Advertisement

Advances in Waterborne Polyurethane-Based Biomaterials for Biomedical Applications

  • Eun Joo Shin
  • Soon Mo ChoiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)

Abstract

Polyurethane (PU) is one of the most popular synthetic elastomers and widely employed in biomedical fields owing to the excellent biocompatibility and hemocompatibility known today. In addition, PU is simply prepared and its mechanical properties such as durability, elasticity, elastomer-like character, fatigue resistance, compliance or tolerance in the body during the healing, can be mediated by modifying the chemical structure. Furthermore, modification of bulk and surface by incorporating biomolecules such as anticoagulants or biorecognizable groups, or hydrophilic/hydrophobic balance is possible through altering chemical groups for PU structure. Such modifications have been designed to improve the acceptance of implant. For these reason, conventional solventborne (solvent-based) PUs have established the standard for high performance systems, and extensively used in medical devices such as dressings, tubing, antibacterial membrane , catheters to total artificial heart and blood contacting materials, etc. However, waterborne polyurethane (WPU) has been developed to improve the process of dissolving PU materials using toxic organic solvents, in which water is used as a dispersing solvent. The prepared WPU materials have many advantages, briefly (1) zero or very low levels of organic solvents, namely environmental-friendly (2) non-toxic, due to absence of isocyanate residues, and (3) good applicability caused by extensive structure/property diversity as well as an environment-friendly fabrication method resulting in increasing applicability. Therefore, WPUs are being in the spotlight as biomaterials used for biomedical applications. The purpose of this review is to introduce an environmental- friendly synthesis of WPU and consider the manufacturing process and application of WPU and/or WPU based nanocomposites as the viewpoint of biomaterials.

Keywords

Polyurethane Waterborne Biomaterials Regenerative medicine Scaffold Tissue engineering 

Notes

Acknowledgements

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1C1A2A01056027 and NRF-2016R1A6A3A11930280).

References

  1. 1.
    Ajorlou E, Khosroushahi AY, Yeganeh H (2016) Novel water-borne polyurethane nanomicelles for cancer chemotherapy: higher efficiency of folate receptors than TRAIL receptors in a cancerous Balb/C mouse model. Pharm Res 33(6):1426–1439.  https://doi.org/10.1007/s11095-016-1884-6 CrossRefPubMedGoogle Scholar
  2. 2.
    Alizadeh M, Abbasi F, Khoshfetrat AB, Ghaleh H (2013) Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method. Mater Sci Eng C 33(7):3958–3967.  https://doi.org/10.1016/j.msec.2013.05.039 CrossRefGoogle Scholar
  3. 3.
    Alvarez Gonza’lez A, Igarzabal CI (2013) Soy protein–poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocoll 33(2):289–296.  https://doi.org/10.1016/j.foodhyd.2013.03.010 CrossRefGoogle Scholar
  4. 4.
    Athawale VD, Kulkarni MA (2010) Polyester polyols for waterborne polyurethanes and hybrid dispersions. Prog Polym Coat 67(1):44–54.  https://doi.org/10.1016/j.porgcoat.2009.09.015 CrossRefGoogle Scholar
  5. 5.
    Babanejad N, Nikjeh MA, Amini M, Dorkoosh FA (2014) A nanoparticulate raloxifene delivery system based on biodegradable carboxylated polyurethane: design, optimization, characterization, and in vitro evaluation. J Appl Polym Sci 131(1):39668–39678.  https://doi.org/10.1002/app.39668 CrossRefGoogle Scholar
  6. 6.
    Bankoti K, Rameshbabu AP, Datta S, Maity PP, Goswami P, Datta P, Ghosh SK, Mitra A, Dhara S (2017) Accelerated healing of full thickness dermal wounds by macroporous waterborne polyurethane-chitosan hydrogel scaffolds. Mater Sci Eng C 81:133–143.  https://doi.org/10.1016/j.msec.2017.07.018 CrossRefGoogle Scholar
  7. 7.
    Bazyleva AB, Hasan MA, Fulem M, Becerra M, Shaw JM (2009) Bitumen and heavy oil rheological properties: reconciliation with viscosity measurements. J Chem Eng Data 55(3):1389–1397.  https://doi.org/10.1021/je900562u CrossRefGoogle Scholar
  8. 8.
    Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145.  https://doi.org/10.1039/B910517D CrossRefGoogle Scholar
  9. 9.
    Chan WC, Chen SA (1988) Polyurethane ionomers: effects of emulsification on properties of hexamethylene diisocyanate-based polyether polyurethane cationomers. Polymer 29(11):1995–2001.  https://doi.org/10.1016/0032-3861(88)90173-5 CrossRefGoogle Scholar
  10. 10.
    Chen GN, Chen KN (1997) Self-curing behaviors of single pack aqueous-based polyurethane system. J Appl Polym Sci 63(12):1609–1623.  https://doi.org/10.1002/(SICI)1097-4628(19970321)63:12<1609::AID-APP12>3.0.CO;2-V CrossRefGoogle Scholar
  11. 11.
    Chen GN, Chen KN (1999) Hybridization of aqueous-based polyurethane with glycidyl methacrylate copolymer. J Appl Polym Sci 71(6):903–913.  https://doi.org/10.1002/(SICI)1097-4628(19990207)71:6<903::AID-APP6>3.0.CO;2-O CrossRefGoogle Scholar
  12. 12.
    Chen H, Jiang X, He L, Zhang T, Xu M, Yu X (2002) Novel biocompatible waterborne polyurethane using L-lysine as an extender. J Appl Polym Sci 84(13):2474–2480.  https://doi.org/10.1002/app.10568 CrossRefGoogle Scholar
  13. 13.
    Cheng G, Xue H, Zhang Z et al (2008) A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed 120(46):8963–8966.  https://doi.org/10.1002/ange.200803570 CrossRefGoogle Scholar
  14. 14.
    Choi SM, Singh D, Han SS (2016) Wound care: skin tissue regeneration, encyclopedia of biomedical polymers and polymeric. Biomaterials:8258–8276.  https://doi.org/10.1081/E-EBPP-120050587 CrossRefGoogle Scholar
  15. 15.
