Injectable Nanocomposite Hydrogels and Electrosprayed Nano(Micro)Particles for Biomedical Applications

  • Nguyen Vu Viet Linh
  • Nguyen Tien Thinh
  • Pham Trung Kien
  • Tran Ngoc QuyenEmail author
  • Huynh Dai PhuEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)


Polymeric scaffolds have played important roles in biomedical applications due to their potentially practical performance such as delivery of bioactive components and/or regenerative cells. These materials were well-designed to encapsulate bioactive molecules or/and nanoparticles for enhancing their performance in tissue regeneration and drug delivery systems. In the study, several multifunctional nanocomposite hydrogel and polymeric nano(micro)particles-electrosprayed platforms were described from their fabrication methods and structural characterizations to potential applications in the mentioned fields. Regarding to their described performance, these multifunctional nanocomposite biomaterials could pay many ways for further studies that enables them apply in clinical applications.


Injectable hydrogel Nanocomposite Polysaccharide Electrospray Biomedical applications 



This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number B2015-20a-01. Some of the material characterization facilities are supported by National key lab for Polymer and Composite Materials-HCMUT, VAST and HUFI. This work was also financially supported by Vietnam Academy of Science and Technology (VAST) under Grant Number VAST03.08/17-18 and Vietnam National Foundation for Science & Technology Development (NAFOSTED) [grant number 106-YS.99-2014.33].


  1. 1.
    Yuan Y, Lin D, Chen F, Liu C (2014) Clinical translation of biomedical materials and the key factors towards product registration. J Orthop Transl 2(2):49–55Google Scholar
  2. 2.
    Li Y, Rodrigues J, Tomás H (2012) Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 41(6):2193–2221PubMedCrossRefGoogle Scholar
  3. 3.
    Scaffaro R, Lopresti F, Maio A, Sutera F, Botta L (2017) Development of polymeric functionally graded scaffolds: a brief review. J Appl Biomater Funct Mater 15(2):107–121Google Scholar
  4. 4.
    Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670PubMedCrossRefGoogle Scholar
  5. 5.
    Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun 34:4312–4314CrossRefGoogle Scholar
  6. 6.
    Wu YL, Wang H, Qiu YK, Liow SS, Li Z, Loh XJ (2016) PHB-based gels as delivery agents of chemotherapeutics for the effective shrinkage of tumors. Adv Healthc Mater 5(20):2679–2685PubMedCrossRefGoogle Scholar
  7. 7.
    Shu XZ, Liu Y, Palumbo FS, Luo Y, Prestwich GD (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 2:1339–1348Google Scholar
  8. 8.
    Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS (2007) The prevention of peritoneal adhesions by in-situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 28(6):3418–3426PubMedCrossRefGoogle Scholar
  9. 9.
    Milczek EM Commercial applications for enzyme-mediated protein conjugation: new developments in enzymatic processes to deliver functionalized proteins on the commercial scale. Chem Rev 118:119–141. PubMedCrossRefGoogle Scholar
  10. 10.
    Nasir A, Kausar A, Younus A (2015) A review on preparation, properties and applications of polymeric nanoparticle-based materials. Polym-Plast Technol Eng 54(4):325–341CrossRefGoogle Scholar
  11. 11.
    Elsabahya M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561CrossRefGoogle Scholar
  12. 12.
    Rastogi L, Arunachalam J (2013) Synthesis and characterization of bovine serum albumin–copper nanocomposites for antibacterial applications. Colloids Surf B Biointerfaces 108:134–141PubMedCrossRefGoogle Scholar
  13. 13.
    Adavallan K, Krishnakumar N (2014) Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens. Adv Nat Sci Nanosci Nano Technol 5(2):25018CrossRefGoogle Scholar
  14. 14.
