers in aesthetics: an overview of adverse events and treatment approaches. Clin Cosmet Investig Dermatol 6:295–316PubMedPubMedCentralGoogle Scholar
  27. 27.
    Genovese L, Corbo A, Sibilla S (2017) An insight into the changes in skin texture and properties following dietary intervention with a nutricosmeceutical containing a blend of collagen bioactive peptides and antioxidants. Skin Pharmacol Physiol 30(3):146–158.  https://doi.org/10.1159/000464470. Epub 2017 May 20CrossRefGoogle Scholar
  28. 28.
    Goettsch C, Kliemt S, Sinningen K, von Bergen M, Hofbauer LC, Kalkhof S (2012) Quantitative proteomics reveals novel functions of osteoclast-associated receptor in STAT signaling and cell adhesion in human endothelial cells. J Mol Cell Cardiol 53(6):829–837.  https://doi.org/10.1016/j.yjmcc.2012.09.003. Epub 2012 Sep 15CrossRefGoogle Scholar
  29. 29.
    Gokce EH, Tuncay Tanrıverdi S, Eroglu I, Tsapis N, Gokce G, Tekmen I, Fattal E, Ozer O (2017) Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats. Eur J Pharm Biopharm 119:17–27.  https://doi.org/10.1016/j.ejpb.2017.04.027. Epub 2017 Apr 28CrossRefGoogle Scholar
  30. 30.
    Gold MH (2007) Use of hyaluronic acid fillers for the treatment of the aging face. Clin Interv Aging 3:369–376CrossRefGoogle Scholar
  31. 31.
    Gonzalez D, Medici D (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7(344):re8.  https://doi.org/10.1126/scisignal.2005189 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gorshkov B, Gorshkova I, Makarieva T, Stonik V (1982) Inhibiting effect of cytotoxic bromine-containing compounds from spongs (aplysinidae) on na+-k+-atpase activity. Toxicon 20(6):1092–1094CrossRefGoogle Scholar
  33. 33.
    Gourdie RG, Myers TA, McFadden A, Li YX, Potts JD (2012) Self-organizing tissue-engineered constructs in collagen hydrogels. Microsc Microanal 18(1):99–106.  https://doi.org/10.1017/S1431927611012372. Epub 2012 Jan 4CrossRefGoogle Scholar
  34. 34.
    Grant S, Spradling C, Grant D, Fox D, Jimenez L, Grant DRone R (2014) Assessment of the biocompatibility and stability of a gold nanoparticle collagen bioscaffold. J Biomed Mater Res A 102(2):332–339.  https://doi.org/10.1002/jbm.a.34698 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gullberg D, Gehlsen KR, Turner DC, Ahlén K, Zijenah LS, Barnes MJ, Rubin K (1992) Analysis of alpha 1 beta 1, alpha 2 beta 1 and alpha 3 beta1 integrins in cell–collagen interactions: identification of conformation dependent alpha 1 beta 1 binding sites in collagen type I. EMBO J 11(11):3865–3873CrossRefGoogle Scholar
  36. 36.
    Hamaia S, Farndale RW (2014) Integrin recognition motifs in the human collagens. Adv Exp Med Biol 819:127–142.  https://doi.org/10.1007/978-94-017-9153-3_9 Google Scholar
  37. 37.
    Hasegawa T, Suga Y, Mizoguchi M, Muramatsu S, Mizuno Y, Ogawa H, Kubo K, Kuroyanagi Y (2005) An allogeneic cultured dermal substitute suitable for treating intractable skin ulcers and large skin defects prior to autologous skin grafting: three case reports. J Dermatol 32(9):715–720CrossRefGoogle Scholar
  38. 38.
    Heino J (2007) The collagen family members as cell adhesion proteins. Bioessays 29(10):1001–1010CrossRefGoogle Scholar
  39. 39.
    Hu KH, Lin KN, Li WT, Huang HM (2008) Effects of Meropack in the middle meatus after functional endoscopic sinus surgery in children with chronic sinusitis. Int J Pediatr Otorhinolaryngol 72(10):1535–1540.  https://doi.org/10.1016/j.ijporl.2008.07.006. Epub 2008 Aug 26CrossRefGoogle Scholar
  40. 40.