    Chou CW, Hsu SH, Chang H, Tseng SM, Lin HR (2006) Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles. Polym Degrad Stab 91:1017–1024.  https://doi.org/10.1016/j.polymdegradstab.2005.08.001 CrossRefGoogle Scholar
  16. 16.
    Chu Y, Yu H, Ma Y, Zhang Y, Chen W, Zhang G, Wei H, Zhang X, Zhuo R, Jiang X (2014) Synthesis and characterization of biodegradable pH and reduction dual-sensitive polymeric micelles for doxorubicin delivery. J Polym Sci Part A 52(13):1771–1780.  https://doi.org/10.1002/pola.27192 CrossRefGoogle Scholar
  17. 17.
    Coutinho FMB, Delpech MC (2000) Waterborne anionic polyurethanes and poly(urethane-urea)s-influence of the chain extender on mechanical and adhesive properties. Polym Test 19(8):939–952.  https://doi.org/10.1016/S0142-9418(99)00066-5 CrossRefGoogle Scholar
  18. 18.
    Dai L, Long Z, Hong R, Deng X, He H, Liu W (2014) Electrospunpolyvinyl alcohol/waterborne polyurethane composite nanofibers involvingcellulose nanofibers. J Appl Polym Sci 131(22):41051/1–41051/6.  https://doi.org/10.1002/app.41051 CrossRefGoogle Scholar
  19. 19.
    Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014.  https://doi.org/10.1016/j.progpolymsci.2011.02.001 CrossRefGoogle Scholar
  20. 20.
    Dieterich D (1981) Aqueous emulsions, dispersions and solutions of polyurethanes; synthesis and properties. Prog Org Coat 9:281–340.  https://doi.org/10.1016/0033-0655(81)80002-7 CrossRefGoogle Scholar
  21. 21.
    Ding M, Song N, He X, Li J, Zhou L, Tan H, Fu Q, Gu Q (2013) Toward the next-generation nanomedicines: design of multifunctional multiblock polyurethanes for effective cancer treatment. ACS Nano 7(3):1918–1928.  https://doi.org/10.1021/nn4002769 CrossRefPubMedGoogle Scholar
  22. 22.
    Dong Y, Zhang Z, Deng YY, Wang Y (2009) Immobilization of nitrifying bacteria in waterborne polyurethane hydrogel for removal of ammonium nitrogen from wastewater. In: 3rd International conference on bioinformatics and biomedical engineering, IEEE Xplore.  https://doi.org/10.1109/ICBBE.2009.5162924
  23. 23.
    Dong Y, Zhang Z, Jin Y, Li Z, Lu J (2011) Nitrification performance of nitrifying bacteria immobilized in waterborne polyurethane at low ammonia nitrogen concentrations. J Environ Sci 23(3):366–371.  https://doi.org/10.1016/S1001-0742(10)60418-4 CrossRefGoogle Scholar
  24. 24.
    Dong Y, Zhang Z, Jin Y, Lu J, Cheng X, Li J, Deng YY, Feng YN, Chen D (2012) Nitrification characteristics of nitrobacteria immobilized in waterborne polyurethane in wastewater of corn-based ethanol fuel production. J Environ Sci 24(6):999–1005.  https://doi.org/10.1016/S1001-0742(11)60893-0 CrossRefGoogle Scholar
  25. 25.
    Dong HH, Wang W, Song ZZ, Dong H, Wang JF, Sun SS, Zhang ZZ, Ke M, Zhang Z, Wu WM, Zhang G, Ma J (2017) A high-efficiency denitrification bioreactor for the treatment of acrylonitrile wastewater using waterborne polyurethane immobilized activated sludge. Bioresour Technol 239:472–481.  https://doi.org/10.1016/j.biortech.2017.05.015 CrossRefPubMedGoogle Scholar
  26. 26.
    Eaglstein WH (1985) Experiences with biosynthetic dressings. J Am Acad Dermatol 12:434–440.  https://doi.org/10.1016/S0190-9622(85)80006-2 CrossRefPubMedGoogle Scholar
  27. 27.
    Fang C, Zhou X, Yu Q, Liu S, Guo D, Yu R (2014) Synthesis andcharacterization of low crystalline waterborne polyurethane for potentialapplication in water-based ink binder. Prog Org Coat 77(1):61–71.  https://doi.org/10.1016/j.porgcoat.2013.08.004 CrossRefGoogle Scholar
  28. 28.
    Florczyk SJ, Wang K, Jana S, Wood DL, Sytsma SK, Sham J, Kievit FM, Zhang M (2013) Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials 34(38):10143–10150.  https://doi.org/10.1016/j.biomaterials.2013.09.034 CrossRefPubMedGoogle Scholar
  29. 29.
    Florian P, Jena KK, Allauddin S, Narayan R, Raju KVSN (2010) Preparation and characterization of waterborne hyperbranched polyurethane-urea and their hybrid coatings. Ind Eng Chem Res 49(10):4517–4527.  https://doi.org/10.1021/ie900840g CrossRefGoogle Scholar
  30. 30.
    Fu H, Yan C, Zhou W, Huang H (2013) Preparation and characterization of a novelorganic montmorillonite/fluorinated waterborne polyurethane nanocompos-ites: effect of OMMT and HFBMA. Compos Sci Technol 85:65–72.  https://doi.org/10.1016/j.compscitech.2013.05.018 CrossRefGoogle Scholar
  31. 31.
    Gaddam SK (2016) Anionic waterborne polyurethane dispersions from maleated cotton seed oil polyol carrying ionisable groups. Colloid Polym Sci 294(2):347–355.  https://doi.org/10.1007/s00396-015-3787-1 CrossRefGoogle Scholar
  32. 32.
    Gao C, Xu X, Ni J, Lin W, Zheng Q (2009) Effects of castor oil, glycol semi-ester, and polymer concentration on the properties of waterborne polyurethane dispersions. Polym Eng Sci 49(1):162–167.  https://doi.org/10.1002/pen.21235 CrossRefGoogle Scholar
  33. 33.