    Cao VD, Nguyen PP, Vo QK, Nguyen CK, Nguyen XC, Dang CH, Tran NQ (2014) Ultrafine copper nanoparticles exhibiting a powerful antifungal/killing activity against Corticium salmonicolor. Bull Kor Chem Soc 35(9):2645–2648CrossRefGoogle Scholar
  15. 15.
    Nguyen TH, Huynh CK, Niem VVT, Vo VT, Tran NQ, Nguyen DH, Anh MNT (2016) Microwave-assisted synthesis of chitosan/polyvinyl alcohol silver nanoparticles gel for wound dressing applications. Int J Polym Sci 2016:1584046Google Scholar
  16. 16.
    Tra TN, Huynh CK, Hoai NTT, Bao BC, Tran NQ, Vo VT, Nguyen TH (2016) Fabrication of electrospun polycaprolactone coated with chitosan-silver nanoparticles membranes for wound dressing applications. J Mater Sci Mater Med 27(10):156CrossRefGoogle Scholar
  17. 17.
    Suriyakalaa U, Antony JJ, Suganya S, Siva D, Sukirtha R, Kamalakkannan S, Pichiah PBT, Achiraman S (2013) Hepatocurative activity of biosynthesized silver nanoparticles fabricated using Andrographispaniculata. Colloids Surf B Biointerfaces 102:189–194PubMedCrossRefGoogle Scholar
  18. 18.
    Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Cao VD, Tran NQ, Nguyen TPP (2015) Synergistic effect of citrate dispersant and capping polymers on controlling size growth of ultrafine copper nanoparticles. J Exp Nanosci 10(8):576–587CrossRefGoogle Scholar
  20. 20.
    Ngo HM, Nguyen PP, Tran NQ (2014) Preparation of nanoclusters encapsulating ultrafine platinum nanoparticles. Asian J Chem 26(23):8079–8083CrossRefGoogle Scholar
  21. 21.
    Cu TS, Cao VD, Nguyen CK, Tran NQ (2014) Preparation of silver core-chitosan shell nanoparticles using catechol-functionalized chitosan and antibacterial studies. Macromol Res 22(4):418–423CrossRefGoogle Scholar
  22. 22.
    Ho VA, Le PT, Nguyen TP, Nguyen CK, Nguyen VT, Tran NQ (2015) Silver core-shell nanoclusters exhibiting strong growth inhibition of plant-pathogenic fungi. J Nanomater 16(1):13Google Scholar
  23. 23.
    Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D (2010) Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res 132:15–30PubMedGoogle Scholar
  24. 24.
    Kalita SJ, Bhardwaj A, Bhatt HA (2017) Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C 27(3):441–449CrossRefGoogle Scholar
  25. 25.
    Choi BS, Kim SH, Yun SJ, Ha HJ, Kim MS, Yang YI, Son Y, Khang G, Rhee JM, Lee HB (2008) Demineralized bone particle (DBP) suppressed the inflammatory reaction of poly (lactide-co-glycolide) scaffold. Tissue Eng Regen Med 3:295Google Scholar
  26. 26.
    Kaito T, Mukai Y, Nishikawa M, Ando W, Yoshikawa H, Myoui A (2006) Dual hydroxyapatite composite with porous and solid parts : experimental study using canine lumbar inter body fusion model. J Biomed Mater Res B Appl Biomater 78:378–384PubMedCrossRefGoogle Scholar
  27. 27.
    Santos MH, Valerio P, Goes AM, Leite MF, Heneine LG, Mansur HS (2007) Biocompatibility evaluation of hydroxyapatite/ collagen nanocomposites doped with Zn+2. Biomed Mater 2:135–141PubMedCrossRefGoogle Scholar
  28. 28.
    Nguyen TTT, Tran TV, Tran NQ, Nguyen CK, Nguyen DH (2017) Hierarchical self-assembly of heparin-PEG end-capped porous silica as a redox sensitive nanocarrier for doxorubicin delivery. Mater Sci Eng C: Mater Biol Appl 70(2):947–954CrossRefGoogle Scholar
  29. 29.