    Huang L-I, Huang H-M (2010) Comparison of the effects of meropack and merocel in the middle meatus after functional endoscopic sinus surgery. J Taiwan Otolaryngol-Head Neck Surg 45(2):40–45.  https://doi.org/10.6286/2010.45.2.40. Epub 2008 Aug 26
  41. 41.
    Hunter GK, Goldberg HA (2005) Identification of the type I collagen-binding domain of bone sialoprotein and characterization of the mechanism of interaction.Tye CE1. J Biol Chem 280(14):13487–13492. Epub 2005 Feb 8Google Scholar
  42. 42.
    Jo JY, Jeong SI, Shin YM, Kang SS, Kim SE, Jeong CM, Huh JB4 (2015) Sequential delivery of BMP-2 and BMP-7 for bone regeneration using a heparinized collagen membrane. Int J Oral Maxillofac Surg 44(7):921–928.  https://doi.org/10.1016/j.ijom.2015.02.015. Epub 2015 Mar 11CrossRefGoogle Scholar
  43. 43.
    Jones TD, Kefi A, Sun S, Cho M, Alapati SB (2016) An optimized injectable hydrogel scaffold supports human dental pulp stem cell viability and spreading. Adv Med 2016:7363579.  https://doi.org/10.1155/2016/7363579. Epub 2016 May 16CrossRefGoogle Scholar
  44. 44.
    Kaczmarek B, Sionkowska A (2017) Drug release from porous matrixes based on natural polymers. Curr Pharm Biotechnol 18(9):721–729.  https://doi.org/10.2174/1389201018666171103141347 CrossRefPubMedGoogle Scholar
  45. 45.
    Kawase T, Yamanaka K, Suda Y, Kaneko T, Okuda K, Kogami H, Nakayama H, Nagata M, Wolff LF, Yoshie H (2010) Collagen-coated poly(L-lactide-co-ɛ-caprolactone) film: a promising scaffold for cultured periosteal sheets. J Periodontol 81(11):1653–1662.  https://doi.org/10.1902/jop.2010.100194. Epub 2010 Jul 14CrossRefGoogle Scholar
  46. 46.
    Ke T, Yang M, Mao D, Zhu M, Che Y, Kong D, Li C (2015) Co-transplantation of skin-derived precursors and collagen sponge facilitates diabetic wound healing by promoting local vascular regeneration. Cell Physiol Biochem 37(5):1725–1737.  https://doi.org/10.1159/000438537. Epub 2015 Nov 9CrossRefGoogle Scholar
  47. 47.
    Kosaka T, Kaneko Y, Nakada Y, Matsuura M, Tanaka S (1996) Effect of chitosan implantatin on activation of canine macrophages and pllymorphonuclear cells after surgical stress. J Vet Med Sci 58(10):963–967CrossRefGoogle Scholar
  48. 48.
    Kuroyanagi Y, Kubo K, Matsui H, Kim HJ, Numari S, Mabuchi Y, Kagawa S (2004) Establishment of banking system for allogeneic cultured dermal substitute. Artif Organs 28(1):13–21CrossRefGoogle Scholar
  49. 49.
    Kuroyanagi M, Yamamoto A, Shimizu N, Ishihara E, Ohno H, Takeda A, Kuroyanagi Y (2014) Development of cultured dermal substitute composed of hyaluronic acid and collagen spongy sheet containing fibroblasts and epidermal growth factor. J Biomater Sci Polym Ed 25(11):1133–1143.  https://doi.org/10.1080/09205063.2014.920171. Epub 2014 Jun 3CrossRefGoogle Scholar
  50. 50.
    Lam P, Kok S, Bian Z, Lam K, Tang J, Lee K, Gambari R, Chui C (2014) D-glucose as a modifying agent in gelatin/collagen matrix and reservoir nanoparticles for calendula officinalis delivery. Colloids Surf B: Biointerfaces 117:277–283.  https://doi.org/10.1016/j.colsurfb.2014.02.041 CrossRefPubMedGoogle Scholar
  51. 51.