    Gao G, Lange D, Hilpert K et al (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32(16):3899–3909.  https://doi.org/10.1016/j.biomaterials.2011.02.013 CrossRefPubMedGoogle Scholar
  34. 34.
    García-Pacios V, Iwata Y, Colera M, Martín-Martínez JM (2011) Influence of the solids content on the properties of waterborne polyurethane dispersions obtained with polycarbonate of hexanediol. Int J Adhes Adhes 31(8):787–794.  https://doi.org/10.1016/j.ijadhadh.2011.05.010 CrossRefGoogle Scholar
  35. 35.
    Garcia-Pacios V, Colera M, Iwata Y, Martin-Martinez JM (2013) Incidence of the polyol nature in waterborne polyurethane dispersions on their performance as coatings on stainless stell. Prog Org Coat 76(12):1726–1729.  https://doi.org/10.1016/j.porgcoat.2013.05.007 CrossRefGoogle Scholar
  36. 36.
    Ghosh B, Urban MW (2009) Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323(5920):1458–1460.  https://doi.org/10.1126/science.1167391 CrossRefPubMedGoogle Scholar
  37. 37.
    Gogoi S, Karak N (2014) Biobased biodegradable waterborne hyperbranched polyurethane as an ecofriendly sustainable material. ACS Sustain Chem Eng 2(12):2730–2738.  https://doi.org/10.1021/sc5006022 CrossRefGoogle Scholar
  38. 38.
    Gogoi S, Kumar M, Mandal BB, Karak N (2016) A renewable resource based carbon dot decorated hydroxyapatite nanohybrid and its fabrication with waterborne hyperbranched polyurethane for bone tissue engineering. RSC Adv 6:26066–26076.  https://doi.org/10.1039/c6ra02341j CrossRefGoogle Scholar
  39. 39.
    Guelcher SA, Gallagher KM, Didier JE, Klinedinst DB, Doctor JS, Goldstein AS (2005) Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomater 1(4):471–484.  https://doi.org/10.1016/j.actbio.2005.02.007 CrossRefPubMedGoogle Scholar
  40. 40.
    Guo YH, Guo JJ, Miao H, Teng LJ, Huang Z (2014) Properties and paper sizing application of waterborne polyurethane emulsions synthesized with isophorone diisocyanate. Prog Org Coat 77(5):988–996.  https://doi.org/10.1016/j.porgcoat.2014.02.003 CrossRefGoogle Scholar
  41. 41.
    Gurunathan T, Mohanty S, Nayak SK (2015) Effect of reactive organoclay on physicochemical properties of vegetable oil-based waterborne polyurethane nanocomposites. RSC Adv 5(15):11524–11533.  https://doi.org/10.1039/C4RA14601H CrossRefGoogle Scholar
  42. 42.
    Harjunalanen T, Lahtinen M (2003) The effects of altered reaction conditions on the properties of anionic poly(urethane-urea) dispersions and films cast from the dispersions. Eur Polym J 39:817–824.  https://doi.org/10.1016/S0014-3057(02)00279-3 CrossRefGoogle Scholar
  43. 43.
    Hasan MA, Shaw JM (2010) Rheology of reconstituted crude oils: artifacts and asphaltenes. Energy Fuel 24:6417–6427.  https://doi.org/10.1021/ef101185x CrossRefGoogle Scholar
  44. 44.
    Hasan MA, Fulem M, Bazyleva A, Shaw JM (2009) Rheological properties of nanofiltered athabasca bitumen and maya crude oil. Energy Fuel 23:5012–5021.  https://doi.org/10.1021/ef900313r CrossRefGoogle Scholar
  45. 45.
    Hassan MK, Mauritz KA, Storey RF, Wiggins JS (2006) Biodegradable aliphatic thermoplastic polyurethane based on poly(ε-caprolactone) and L-lysine diisocyanate. J Polym Sci A-Polym Chem 44(9):2990–3000.  https://doi.org/10.1002/pola.21373 CrossRefGoogle Scholar
  46. 46.
    Hendessi S, Sevinis EB, Unal S, Unal H (2016) Antibacterial sustained-release coating from halloysite nanotubes/waterborne polyurethanes. Prog Org Coat 101:253–261.  https://doi.org/10.1016/j.porgcoat.2016.09.005 CrossRefGoogle Scholar
  47. 47.
    Hsu SH, Tang CM, Tseng HJ (2006) Biocompatibility of poly(ether)urethane-gold nanocomposites. J Biomed Mater Res Part A 79A:759–770.  https://doi.org/10.1002/jbm.a.30879 CrossRefGoogle Scholar
  48. 48.
    Hsu SH, Hung KC, Lin YY, Su CH, Yeh HY, Jeng US, Lu CY, Dai SA, Fu WE, Lin JC (2014) Water-based synthesis and processing of novel biodegradable elastomers for medical applications. J Mater Chem B 2:5083–5092.  https://doi.org/10.1039/C4TB00572D CrossRefGoogle Scholar
  49. 49.
    Hsu SH, Chang WC, Yen CT (2017) Novel flexible nerve conduits made of water-based biodegradable polyurethane for peripheral nerve regeneration. J Biomed Mater Res A 105(5):1383–1392.  https://doi.org/10.1002/jbm.a.36022 CrossRefPubMedGoogle Scholar
  50. 50.
    Huang GS, Tseng CS, Yen BL, Dai LG, Hsieh PS, Hsu HS (2013a) Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration. Eur Cell Mater 26(13):179–194.  https://doi.org/10.22203/eCM.v026a13 CrossRefPubMedGoogle Scholar
  51. 51.
    Huang Y, He K, Wang X (2013b) Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater Sci Eng C 33(6):3220–3229.  https://doi.org/10.1016/j.msec.2013.03.048 CrossRefGoogle Scholar
  52. 52.
    Huang F, Cheng R, Meng F, Deng C, Zhong Z (2015) Micelles based on acid degradable poly(acetal urethnae): preparation, pH-sensitivity, and triggered intracellular drug release. Biomacromolecules 16(7):2228–2236.  https://doi.org/10.1021/acs.biomac.5600625 CrossRefPubMedGoogle Scholar
  53. 53.