    Liua Y, Maib S, Li N, Yiud CKY, Maoa J, Pashleye DH, Tay FR (2011) Differences between top-down and bottom-up approaches in mineralizing thick, partially-demineralized collagen scaffolds. Acta Biomater 7(4):1742–1751CrossRefGoogle Scholar
  30. 30.
    Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356PubMedCrossRefGoogle Scholar
  31. 31.
    Ma P, Mumper RJ (2013) Paclitaxel, nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol 4(2):1000164PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1(1):10–29PubMedPubMedCentralGoogle Scholar
  33. 33.
    Choi JH, Bae JW, Choi JW, Joung YK, Tran NQ, Park KD (2011) Self-assembled nanogel of pluronic-conjugated heparin as a versatile drug nanocarrier. Macromol Res 19(2):180–188CrossRefGoogle Scholar
  34. 34.
    Nguyen H, Nguyen NH, Tran NQ, Nguyen CK (2015) Improved method for cisplatin-loading dendrimer and behavior of the complex nanoparticles in vitro release and cytotoxicity. J Nanosci Nanotechnol 15(6):4106–4110PubMedCrossRefGoogle Scholar
  35. 35.
    Tong NNA, Nguyen TP, Nguyen CK, Tran NQ (2016) Aquated cisplatin and heparin-pluronic nanocomplexes exhibiting sustainable release of active platinum compound and nci-h460 lung cancer cell anti-proliferation. J Biomater Sci Polym Ed 27(8):709–720PubMedCrossRefGoogle Scholar
  36. 36.
    Van TD, Tran NQ, Nguyen DH, Nguyen CK, Tran DL, Nguyen TP (2016) Injectable hydrogel composite based gelatin-PEG and biphasic calcium phosphate nanoparticles for bone regeneration. J Electron Mater 45(5):2415–2422CrossRefGoogle Scholar
  37. 37.
    Tang R, Cai Y (2008) Calcium phosphate nanoparticles in biomineralization and biomaterials. J Mater Chem 18:3775–3787CrossRefGoogle Scholar
  38. 38.
    Son KD, Kim YJ (2017) Anticancer activity of drug-loaded calcium phosphate nanocomposites against human osteosarcoma. Biomater Res 21:13PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    AEl F, Kim JH, Kim HW (2015) Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug. ACS Appl Mater Interfaces 7(2):1140–1152CrossRefGoogle Scholar
  40. 40.
    Vichery C, Nedelec JM (2016) Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications. Materials 9(4):288PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Yoon SJ, Park KS, Kim MS, Rhee JM, Khang G, Lee HB (2007) Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells. Tissue Eng 13(5):1125–1133PubMedCrossRefGoogle Scholar
  42. 42.
    Sheikh FA, Ju HW, Moon BM, Lee OJ, Kim JH, Park HJ, Kim DW, Kim DK, Jang JE, KhangG PCH (2015) Hybrid scaffolds based on PLGA and silk for bone tissue engineering. J Tissue Eng Regen Med 10(3):209–221PubMedCrossRefGoogle Scholar
  43. 43.
    Kamalaldin N, Jaafar M, Zubairi S, Yahaya B (2017) Physico-mechanical properties of HA/TCP pellets and their three-dimensional biological evaluation in vitro. Adv Exp Med Biol. Springer, Boston, MA. Google Scholar
  44. 44.
    Domènech B, Muñoz M, Muraviev DN, Macanás J (2013) Polymer-silver nanocomposites as antibacterial materials. Formatex Res Cent 1:630–640Google Scholar
  45. 45.
    Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875–1882PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Boomi P, Prabu HG, Mathiyarasu J (2013) Synthesis and characterization of polyaniline/Ag-Ptnanocomposite for improved antibacterial activity. Colloids Surf B Biointerfaces 103:9–14PubMedCrossRefGoogle Scholar
  47. 47.