    Lee JC, Lorenc ZP (2016) Synthetic fillers for racial rejuvenation. Clin Plast Surg 43:497–503CrossRefGoogle Scholar
  52. 52.
    Leitinger B, Hohenester E (2007) Mammalian collagen receptors. Matrix Biol 3:146–155.  https://doi.org/10.1016/j.matbio.2006.10.007 CrossRefGoogle Scholar
  53. 53.
    Lin Y, Zhang S, Rehn M, Itäranta P, Tuukkanen J, Heljäsvaara R, Peltoketo H, Pihlajaniemi T, Vainio S (2001) Induced repatterning of type xviii collagen expression in ureter bud from kidney to lung type: association with sonic hedgehog and ectopic surfactant protein c. Dev Dent 128(9):1573–1585Google Scholar
  54. 54.
    Liu C-M, Chang C-H, Yu C-H, Hsu C-C, Huang LLH (2009) Hyaluronan substratum induces multdrug resistance in human mesenchymal stem cells via cd44 signaling. Cell Tissue Res 336(338):465–475.  https://doi.org/10.1007/s00441-009-0780-3 CrossRefPubMedGoogle Scholar
  55. 55.
    Liu Y, Charles LF, Zarembinski TI, Johnson KI, Atzet SK, Wesselschmidt RL, Wight ME, Kuhn LT (2012) Modified hyaluronan hydrogels support the maintenance of mouse embryonic stem cells and human induced pluripotent stem cells. Macromol Biosci 12(8):1034–1042. https://.doi.org/10.1002/mabi.201200043. Epub 2012 Jun 25CrossRefGoogle Scholar
  56. 56.
    Lorenc ZP, Fagien S, Flynn TC, Waldorf HA (2013) Review of key belotero balance safety and efficacy trials. Plast Reconstr Surg 132:33S–40SCrossRefGoogle Scholar
  57. 57.
    Lupo MP, Smith SR, Thomas JA, Murphy DK (2008) Effectiveness of juvederm ultra plus dermal filler in the treatment of severe nasoabial folds. Plast Reconstr Surg 121:289–297CrossRefGoogle Scholar
  58. 58.
    Manna F, Dentini M, Desideri P, De Pità O, Mortilla E, Maras B (1999) Comparative chemical evaluation of two commercially available derivaties of hyalurnoic acid (hylaform from rooster combs and restylane from streptococcus) used for soft tissue augmentation. J Eur Acad Dermatol Venereol 3:193–192Google Scholar
  59. 59.
    Mansson B, Wenglén C, Mörgelin M, Saxne T, Heinegård D (2001) Association of chondroadherin with collagen type ii. J Biol Chem 276(35):32883–32888.  https://doi.org/10.1074/jbc.M101680200 CrossRefPubMedGoogle Scholar
  60. 60.
    Masi L, Brandi ML, Robey PG, Crescioli C, Calvo JC, Bernabei P, Kerr JM, Yanagishita M (1995) Biosynthesis of bone sialoprotein by a human osteoclast-like cell line (FLG 29.1). J Bone Miner Res 10(2):187–196CrossRefGoogle Scholar
  61. 61.
    Medical Insight I (2006) Global market for dermal fillers 2005–2011Google Scholar
  62. 62.
    Mienaltowski MJ, Birk DD (2014) Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol 802:5–29.  https://doi.org/10.1007/978-94-007-7893-1_2 CrossRefPubMedGoogle Scholar
  63. 63.
    Misra S, Hascall VC, Markwalk RR, Ghatak S (2015) Interactions between hyaluronan and its receptors (cd44, rhamm) regulate the activities of inflammation and cancer. Front Immunol 6.  https://doi.org/10.3389/fimmu.2015.00201
  64. 64.
    Missana LR, Jammal MV (2014) Critical size defect regeneration by rhPTH-collagen membrane as a new tissue engineering tool. J Biomed Mater Res A 102(12):4358–4364. https://doi/org/10.1002/jbm.a.35114. Epub 2014 Feb 24
  65. 65.
    Nagai N, Mori K, Satoh Y, Takahashi N, Yunoki S, Tajima K, Munekata M (2007) In vitro growth and differentiated activities of human periodontalligament fibroblasts cultured on salmon collagen gel. J Biomed Mater Res A 82(2):395–402CrossRefGoogle Scholar
  66. 66.