    Hung KC, Tseng CS, Hsu SH (2014) Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications. Adv Healthc Mater 3(10):1578–1587.  https://doi.org/10.1002/adhm.201400018 CrossRefPubMedGoogle Scholar
  54. 54.
    Hung KC, Tsenq CS, Dai LG, Hsu SH (2016) Water-based polyurethane 3D printed scaf folds with controlled release function for customized cartilage tissue engineering. Biomaterials 83:156–168.  https://doi.org/10.1016/j.biomaterials.2016.01.019 CrossRefPubMedGoogle Scholar
  55. 55.
    Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5:1519–1528.  https://doi.org/10.1039/C3PY01192E CrossRefGoogle Scholar
  56. 56.
    Jabbari E, Khakpour M (2000) Morphology of and release behavior from porous polyurethane microspheres. Biomaterials 21(2):2073–2079.  https://doi.org/10.1016/S0142-9612(00)00135-6 CrossRefPubMedGoogle Scholar
  57. 57.
    Jang JY, Jhon YK, Cheong IW, Kim JH (2002) Effect of process variables on molecular weight and mechanical properties of water-based polyurethane dispersion. Colloids Surf A Physicochem Eng Asp 196(2–3):135–143.  https://doi.org/10.1016/S0927-7757(01)00857-3 CrossRefGoogle Scholar
  58. 58.
    Jian JY, Chang JK, Shau MD (2009) Synthesis and characterizations of new lysine-based biodegradable cationic poly(urethane-co-ester) and study on self-assembled nanoparticles with DNA. Bioconjug Chem 20(4):774–779.  https://doi.org/10.1021/bc800499w CrossRefPubMedGoogle Scholar
  59. 59.
    Jung YC, Kim HH, Kim YA, Kim JH, Cho JW, Endo M, Dresselhaus MS (2010) Optically active multi-walled carbon nanotubes for transparent, conductive memory-shape polyurethane film. Macromolecules 43(14):6106–6112.  https://doi.org/10.1021/ma101039y CrossRefGoogle Scholar
  60. 60.
    Khong TT, Aarstad OA, Skjåk-Bræk G, Draget KI, Vårum KM (2013) Gelling concept combining chitosan and alginate proof of principle. Biomacromolecules 14(8):2765–2771.  https://doi.org/10.1021/bm400610b CrossRefPubMedGoogle Scholar
  61. 61.
    Kim BK (1996) Aqueous polyurethane dispersions. Colloid Polym Sci 274:599–611.  https://doi.org/10.1007/BF00653056 CrossRefGoogle Scholar
  62. 62.
    Kim YJ, Kim BK (2014) Synthesis and properties of silanized waterbornepolyurethane/graphene nanocomposites. Colloid Polym Sci 292(1):51–58.  https://doi.org/10.1007/s00396-013-3054-2 CrossRefGoogle Scholar
  63. 63.
    Kim BK, Kim TK, Jeong HM (1994) Aqueous dispersion of polyurethane anionomers from H12MDI/IPDI, PCL, BD, and DMPA. J Appl Polym Sci 53:371–378.  https://doi.org/10.1002/app.1994.070530315 CrossRefGoogle Scholar
  64. 64.
    Kim BK, Yang JS, Yoo SM, Lee JS (2003a) Waterborne polyurethanes containing ionic groups in soft segments. Colloid Polym Sci 281:461–468.  https://doi.org/10.1007/s00396-002-0799-4 CrossRefGoogle Scholar
  65. 65.
    Kim BK, Seo JW, Jeong HM (2003b) Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur Polym J 39(1):85–91.  https://doi.org/10.1016/S0014-3057(02)00173-8 CrossRefGoogle Scholar
  66. 66.
    Kim AK, Hasan MA, Nahm S, Cho S (2005a) Evaluation of compressive mechanical properties of Al-foams using electrical conductivity. Compos Struct 71:191–198.  https://doi.org/10.1016/j.compstruct.2004.10.016 CrossRefGoogle Scholar
  67. 67.
    Kim AK, Hasan MA, Choen SS, Lee HJ (2005b) The constitutive behavior of metallic foams using nanoindentation technique and Fe modeling. Key Eng Mater 297/300:1050.  https://doi.org/10.4028/www.scientific.net/KEM.297-300.1050 CrossRefGoogle Scholar
  68. 68.
    Kim AK, Hasan MA, Lee HJ, Cho SS (2005c) Characterization of submicron mechanical properties of Al-alloy foam using nanoindentation technique. Mater Sci Forum 475–479:4199–4202.  https://doi.org/10.4028/www.scientific.net/MSF.475-479.4199 CrossRefGoogle Scholar
  69. 69.
    Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450.  https://doi.org/10.1021/cm100477v CrossRefGoogle Scholar
  70. 70.
    Kim HL, Jung GY, Yoon JH, Han JS, Park YJ, Kim DG, Zhang M, Kim DJ (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C 54:20–25.  https://doi.org/10.1016/j.msec.2015.04.033 CrossRefGoogle Scholar
  71. 71.
    Kuan HC, Ma CCM, Chang WP, Yuen SM, Wu HH, Lee TM (2005) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol 65(11–12):1703–1710.  https://doi.org/10.1016/j.compscitech.2005.02.017 CrossRefGoogle Scholar
  72. 72.
    Lamba NMK, Woodhouse KA, Cooper SL (2007) Polyurethans in biomedical applications, vol 1998. CRC Press, New York, pp 205–241Google Scholar
  73. 73.
    Lee TJ, Kwon SH, Kim BK (2014) Biodegradable sol–gel coatings of waterborne polyurethane/gelatin chemical hybrids. Prog Org Coat 77(6):1111–1116.  https://doi.org/10.1016/j.porgcoat.2014.03.011 CrossRefGoogle Scholar
  74. 74.
    Lei L, Zhong L, Lin X, Li Y, Xia Z (2014) Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink. Chem Eng J 253:518–525.  https://doi.org/10.1016/j.cej.2014.05.044 CrossRefGoogle Scholar
  75. 75.