    Huang L, Yang H, Zhang Y, Xiao W (2016) Study on synthesis and antibacterial properties of Ag NPs/GO nanocomposites. J Nanomater 2016:1–9Google Scholar
  48. 48.
    Tavakoli J, Tang Y (2017) Hydrogel based sensors for biomedical applications:an updated review. Polymers 9(8):364CrossRefGoogle Scholar
  49. 49.
    Shukla SK, Deshpande SR, Shukla SK, Tiwari A (2012) Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite. Talanta 99:283–287PubMedCrossRefGoogle Scholar
  50. 50.
    Wang W, Li HY, Zhang DW, Jiang J, Cui YR, Qiu S, Zhou YL, Zhang XX Fabrication of bienzymatic glucose biosensor based on novel gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Electroanalysis 22(21):2543–2550CrossRefGoogle Scholar
  51. 51.
    Tamer U, Seçkin Aİ, Temur E, Torul H (2011) Fabrication of biosensor based on polyaniline/gold nanorod composite. Int J Electrochem 2011:869742CrossRefGoogle Scholar
  52. 52.
    Zhang H, Li P, Wu M (2015) One-step electrode position of gold-graphene nanocomposite for construction of cholesterol biosensor. Biosens J 4(2):1000128CrossRefGoogle Scholar
  53. 53.
    Tran NQ, Joung YK, Choi JH, Park KM, Park KD (2012) In situ–forming quercetin-conjugated heparin hydrogels for blood compatible and antiproliferative metal coating. J Bioact Compat Polym 27(4):313–326CrossRefGoogle Scholar
  54. 54.
    Nguyen TP, Ho VA, Nguyen DH, Nguyen CK, Tran NQ, Lee YK, Park KD (2015) Enzyme-mediated fabrication of the oxidized chitosan hydrogel for tissue sealant. J Bioact compat polym 30(4):412–423CrossRefGoogle Scholar
  55. 55.
    Tong NNA, Nguyen TH, Nguyen DH, Nguyen CK, Tran NQ (2015) In situ preparation and characterizations of cationic dendrimer-based hydrogels for controlled heparin release. J Macromol Sci A 52(10):830–837CrossRefGoogle Scholar
  56. 56.
    Nguyen CK, Tran NQ, Nguyen TP, Nguyen DH (2016) Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine. Adv Nat Sci Nanosci Nanotechnol 8(1):015001CrossRefGoogle Scholar
  57. 57.
    Nguyen TBT, Dang TLH, Nguyen TTT, Tran DL, Nguyen DH, Nguyen VT, Nguyen CK, Nguyen TH, Le VT, Tran NQ (2016) Green processing of thermo-sensitive nanocurcumin-encapsulated chitosan hydrogel towards biomedical application. Green Process synth 5(6):511–520Google Scholar
  58. 58.
    Culver HR, C legg JR, Peppas NA (2017) Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc Chem Res 50(2):170–178PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Omidi M, Yadegari A, Tayebi L (2017) Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel. Acc Chem Res 7:10638–10649Google Scholar
  60. 60.
    Merino S, Martín C, Kostarelos K, Prato M, Vázquez E (2015) Nanocomposite hydrogels: 3D polymernanoparticle synergies for on-demand drug delivery. ACS Nano 9(5):4686–4697PubMedCrossRefGoogle Scholar
  61. 61.
    Gao W, Zhang Y, Zhang Q, Zhang L (2016) Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann Biomed Eng 44(6):2049–2061PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Nguyen CK, Nguyen DH, Tran NQ (2013) Tetronic-grafted chitosan hydrogel as an injectable and biocompatible scaffold for biomedical applications. J Biomater Sci 24(14):1636–1648CrossRefGoogle Scholar
  63. 63.
    Tran NQ, Joung YK, Lih E, Park KM, Park KD (2011) RGD-conjugated in situ forming hydrogels as cell-adhesive injectable scaffolds. Macromol Res 19:300–306CrossRefGoogle Scholar
  64. 64.