    Nagarajan U, Kawakami K, Zhang S, Chandrasekaran B, Unni Nair B (2014) Fabrication of solid collagen nanoparticles using electrospray deposition. Chem Pharm Bull (Tokyo) 62(5):422–428.  https://doi.org/10.1248/cpb.c13-01004 CrossRefGoogle Scholar
  67. 67.
    Ogasawara T, Okano S, Ichimura H, Kadota S, Tanaka Y, Minami I, Uesugi M, Wada Y, Saito N, Okada K, Kuwahara K, Shiba Y (2017) Impact of extracellular matrix on engraftment and maturation of pluripotent stem cell-derived cardiomyocytes in a rat myocardial infarct model. Sci Rep 7(1):8630.  https://doi.org/10.1038/s41598-017-09217-x
  68. 68.
    Park D, Kim Y, Kim H, Kim K, Lee Y, Choe J, Hahn J, Lee H, Jeon J, Choi C, Kim Y, Jeoung D (2012) Hyaluronic acid promotes angiogenesis by inducing rhamm-tgfβ receptor interaction via cd44-pkcδ. Mol Cells 33(6):563–574.  https://doi.org/10.1007/s10059-012-2294-1 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pastorino L, Dellacasa E, Scaglione S, Giulianelli M, Sbrana F, Vassalli M, Ruggiero C (2014) Oriented collagen nanocoatings for tissue engineering. Colloids Surf B: Biointerfaces 114:372–378.  https://doi.org/10.1016/j.colsurfb.2013.10.026 CrossRefPubMedGoogle Scholar
  70. 70.
    Pawelec K, Best S, Cameron R (2016) Collage: a network for regenerative medicine. J Mater Chem B 4(40):6484–6496.  https://doi.org/10.1039/c6tb00807k CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Pedchenko V, Zent R, Hudson BG (2004) Alpha(v)beta3 and alpha(v)beta5 integrins bind both the proximal RGD site and non-RGD motifs within noncollagenous (NC1) domain of the alpha3 chain of type IV collagen: implication for the mechanism of endothelia cell adhesion. J Biol Chem 279(4):2772–2780. Epub 2003 Nov 10Google Scholar
  72. 72.
    Petersen W, Rahmanian-Schwarz A, Werner JO, Schiefer J, Rothenberger J, Hübner G, Schaller HE, Held M (2016)The use of collagen-based matrices in the treatment of full-thickness wounds. Burns 42(6):1257–1264.  https://doi.org/10.1016/j.burns.2016.03.017. Epub 2016 Jun 11CrossRefGoogle Scholar
  73. 73.
    Picke AK, Salbach-Hirsch J, Hintze V, Rother S, Rauner M, Kascholke C, Möller S, Bernhardt R, Rammelt S, Pisabarro MT, Ruiz-Gómez G, Schnabelrauch M, Schulz-Siegmund M, Hacker MC, Scharnweber D, Hofbauer C, Hofbauer LC (2016) Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function. Biomaterials 96:11–23.  https://doi.org/10.1016/j.biomaterials.2016.04.013. Epub 2016 Apr 21CrossRefGoogle Scholar
  74. 74.
    Prasetyo AD, Prager W, Rubin MG, Moretti EA, Nikolis A (2016) Hyaluronic acid fillers with cohesive polydensified matrix for soft-tissue augmentation and rejuvenation: a literature review. Clin Cosmet Investig Dermatol 9:257–280Google Scholar
  75. 75.
    Ratner BD1, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75CrossRefGoogle Scholar
  76. 76.
    Responte D, Natoli R, Athanasiou K (2012) Identification of potential biophysical and molecular signalling mechanisms underlying hyaluronic acid enhnacement of cartilage formation. J R Soc Interface 9(77):3564–3573.  https://doi.org/10.1098/rsif.2012.0399 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Salamanca E, Tsai CY, Pan YH, Lin YT, Huang HM, Teng NC, Lin CT, Feng SW, Chang WJ (2016) In vitro and in vivo study of a novel porcine collagen membrane for guided bone regeneration. Materials (Basel) 9(11). pii: E949.  https://doi.org/10.3390/ma9110949 CrossRefGoogle Scholar
  78. 78.