    Li P, Poon YF, Li W et al (2010) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10:149–156.  https://doi.org/10.1038/nmat2915 CrossRefPubMedGoogle Scholar
  76. 76.
    Li B, Peng D, Zhao N, Mu Q, Li J (2013) The physical properties of nonionic waterborne polyurethane with a polyether as side chain. J Appl Polym Sci 127(3):1848–1852.  https://doi.org/10.1002/app.37915 CrossRefGoogle Scholar
  77. 77.
    Li Y, Noordover BA, van Benthem RA, Koning CE (2014) Reactivity and regio-selectivity of renewable building blocks for the synthesis of water-dispersible polyurethane prepolymers. ACS Sustain Chem Eng 2(4):788–797.  https://doi.org/10.1021/sc400459q CrossRefGoogle Scholar
  78. 78.
    Li Q, Ma L, Gao C (2015b) Biomaterials for in situ tissue regeneration: development and perspectives. J Mater Chem B 3(46):8921–8938.  https://doi.org/10.1039/C5TB01863C CrossRefGoogle Scholar
  79. 79.
    Li P, Du D, Guo L, Guob Y, Ouyang J (2016) Stretchable and conductive polymer films for high-performance electromagnetic interference shielding. J Mater Chem C 4:6525–6532.  https://doi.org/10.1039/C6TC01619G CrossRefGoogle Scholar
  80. 80.
    Li M, Liu F, Li Y, Qiang X (2017) Synthesis of stable cationic waterborne polyurethane with a high solid content: insight from simulation to experiment. RSC Adv 7(22):13312–13324.  https://doi.org/10.1039/c7ra00647k CrossRefGoogle Scholar
  81. 81.
    Liu HL, Dai SA, Fu KY, Hsu SH (2010) Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. Int J Nanomedicine 19(5):1017–1028.  https://doi.org/10.2147/IJN.S14572 CrossRefGoogle Scholar
  82. 82.
    Liu SQ, Yang C, Huang Y et al (2012) Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition. Adv Mater 24(48):6484–6489.  https://doi.org/10.1002/adma.201202225 CrossRefPubMedGoogle Scholar
  83. 83.
    Liu N, Zhao Y, Kang M, Wang J, Wang X, Feng Y, Yin N, Li Q (2014) The effects of the molecular weight and structure of polycarbonatediols on the properties of waterborne polyurethanes. Prog Org Coat 82:46–56.  https://doi.org/10.1016/j.porgcoat.2015.01.015 CrossRefGoogle Scholar
  84. 84.
    Liu K, Su Z, Miao S, Ma G, Zhang S (2016a) Enzymatic waterborne polyurethanetowards robust and environmentally friendly anti-biofouling coating. RSC Adv 6:31698–31704.  https://doi.org/10.1039/C6RA04583A CrossRefGoogle Scholar
  85. 85.
    Liu K, Su Z, Miao S, Ma G, Zhang S (2016b) Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochem Eng J 113:107–113.  https://doi.org/10.1016/j.bej.2007.01.004 CrossRefGoogle Scholar
  86. 86.
    Lu Y, Larock RC (2008) Soybean-oil-based waterborne polyurethane dispersion: effects of polyol fuctionality and hard segment content on properties. Biomacromolecules 9(11):3332–3340.  https://doi.org/10.1021/bm801030g CrossRefPubMedGoogle Scholar
  87. 87.
    Lu Y, Larock RC (2010) Soybean oilbased, aqueous cationic polyurethane dispersions: synthesis and properties. Prog Org Coat 69:31–37.  https://doi.org/10.1016/j.porgcoat.2010.04.024 CrossRefGoogle Scholar
  88. 88.
    Lu Y, Larock RC (2011) Synthesis and properties of grafted latices from a soybean oil-based waterborne polyurethane and acrylics. J Appl Polym Sci 119(6):3305–3314.  https://doi.org/10.1002/app.29029 CrossRefGoogle Scholar
  89. 89.
    Madbouly SA, Otaigbe JU (2009) Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Prog Polym Sci 34(12):1283–1332.  https://doi.org/10.1016/j.progpolymsci.2009.08.002 CrossRefGoogle Scholar
  90. 90.
    Madbouly SA, Xia Y, Kessler MR (2013) Rheological behavior of environmentally friendly castor oil-based waterborne polyurethane dispersions. Macromolecules 46(11):4606–4616.  https://doi.org/10.1021/ma400200y CrossRefGoogle Scholar
  91. 91.
    Meier MRA, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36(11):1788–1802.  https://doi.org/10.1039/B703294C CrossRefPubMedGoogle Scholar
  92. 92.
    Mohaghegh SM, Barikani M, Entezami AA (2005) Preparation, and properties of an aqueous polyurethane dispersion. Iran Polym J 14:163–168.  https://doi.org/10.1002/app.26138 CrossRefGoogle Scholar
  93. 93.
    Nabid MR, Omrani I (2016) Facil preparation of pH-responsive polyurethane nanocarrier for oral delivery. Mater Sci Eng C 69:532–537.  https://doi.org/10.1016/j.msec.2016.07.017 CrossRefGoogle Scholar
  94. 94.
    Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798.  https://doi.org/10.1016/j.progpolymsci.2007.05.017 CrossRefGoogle Scholar
  95. 95.
    Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakarahara T (1999) Microbial degradation of polyurethane, polester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 51(2):134–140.  https://doi.org/10.1007/s002530051373 CrossRefPubMedGoogle Scholar
  96. 96.
    Noble KL (1997) Waterborne polyurethanes. Prog Org Coat 32(1–4):131–136.  https://doi.org/10.1016/S0300-9440(97)00071-4 CrossRefGoogle Scholar
  97. 97.
    Omrani I, Babanejad N, Shendi HK, Nabid MR (2017a) Fully glutathione degradable waterborne polyurethane nanocarriers: preparation, redox-sensitivity, and triggered intracellular drug release. Mater Sci Eng C 70:607–616.  https://doi.org/10.1016/j.msec.2016.09.036 CrossRefGoogle Scholar
  98. 98.