    Tiwari A, Grailer JJ, Pilla S, Steeber DA, Gong S (2001) Biodegradable hydrogels based on novel photopolymerizable guar gum–methacrylate macromonomers for in situ fabrication of tissue engineering scaffolds. Acta Biomater 5(9):3441–3452CrossRefGoogle Scholar
  65. 65.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880CrossRefGoogle Scholar
  66. 66.
    Tran NQ, Joung YK, Lih E, Park KM, Park KD (2010) Supramolecular hydrogels exhibiting fast in situ gel forming and adjustable degradation properties. Biomacromol 11(3):617–625CrossRefGoogle Scholar
  67. 67.
    Shu XZ, Liu Y, Palumbo FS, Luo Y, Prestwich GD (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25(7–8):1339–1348Google Scholar
  68. 68.
    Nguyen TP, Van TD, Nguyen CK, Nguyen DH, Tran DL, Tran NQ (2014) Injectable hydrogel composites based chitosan and BCP nanoparticles for bone regeneration. Adv Nat Sci: NanoSci Nanotechnol 45(5):2415–2422Google Scholar
  69. 69.
    Fu SZ, Guo G, Gong CY, Zeng S, Liang H, Luo F, Zhang XN, Zhao X, Wei YQ, Qian ZY (2009) Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. J Phys Chem B 113(52):16518–16525PubMedCrossRefGoogle Scholar
  70. 70.
    Fu S, Ni P, Wang B, Chu B, Zheng L, Luo F, Luo J, Qian Z (2012) Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel compositefor guided bone regeneration. Biomaterials 33(19):4801–4809PubMedCrossRefGoogle Scholar
  71. 71.
    Dang TLH, Van TD, Truong MD, Tran NQ, Tran LBH, Nguyen KH, Nguyen CK, Nguyen TP (2016) Mineralization of oxidized alginate gelatin biphasic calcium phosphate hydrogel composite for bone regeneration. J Mater Sci Eng Adv Technol 14(1):19–38Google Scholar
  72. 72.
    Priya MV, Sivshanmugam A, Boccaccini AR, Goudouri OM, Sun W, Hwang N, Deepthi S, Nair SV, Jayakumar R (2016) Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects. Biomed Mater 11(3):035017CrossRefGoogle Scholar
  73. 73.
    Nguyen TT, Nguyen TP, Bui TT, Nguyen TT, Nguyen HBSL, Tran QS, Nguyen TP, Nguyen CK, Nguyen DH, Tran NQ (2017) Enzymatic preparation of modulated-biodegradable hydrogel nanocomposites based chitosan/gelatin and biphasic calcium phosphate nanoparticles. J Sci Technol 55(1B):185–192Google Scholar
  74. 74.
    Nguyen TP, Doan BHP, Dang DV, Nguyen CK and Tran NQ (2014) Enzyme-mediated in situ preparation of biocompatible hydrogel composites from chitosan derivative and biphasic calcium phosphate nanoparticles for bone regeneration. Adv Nat Sci Nanosci Nanotechnol 5:015012Google Scholar
  75. 75.
    Li X, Chen S, Zhang B, Li M, Diao K, Zhang Z, Li J, Xu Y, Wang X, Chen H (2012) In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized, alginate for wound healing application. Int J Pharm 437(1–2):110–119PubMedCrossRefGoogle Scholar
  76. 76.
    González-Sánchez MI, Perni S, Tommasi G, Morris NG, Hawkins K, López-Cabarcos E, Prokopovich P (2015) Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C Mater Biol Appl 50:332–340PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Jiang H, Zhang G, Xu B, Feng X, Bai Q, Yang G, Li H (2016) Thermosensitive antibacterial Ag nanocomposite hydrogels made by a one-step green synthesis strategy. New J Chem 40(8):6650–6657CrossRefGoogle Scholar
  78. 78.
    Waters R, Pacelli S, Maloney R, Paul A (2016) Local delivery of stem cell growth factors with injectable hydrogels for myocardial therapy. Front Bioeng Biotechnol Conference Abstract: 10th World Biomaterials Congress.