    Salbach J, Kliemt S, Rauner M, Rachner TD, Goettsch C, Kalkhof S, von Bergen M, Möller S, Schnabelrauch M, Hintze V, Scharnweber D, Hofbauer LC (2012) The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways. Biomaterials 33(33):8418–8429.  https://doi.org/10.1016/j.biomaterials.2012.08.028. Epub 2012 Sep 4CrossRefGoogle Scholar
  79. 79.
    Salbach-Hirsch J, Ziegler N, Thiele S, Moeller S, Schnabelrauch M, Hintze V, Scharnweber D, Rauner M, Hofbauer LC (2014) Sulfated glycosaminoglycans support osteoblast functions and concurrently suppress osteoclasts. J Cell Biochem 115(6):1101–1111.  https://doi.org/10.1002/jcb.24750 CrossRefGoogle Scholar
  80. 80.
    Schauss AG, Merkel DJ, Glaza SM, Sorenson SR (2007) Acute and subchronic oral toxicity studies in rats of a hydrolyzed chicken sternal cartilage preparation. Food Chem Toxicol 45(2):315–321. Epub 2006 Aug 30CrossRefGoogle Scholar
  81. 81.
    Schauss AG, Stenehjem J, Park J, Endres JR, Clewell A (2012) Effect of the novel low molecular weight hydrolyzed chicken sternal cartilage extract, BioCell collagen, on improving osteoarthritisrelated symptoms: a randomized, double-blind, placebo-controlled trial. J Agric Food Chem 60(16):4096–101.  https://doi.org/10.1021/jf205295u. Epub 2012 Apr 16.CrossRefGoogle Scholar
  82. 82.
    Schwartz SR, Park J (2012) Ingestion of BioCell collagen(®), a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs. Clin Interv Aging 7:267–273.  https://doi.org/10.2147/CIA.S32836. Epub 2012 Jul 27
  83. 83.
    Schwertfeger K, Cowman M, Telmer P, Turley E, McCarthy J (2015) Hyaluronan, inflammation, and breast cancer progression. Front Immunol 6:236.  https://doi.org/10.3389/fimmu.2015.00236
  84. 84.
    Shukla S, Nair R, Rolle MW, Braun KR, Chan CK, Johnson PY, Wight TN, McDevitt TC (2010) Synthesis and organization of hyaluronan and versican by embryonic stem cells undergoing embryoid body differentiation. J Histochem Cytochem 58:345–358.  https://doi.org/10.1369/jhc.2009.954826 CrossRefGoogle Scholar
  85. 85.
    Singleton PA, Bourguignon LYW (2004) Cd44 interaction with ankyrin and ip3 receptor in lipid rafts promotes hyaluronan-mediated ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation. Exp Cell Res 295:102–118CrossRefGoogle Scholar
  86. 86.
    Slatter DA, Farndale RW (2015) Structural constraints on the evolution of the collagen fibril: convergence on a 1014-residue col domain. Open Biol 5(5):1–7.  https://doi.org/10.1098/rsob.140220 CrossRefGoogle Scholar
  87. 87.
    Steelman L, Chappell W, Abrams S, Kempf R, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F, Mazzarino M, Donia M, Fagone P, Malaponte G, Nicoletti F, Libra M, Milella M, Tafuri A, Bonati A, Bäsecke J, Cocco L, Evangelisti C, Martelli A, Montalto G, Cervello M, McCubrey J (2011) Roles of the raf/mek/erk and pi3k/pten/akt/mtor pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 3(3):192–222.  https://doi.org/10.18632/aging.100296 CrossRefGoogle Scholar
  88. 88.
    Sunitha K, Suresh P, Santhosh M, Hemshekhar M, Thushara R, Marathe G, Thirunavukkarasu C, Kemparaju K, Kumar M, Girish K (2013) Inhibition of hyaluronidase by n-acetyl cysteine and glutathione: role of thiol group in hyaluronan protection. Int J Biol Macromol 55:39–46.  https://doi.org/10.1016/j.ijbiomac.2012.12.047 CrossRefPubMedGoogle Scholar
  89. 89.