    Omrani I, Babanejad N, Shendi HK, Nabid MR (2017b) Preparation and evaluation of a novel sunflower oil-based waterborne polyurethane nanoparticles for sustained delivery of hydrophobic drug. Eur J Lipid Sci Technol 119(8):1600283.  https://doi.org/10.1002/ejlt.201600283 CrossRefGoogle Scholar
  99. 99.
    Panda SS, Panda BP, Mohanty S, Nayak SK (2017) Synthesis and properties of castor oil-based waterborne polyurethane cloisite 30B nanocomposite coatings. J Coat Technol Res 14(12):377–394.  https://doi.org/10.1007/s11998-016-9855-8 CrossRefGoogle Scholar
  100. 100.
    Park S, Healy KE (2003) Nanoparticulate DNA packaging using terpolymers of poly (lysine-g-(lactide-b-ethylene glycol)). Bioconjug Chem 14(2):311–319.  https://doi.org/10.1021/bc025623b CrossRefPubMedGoogle Scholar
  101. 101.
    Park SH, Oh KW, Kim SH (2013) Reinforcement effect of cellulose nanowhisker on bio-based polyurethane. Compos Sci Technol 86:82–88.  https://doi.org/10.1016/j.compscitech.2013.07.006 CrossRefGoogle Scholar
  102. 102.
    Qian L, Guan Y, He B et al (2008) Modified guanidine polymers: synthesis and antimicrobial mechanism revealed by AFM. Polymer 49(10):2471–2475.  https://doi.org/10.1016/j.polymer.2008.03.042 CrossRefGoogle Scholar
  103. 103.
    Rahman MM, Kim EY, Yun Kwon J, Yoo HJ, Kim HD (2008) Cross-linking reaction of waterborne polyurethane adhesives containing different amount of ionic groups with hexamethoxymethyl melamine. Int J Adhes Adhes 28(1–2):47–54.  https://doi.org/10.1016/j.ijadhadh.2007.03.004 CrossRefGoogle Scholar
  104. 104.
    Rashvand M, Ranjbar Z, Rastegar S (2011) Nano zinc oxide as a UV-stabilizer for aromatic polyurethane coatings. Prog Org Coat 71(4):362–368.  https://doi.org/10.1016/j.porgcoat.2011.04.006 CrossRefGoogle Scholar
  105. 105.
    Rosthauser JW, Nachtkamp K (1987) Waterborne polyurethanes. In: Frisch KC, Klempner D (eds) Advances in Urethane Science and Technology, vol 10. Technomic, Lancaster, GB, pp 121–162Google Scholar
  106. 106.
    Rother S, Salbach-Hirsch J, Moeller S, Seemann T, Schnabelrauch M, Hofbauer LC, Hintze V, Scharnweber D (2015) Bioinspired collagen/glycosaminoglycan-based cellular microenvironments for tuning osteoclastogenesis. ACS Appl Mater Interfaces 7(42):23787–23797.  https://doi.org/10.1021/acsami.5b08419 CrossRefPubMedGoogle Scholar
  107. 107.
    Ruan H, Fan C, Zheng X et al (2009) In vitro antibacterial and osteogenic properties of plasma sprayed silver-containing hydroxyapatite coating. Chin Sci Bull 54(23):4438–4445.  https://doi.org/10.1007/s11434-009-0175-6 CrossRefGoogle Scholar
  108. 108.
    Ruggeri V, Francolini I, Donelli G et al (2007) Synthesis, characterization, and in vitro activity of antibiotic releasing polyurethanes to prevent bacterial resistance. J Biomed Mater Res A 81(2):287–298.  https://doi.org/10.1002/jbm.a.30984 CrossRefPubMedGoogle Scholar
  109. 109.
    Saalah S, Abdullah LC, Aung MM, Salleh MZ, Biaka DRA, Basri M, Jusoh ER (2015) Waterborne polyurethane dispersions synthesized from jatropha oil. Ind Crop Prod 64:194–200.  https://doi.org/10.1016/j.indcrop.2014.10.046 CrossRefGoogle Scholar
  110. 110.
    Saha S, Kocaefe D, Krause C, Larouche T (2011) Effect of titania and zinc oxide particles on acrylic polyurethane coating performance. Prog Org Coat 70(4):170–177.  https://doi.org/10.1016/j.porgcoat.2010.09.021 CrossRefGoogle Scholar
  111. 111.
    Santamari A, Echart UL, Arbelaiz A, Barreiro F, Corcuera MA, Eceiza A (2017) Modulating the microstructure of waterborne polyurethanes for preparation of environmentally friendly nanocomposites by incorporating cellulose nanocrystals. Cellulose 24(2):823–834.  https://doi.org/10.1007/s10570-016-1158-9 CrossRefGoogle Scholar
  112. 112.
    Sartori S, Chiono V, Tonda-Turo C, Mattu C, Gianluca C (2014) Biomimetic polyurethanes in nano and regenerative medicine. J Mater Chem B 2(32):5128–5144.  https://doi.org/10.1039/C4TB00525B CrossRefGoogle Scholar
  113. 113.
    Seo JW, Kim BK (2005) Preparations and properties of waterborne polyurethane/nanosilica composites: a diol as extender with triethoxysilane group. J Appl Polym Sci 131(15).  https://doi.org/10.1002/app.40526 Google Scholar
  114. 114.
    Shah SR, Kasper FK, Mikos AG (2013) Perspectives on the prevention and treatment of infection for orthopedic tissue engineering applications. Chin Sci Bull 58(35):4342–4348.  https://doi.org/10.1007/s11434-013-5780-8 CrossRefGoogle Scholar
  115. 115.
    Shau MD, Tseng SJ, Yang TF, Cherng JY, Chin WK (2006) J Biomed Mater Res A 77A(4):736–746.  https://doi.org/10.1002/jbm.a.30605 CrossRefGoogle Scholar
  116. 116.
    Smith AW (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems. Adv Drug Deliv Rev 57(10):1539–1550.  https://doi.org/10.1016/j.addr.2005.04.007 CrossRefPubMedGoogle Scholar
  117. 117.