  79. 79.
    Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VTS, Nikkhah M, Shin SR, Krafft D, Dokmeci MR, Shum-Tim D, Khademhosseini A, Shum-Tim D, Khademhosseini A (2014) Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8(8):8050–8062PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Zhao X, Ding X, Deng Z, Zheng Z, Peng Y, Tian C, Long X (2006) A kind of smart gold nanoparticle-hydrogel composite with tunable thermo-switchable electrical properties. New J Chem 30(6):915–920CrossRefGoogle Scholar
  81. 81.
    Zhu CH, Lu Y, Peng J, Chen JF, Yu SH (2012) Photothermally sensitive poly(n-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves. Adv Funct Mater 22(19):4017–4022CrossRefGoogle Scholar
  82. 82.
    Yan B, Boyer JC, Habault D, Branda NR, Zhao Y (2012) Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J Am Chem Soc 134(40):16558–16561PubMedCrossRefGoogle Scholar
  83. 83.
    Ghavami Nejad A, SamariKhalaj M, Aguilar LE, Park CH, Kim CS (2016) pH/NIR light-controlled multidrug release via a mussel-inspired nanocomposite hydrogel for chemo-photothermal cancer therapy. Scientific Reports 6. Article number: 33594Google Scholar
  84. 84.
    Nguyen TNA, Cao VD, Nguyen CK, Nguyen TP, Nguyen XTDT, Tran NQ (2017) Thermosensitive heparin-pluronic copolymer as effective dual anticancer drugs delivery system for combination cancer therapy. Int J Nanotechnol 15(1/2/3):174–187Google Scholar
  85. 85.
    Le PN, Huynh CK, Tran NQ (2018) Advances in thermosensitive polymer-grafted platforms for biomedical applications. Mater Sci Eng C. CrossRefGoogle Scholar
  86. 86.
    Almería B, Deng W, Fahmy TM, Gomez A (2010) Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J Colloid Interface Sci 343(1):125–133PubMedCrossRefGoogle Scholar
  87. 87.
    Bock N, Dargaville TR, Woodruff MA (2012) Electrospraying of polymers with therapeutic molecules: state of the art. Prog Polym Sci 37(11):1510–1551CrossRefGoogle Scholar
  88. 88.
    Nguyen DN, Clasen C, Van den Mooter G (2016) Pharmaceutical applications of electrospraying. J Pharm Sci 105(9):2601–2620PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Freiberg S, Zhu XX (2004) Polymer microspheres for controlled drug release. Int J Pharm 282(1–2):1–18PubMedCrossRefGoogle Scholar
  90. 90.
    Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F (2011) Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine 6:877–895PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bock N, Woodruff MA, Hutmache DW, Dargaville TR (2011) Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers 3:131–149CrossRefGoogle Scholar
  92. 92.
    Xu Y, Hanna MA (2006) Electrospray encapsulation of water-soluble protein with polylactide: effects of formulations on morphology encapsulation efficiency and release profile of particles. Int J Pharm 320:30–36PubMedCrossRefGoogle Scholar
  93. 93.
    Bohr A, Kristensen J, Stride E, Dyas M, Edirisinghe M (2011) Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying. Int J Pharm 412:59–67PubMedCrossRefGoogle Scholar
  94. 94.
    Xie J, Marijnissen JC, Wang CH (2006) Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials 27:3321–3332PubMedCrossRefGoogle Scholar
  95. 95.
    Jafari-Nodoushan M, Barzin J, Mobedi H (2015) Size and morphology controlling of PLGA microparticles produced by electro hydrodynamic atomization. Polym Adv Technol 26:502–513CrossRefGoogle Scholar
  96. 96.
    Wu Y, Clark RL (2007) Controllable porous polymer particles generated by electrospraying. J Colloid Interface Sci 310:529–535PubMedCrossRefGoogle Scholar
  97. 97.