    Taubenberger AV, Woodruff MA, Bai H, Muller DJ, Hutmacher DW (2010)The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation. Biomaterials 31(10):2827–2835.  https://doi.org/10.1016/j.biomaterials.2009.12.051. Epub 2010 Jan 6CrossRefGoogle Scholar
  90. 90.
    Tutrone WD, Cohen JL (2009) Dissolving collagen fillers: enzymatic degradation of some problematic filler circumstances may now include collagens. J Drugs Dermatol 8(12):1140–1141Google Scholar
  91. 91.
    Tye CE, Hunter GK, Goldberg HA (2005) Identification of the type I collagen-binding domain of bone sialoprotein and characterization of the mechanism of interaction. J Biol Chem 280(14):13487–13492. Epub 2005 Feb 8CrossRefGoogle Scholar
  92. 92.
    Wehrhan F, Nkenke E, Melnychenko I, Amann K, Schlegel KA, Goerlach C, Zimmermann WH, Schultze-Mosgau S (2010) Skin repair using a porcine collagen I/III membrane–vascularization and epithelization properties. Dermatol Surg 36(6):919–930.  https://doi.org/10.1111/j.1524-4725.2010.01569.x CrossRefGoogle Scholar
  93. 93.
    Wirostko B, Mann BK, Williams DL, Prestwich GD (2014) Ophthalmic uses of a thiol-modified hyaluronan-based hydrogel. Adv Wound Care (New Rochelle) 3(11):708–716CrossRefGoogle Scholar
  94. 94.
    Wu S-C, Chang J-K, Wang C-K, Wang G-J, Ho M-L (2010) Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials 31:631–640CrossRefGoogle Scholar
  95. 95.
    Xia H, Nho R, Kahm J, Kleidon JHenke C (2004) Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/akt in regulating fibroblast survival in response to contraction of type i collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem 279(31):33024–33034.  https://doi.org/10.1074/jbc.M313265200 CrossRefPubMedGoogle Scholar
  96. 96.
    Yamada S, Ohara N, Hayashi Y (2003) Mineralization of matrix vesicles isolated from a human osteosarcoma cell line in culture with water-soluble chitosan-containing medium. J Biomed Mater Res A 66(3):500–506CrossRefGoogle Scholar
  97. 97.
    Yamada S, Ganno T, Ohara N, Hayashi Y (2007) Chitosan monomer accelerates alkaline phosphatase activity on human osteoblastic cells under hypofunctional conditions. J Biomed Mater Res A 83(2):290–295CrossRefGoogle Scholar
  98. 98.
    Yoshizaki K, Yamada Y (2013) Gene evolution and functions of extracellular matrix proteins in teeth. Orthod Waves (English ed) 72(1):1–10.  https://doi.org/10.1016/j.odw.2013.01.040CrossRefGoogle Scholar
  99. 99.
    Zhong J, Chan A, Morad L, Kornblum HI, Fan G, Carmichael ST (2010) Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehabil Neural Repair 24(7):636–644.  https://doi.org/10.1177/1545968310361958. Epub 2010 Apr 27CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lynn L. H. Huang
    • 1
    • 2
    • 3
    • 4
    Email author
  • Ying-Hui Amy Chen
    • 1
  • Zheng-Ying Zhuo
    • 1
  • Ya-Ting Hsieh
    • 3
  • Chia-Ling Yang
    • 3
  • Wei-Ting Chen
    • 3
  • Jhih-Ying Lin
    • 1
  • You-Xin Lin
    • 1
  • Jian-Ting Jiang
    • 1
  • Chao-Hsung Zhuang
    • 1
  • Yi-Ching Wang
    • 1
  • Hanhhieu Nguyendac
    • 1
  • Kai-Wei Lin
    • 3
  • Wen-Lung Liu
    • 3
  1. 1.Department of Biotechnology and Bioindustry Sciences, College of Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
  2. 2.Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
  3. 3.Research Center of Excellence in Regenerative MedicineNational Cheng Kung UniversityTainanTaiwan
  4. 4.International Research Center for Wound Repair and RegenerationTainanTaiwan

Personalised recommendations