    Storey RF, Wiggins JS, Puckett AD (1994) Hydrolysable poly(ester urethane) networks from Llysine diisocyanate and D,L- lactide/e-caprolactone homo and copolyester triols. J Polym Sci A-Polym Chem 32(12):2342–2345.  https://doi.org/10.1002/pola.1994.080321216 CrossRefGoogle Scholar
  118. 118.
    Sukhawipat N, Saetung N, Saetung A (2016) Synthesis of novel cationic waterborne polyurethane from natural rubber and its properties testing. Key Eng Mater VI 705:19–23.  https://doi.org/10.4028/www.scientific.net/KEM.705.19 CrossRefGoogle Scholar
  119. 119.
    Tanaka H, Kunimura M (2002) Mechanical properties of thermoplastic polyurethanes containing aliphatic polycarbonate soft segments with different chemical structures. Polym Eng Sci 42(6):1333–1349.  https://doi.org/10.1002/pen.11035 CrossRefGoogle Scholar
  120. 120.
    Tao Y, Hasan A, Deeb G, Hu C, Han H (2016) Rheological and mechanical behavior of silk fibroin reinforced waterborne polyurethane. Polymers 8(3):94.  https://doi.org/10.3390/polym8030094 CrossRefGoogle Scholar
  121. 121.
    Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, Gunatillake A (2007) Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials 28(36):5407–5417.  https://doi.org/10.1016/j.biomaterials.2007.08.035 CrossRefPubMedGoogle Scholar
  122. 122.
    Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM (2013) Antimicrobialenzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol J 8(1):97–109.  https://doi.org/10.1002/biot.201200313 CrossRefPubMedGoogle Scholar
  123. 123.
    Tiller J, Sprich C, Hartmann L (2005) Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J Control Release 103(2):355–367.  https://doi.org/10.1016/j.jconrel.2004.12.002 CrossRefPubMedGoogle Scholar
  124. 124.
    Tillet G, Boutevin B, Ameduri B (2011) Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog Polym Sci 36(2):191–217.  https://doi.org/10.1016/j.progpolymsci.2010.08.003 CrossRefGoogle Scholar
  125. 125.
    Tsai Y, Li S, Hu SG, Chang WC, Jeng US, Hsu SH (2015) Synthesis of thermoresponsive amphiphilic polyurethane gel as a new cell printing material near body temperature. ACS Appl Mater Interfaces 7:27613–27623CrossRefGoogle Scholar
  126. 126.
    Tseng SJ, Tang SC, Shau MD, Zeng YF, Cherng JY, Shih MF (2005) Structural characterization and buffering capacity in relation to the transfection efficiency of biodegradable polyurethane. Bioconjug Chem 16(6):1375–1381.  https://doi.org/10.1021/bc050005r CrossRefPubMedGoogle Scholar
  127. 127.
    Ulrich H (2001) Polyurethanes. In: Encyclopedia of Polymer Science and Technology, vol 4. Wiley, New York.  https://doi.org/10.1002/0471440264.pst295 CrossRefGoogle Scholar
  128. 128.
    Valerio A, Conti D, Araujo PH, Sayer C, Rocha SP (2015) Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloid Surf B 135:35–41.  https://doi.org/10.1016/j.colsurfb.2015.07.044 CrossRefGoogle Scholar
  129. 129.
    Vroman I, Tighzert L (2009) Biodegradable Polymers. Materials 2(2):307–344.  https://doi.org/10.3390/ma2020307 CrossRefPubMedCentralGoogle Scholar
  130. 130.
    Wang, He K, Zhang W (2013) Optimizing the fabrication processes for manufacturing a hybrid hierarchical polyurethane-cell/hydrogel construct. J Bioact Compat Polym 28(4):303–319.  https://doi.org/10.1177/0883911513491359 CrossRefGoogle Scholar
  131. 131.
    Wang JZ, Zhu YX, Ma HC, Chen SN, Chao JY, Ruan WD, Wang D, Du FG, Meng YZ (2016) Developingmulti-cellular tumor spheroidmodel (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. Mater Sci Eng C 62:215–225.  https://doi.org/10.1016/j.msec.2016.01.045 CrossRefGoogle Scholar
  132. 132.
    Wattanodorn Y (2014) Material performance: antibacterial anionic waterborne polyurethanes/Ag nanocomposites with enhanced mechanical rpoperties. Polym Test 40:163–169.  https://doi.org/10.1016/j.polymertesting.2014.09.004 CrossRefGoogle Scholar
  133. 133.
    Wijffels RH, Tramper J (1995) Nitrification by immobilized cells. Enzyme Microb Technol 17(6):482–492.  https://doi.org/10.1016/0141-0229(94)00099-D CrossRefGoogle Scholar
  134. 134.
    Wu GH (2016) Synthesis of water-based cationic polyurethane for antibacterial and gene delivery applications. Colloid Surf B 146:825–832.  https://doi.org/10.1016/j.colsurfb.2016.07.011 CrossRefGoogle Scholar
  135. 135.
    Wu GH, Hsu SH (2016) Synthesis of water-based cationic polyurethane for antibacterial and gene delivery applications. Colloid Surf B 146:825–832.  https://doi.org/10.1016/j.colsurfb.2016.07.011 CrossRefGoogle Scholar
  136. 136.
    Wu CI, Huang JW, Wen YL, Wen SB, Shen YH, Yeh MY (2009) Preparation of antibacterial waterborne polyurethane/silver nanocomposite. J Chin Chem Soc 56(6):1231–1235.  https://doi.org/10.1002/jccs.200900177 CrossRefGoogle Scholar
  137. 137.
    Wu Y, Lin W, Hao H, Li J, Luo F, Tan H (2017) Nanofibrous scaffold from electrospinning biodegradable waterborne olyurethane/poly(vinyl alcohol) for tissue engineering application. J Biomater Sci Polym Ed 28(7):648–663.  https://doi.org/10.1080/09205063.2017.1294041 CrossRefPubMedGoogle Scholar
  138. 138.
    Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12(11):1893–1909.  https://doi.org/10.1039/C0GC00264J CrossRefGoogle Scholar
  139. 139.