    Park CH, Lee J (2009) Electrosprayed polymer particles: effect of the solvent properties. J Appl Polym Sci 114:430–437CrossRefGoogle Scholar
  98. 98.
    Enayati M, Ahmad Z, Stride E, Edirisinghe M (2010) Size mapping of electric field-assisted production of polycaprolactone particles. J R Soc Interface 7(4):S393–S402PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ding L, Lee T, Wang CH (2005) Fabrication of monodispersed Taxol-loaded particles using electrohydrodynamic atomization. J Control Release 102:395–413PubMedCrossRefGoogle Scholar
  100. 100.
    Nguyen VVL, Tran NH, Huynh DP (2017) Taylor cone-jet mode in the fabrication of electrosprayed microspheres. J Sci Technol 55(1B):209–214Google Scholar
  101. 101.
    Hong Y, Li Y, Yin Y, Li D, Zou G (2008) Electrohydrodynamic atomization of quasi-monodisperse drug-loaded spherical/wrinkled microparticles. J Aerosol Sci 39(6):525–536CrossRefGoogle Scholar
  102. 102.
    Meng F, Jiang Y, Sun Z, Yin Y, Li Y (2009) Electrohydrodynamic liquid atomization of biodegradable polymer microparticles: effect of electrohydrodynamic liquid atomization variables on microparticles. J Appl Polym Sci 113(1):526–534CrossRefGoogle Scholar
  103. 103.
    Arya N, Chakraborty S, Dube N, Katti DS (2009) Electrospraying: a facile technique for synthesis of chitosan-based micro/nanospheresfor drug delivery applications. J Biomed Mater Res B Appl Biomater 88((1):17–31CrossRefGoogle Scholar
  104. 104.
    Xie J, Jiang J, Davoodi P, Srinivasan MP, Wang C-H (2015) Electrohydrodynamic atomization: a two-decade effort to produce and process micro-/nanoparticulate materials. Chem Eng Sci 125:32–57PubMedCrossRefGoogle Scholar
  105. 105.
    Gupta P, Elkins C, Long TE, Wilkes GL (2005) Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46(13):4799–4810CrossRefGoogle Scholar
  106. 106.
    Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer 46(10):3372–3384CrossRefGoogle Scholar
  107. 107.
    Zhou FL, Hubbard Cristinacce PL, Eichhorn SJ, Parker GJ (2016) Preparation and characterization of polycaprolactone microspheres by electrospraying. Aerosol Sci Technol 50(11):1201–1215PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Yao J, Lim LK, Xie J, Hua J, Wang CH (2008) Characterization of electrospraying process for polymeric particle fabrication. J Aerosol Sci 39:987–1002CrossRefGoogle Scholar
  109. 109.
    Enayati M, Ahmad Z, Stride E, Edirisinghe M (2009) Preparation of polymeric carriers for drug delivery with different shape and size using an electric jet. Curr Pharm Biotechnol 10(6):600–608PubMedCrossRefGoogle Scholar
  110. 110.
    Luo CJ, Stride E, Edirisinghe M (2012) Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules 45(11):4669–4680CrossRefGoogle Scholar
  111. 111.
    Smallwood M (1996) Chloroform. In: Handbook of organic solvent properties. Butterworth-Heinemann, Oxford, pp 141–143CrossRefGoogle Scholar
  112. 112.
    Smallwood M (1996) Dimethylformamide. In: Handbook of organic solvent properties. Butterworth-Heinemann, Oxford, pp 245–247CrossRefGoogle Scholar
  113. 113.
    Smallwood M (1996) Handbook of organic solvent properties. Butterworth-Heinemann, Oxford, pp 137–151CrossRefGoogle Scholar
  114. 114.
    Jaworek A, Krupa A (1999) Classification of the modes of EHD spraying. J Aerosol Sci 30(7):873–893CrossRefGoogle Scholar
  115. 115.