    Xu D, Meng Z, Han M, Xi K, Jia X, Yu X, Chen Q (2008) Novel blood-compatible waterborne polyurethane using chitosan as an extender. J Appl Polym Sci 109(1):240–246.  https://doi.org/10.1002/app.27479 CrossRefGoogle Scholar
  140. 140.
    Xu J, Rong X, Chi T, Wang M, Wang Y, Yang D, Qiu F (2013) Preparation, characterization of UV-curable waterborne polyurethane-acrylate and the application in metal iron surface protection. J Appl Polym Sci 130(5):3142–3152.  https://doi.org/10.1002/app.39539 CrossRefGoogle Scholar
  141. 141.
    Yameen B, Vilos C, Choi WI, Whyte A, Huang J, Pollit L, Farokhzad OC (2015) Drug delivery nanocarriers from a fully degradable PEG-conjugated polyester with a reduction-responsive backbone. Chem Eur J 21(32):11325–11329.  https://doi.org/10.1002/chem.201502233 CrossRefPubMedGoogle Scholar
  142. 142.
    Yang TF, Chin WK, Cherng JY, Shau MD (2004) Synthesis of novel biodegradable cationic polymer: N,N-Diethylethylenediamine polyurethane as a gene carrier. Biomacromolecules 5(5):1926–1932.  https://doi.org/10.1021/bm049763v CrossRefPubMedGoogle Scholar
  143. 143.
    Yang X, Ren B, Ren Z, Jiang L, Liu W, Zhu C (2015) Synthesis and properties of novel non-ionic polyurethane dispersion based on hydroxylated tung oil and alicyclic isocyanates. J Mater Sci Chem Eng 3(1):88–94.  https://doi.org/10.4236/msce.2015.31013 CrossRefGoogle Scholar
  144. 144.
    Yen HJ, Hsu SH, Tseng CS, Huang JP, Tsai CL (2009) Fabrication of precision scaffolds using liquid-frozen deposition manufacturing for cartilage tissue engineering. Tissue Eng Part A 15(5):965–975.  https://doi.org/10.1089/ten.tea.2008.0090 CrossRefPubMedGoogle Scholar
  145. 145.
    Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652.  https://doi.org/10.1016/j.tibtech.2004.10.004 CrossRefPubMedGoogle Scholar
  146. 146.
    Yoo HJ, Kim HD (2007) Characteristics of waterborne polyurethane/poly (N-vinyl pyrrolidone) composite films for wound-healing dressings. J Appl Polym Sci 107(1):331–338.  https://doi.org/10.1002/app.26970 CrossRefGoogle Scholar
  147. 147.
    Yoo HJ, Kim HD (2008) Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings. J Biomed Mater Res B Appl Biomater 85(2):326–333.  https://doi.org/10.1002/jbm.b.30950 CrossRefPubMedGoogle Scholar
  148. 148.
    Zhang JY, Beckman EJ, Piesco NP, Agrawal S (2000) A new peptide-based urethane polymer: synthesis, biodegradation and potential to support cell growth in-vitro. Biomaterials 21(12):1247–1258.  https://doi.org/10.1016/S0142-9612(00)00005-3 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Zhang L, Zhang H, Guo J (2012) Synthesis and properties of UV-curablepolyester-based waterborne polyurethane/functionalized silica compositesand morphology of their nanostructured films. Ind Eng Chem Res 51(25):8434–8441.  https://doi.org/10.1021/ie3000248 CrossRefGoogle Scholar
  150. 150.
    Zhang M, Xie X, Tang M et al (2013a) Magnetically ultraresponsive nanoscavengers for next-generation water purification systems. Nat Commun 4:1866.  https://doi.org/10.1038/ncomms2892 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Zhang S, Yu A, Song X, Liu X (2013b) Synthesis and characterization of waterborne UV-curable polyurethane nanocomposites based on the macromonomer surface modification of colloidal silica. Prog Org Coat 76(7–8):1032.  https://doi.org/10.1016/j.porgcoat.2013.02.019 CrossRefGoogle Scholar
  152. 152.
    Zhang K, Xu J, Duan X, Lu L, Hu D, Zhang L, Nie T, Brown KB (2014) Controllable synthesis of multi-walled carbon nanotubes/poly(3,4-ethylenedioxythiophene) core-shell nanofibers with enhanced electrocatalytic activity. Electrochim Acta 137:518–525.  https://doi.org/10.1016/j.electacta.2014.06.053 CrossRefGoogle Scholar
  153. 153.
    Zhang Y, Li Y, Li J, Gao Y, Tan H, Wang K, Li J, Fu Q (2015) Synthesis and antibacterial characterization of waterborne polyurethanes with gemini quaternary ammonium salt. Sci Bull 60(12):1114–1121.  https://doi.org/10.1007/s11434-015-0811-2 CrossRefGoogle Scholar
  154. 154.
    Zhang YI, He X, Ding M, He W, Li J, Li J, Tan H (2018) Antibacterial and biocompatible cross-linked waterborne polyurethanes containing gemini quaternary ammonium salts. Biomacromolecules 19(2):279–287.  https://doi.org/10.1021/acs.biomac.7b01016 CrossRefPubMedGoogle Scholar
  155. 155.
    Zhou L, Yu L, Ding M, Li J, Tan H, Wang Z, Fu Q (2011) Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications. Macromolecules 44(4):857–864.  https://doi.org/10.1021/ma102346a CrossRefGoogle Scholar
  156. 156.
    Zhou X, Li Y, Fang C, Li S, Cheng Y, Lei W, Meng X (2015) Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: a review. J Mater Sci Technol 31(7):708–722.  https://doi.org/10.1016/j.jmst.2015.03.002 CrossRefGoogle Scholar
  157. 157.
    Zhou R, Li O, Fan Z, Du D, Ouyang J (2017) Stretchable heaters with composites of an intrinsically conductive polymer, reduced graphene oxide and an elastomer for wearable thermotherapy. J Mater Chem 5:1544–1551.  https://doi.org/10.1039/C6TC04849H CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Organic Materials and Polymer EngineeringDong-A UniversityBusanSouth Korea
  2. 2.Regional Research Institute for Fiber & Fashion MaterialsYeungnam UniversityGyeongsanSouth Korea

Personalised recommendations