    Jaworek A (2008) Electrostatic micro- and nanoencapsulation and electroemulsification: a brief review. J Microencapsul 25(7):443–468PubMedCrossRefGoogle Scholar
  116. 116.
    Nguyen VVL, Tran NH, Huynh DP (2017) Electrospray method: processing parameters influence on morphology and size of PCL particles. J Sci Technol 55:215–221Google Scholar
  117. 117.
    Lu J, Hou R, Yang Z, Tang Z (2015) Development and characterization of drug-loaded biodegradable PLA microcarriers prepared by the electrospraying technique. Int J Mol Med 36(1):249–254PubMedCrossRefGoogle Scholar
  118. 118.
    Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256CrossRefGoogle Scholar
  119. 119.
    Xie J, LimL K, Phua Y, Hua J, Wang CH (2006) Electrohydrodynamic atomization for biodegradable polymeric particle production. J Colloid Interface Sci 302(1):103–112PubMedCrossRefGoogle Scholar
  120. 120.
    Valo H, Peltonen L, Vehviläinen S, Karjalainen M, Kostiainen R, Laaksonen T, Hirvonen J (2009) Electrospray encapsulation of hydrophilic and hydrophobic drugs in poly (L-lactic acid) nanoparticles. Small 5(15):1791–1798PubMedCrossRefGoogle Scholar
  121. 121.
    Xie J, Wang CH (2007) Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor cone-jet mode. Biotechnol Bioeng 97(5):1278–1290PubMedCrossRefGoogle Scholar
  122. 122.
    Zeng J, Yang L, Liang Q, Zhang X, Guan H, Xu X, Chen X, Jing X (2005) Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Control Release 105(1–2):43–51PubMedCrossRefGoogle Scholar
  123. 123.
    Xu Y, Hanna MA (2007) Electrosprayed bovine serum albumin-loaded tripolyphosphate cross-linked chitosan capsules: synthesis and characterization. J Microencapsul 24(2):143–151PubMedCrossRefGoogle Scholar
  124. 124.
    Songsurang K, Praphairaksit N, Siraleartmukul K, Muangsin N (2011) Electrospray fabrication of doxorubicin-chitosantripolyphosphate nanoparticles for delivery of doxorubicin. Arch Pharm Res 34(4):583–592PubMedCrossRefGoogle Scholar
  125. 125.
    Mo R, Jiang T, Di J, Tai W, Gu Z (2014) Emerging micro-and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 43(10):3595–3629PubMedCrossRefGoogle Scholar
  126. 126.
    Pohlmann AR, Fonseca FN, Paese K, Detoni CB, Coradini K, Beck RCR, Guterres SS (2013) Poly(ϵ-caprolactone) microcapsules andnanocapsules in drug delivery. Expert Opin Drug Deliv 10(5):623–638PubMedCrossRefGoogle Scholar
  127. 127.
    Zamani M, Prabhakaran MP, Ramakrishna S (2013) Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine 8:2997–3017PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nguyen Vu Viet Linh
    • 1
    • 2
  • Nguyen Tien Thinh
    • 3
    • 4
  • Pham Trung Kien
    • 1
  • Tran Ngoc Quyen
    • 5
    Email author
  • Huynh Dai Phu
    • 1
    • 2
    Email author
  1. 1.Faculty of Materials TechnologyHo Chi Minh City University of Technology (HCMUT), Vietnam National UniversityHo Chi Minh CityVietnam
  2. 2.National Key Lab for Polymer and Composite Materials, HCMUTHo Chi Minh CityVietnam
  3. 3.Graduate School of Science and TechnologyVietnam Academy of Science and TechnologyHo Chi Minh CityVietnam
  4. 4.Department of Pharmacy and MedicineTra Vinh UniversityTra Vinh CityVietnam
  5. 5.Graduate School of Science and Technology, Department of Pharmacy and MedicineVietnam Academy of Science and TechnologyHo Chi Minh CityVietnam

Personalised recommendations