Skip to main content

Fabrication of Hydrogel Materials for Biomedical Applications

  • Chapter
  • First Online:
Novel Biomaterials for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1077))

Abstract

Hydrogels are three-dimensional hydrophilic polymeric networks that can be made from a wide range of natural and synthetic polymers. This review discusses recent advanced engineering methods to fabricate hydrogels for biomedical applications with emphasis in cardiac constructs and wound healing. Layer-by-Layer (LbL) assembly offers a tissue-engineered construct with robust and highly ordered structures for cell proliferation and differentiation. Three-dimensional printings, including inkjet printing, fused deposition modeling, and stereolithographic apparatus, have been widely employed to fabricate complex structures (e.g., heart valves). Moreover, the state-of-the-art design of intelligent/stimulus-responsive hydrogels can be used for a wide range of biomedical applications, including drug delivery, glucose delivery, shape memory, wound dressings, and so on. In the future, an increasing number of hydrogels with tunable mechanical properties and versatile functions will be developed for biomedical applications by employing advanced engineering techniques with novel material design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 6:105–121

    Article  CAS  PubMed  Google Scholar 

  2. Amano Y, Nishiguchi A, Matsusaki M, Iseoka H, Miyagawa S, Sawa Y, Seo M, Yamaguchi T, Akashi M (2016) Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration layer-by-layer technique and their application for pharmaceutical assays. Acta Biomater 33:110–121

    Article  CAS  PubMed  Google Scholar 

  3. Amsden B (1998) Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31:8382–8395

    Article  CAS  Google Scholar 

  4. Annabi N, Tsang K, Mithieux SM, Nikkhah M, Ameri A, Khademhosseini A, Weiss AS (2013) Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. Adv Funct Mater 23:4950–4959

    Article  CAS  Google Scholar 

  5. Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R (2014) 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 16:247–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bártolo PJ (2011) Stereolithography: materials, processes and applications. Springer, New York/Dordrecht/Heidelberg/London, pp 1–340

    Book  Google Scholar 

  7. Becker AL, Zelikin AN, Johnston AP, Caruso F (2009) Tuning the formation and degradation of layer-by-layer assembled polymer hydrogel microcapsules. Langmuir 25:14079–14085

    Article  CAS  PubMed  Google Scholar 

  8. Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, Barabaschi G, Demarchi D, Dokmeci MR, Yang Y, Khademhosseini A (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13):2202–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Best C, Onwuka E, Pepper V, Sams M, Breuer J, Breuer C (2016) Cardiovascular tissue engineering: preclinical validation to bedside application. Physiology 31(1):7–15

    Article  PubMed  Google Scholar 

  10. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. Indian J Pharm Sci 97:2892–2923

    Article  CAS  Google Scholar 

  11. Boffito M, Sartoria S, Ciardellia G (2014) Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies. Polym Int 63:2–11

    Article  CAS  Google Scholar 

  12. Borges J, Rodrigues LC, Reis RL, Mano JF (2014) Layer-by-layer assembly of light-responsive polymeric multilayer systems. Adv Funct Mater 24:5624–5648

    Article  CAS  Google Scholar 

  13. Bryant SJ, Vernerey FJ (2016) Programmable hydrogels for cell encapsulation and neo-tissue growth to enable personalized tissue engineering. Adv Health Mater 7:1–13

    Google Scholar 

  14. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  CAS  Google Scholar 

  15. Canal T, Peppas NA (1989) Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J Biomed Mater Res 23:1183–1193

    Article  CAS  PubMed  Google Scholar 

  16. Cannegieter SC, Rosendaal FR, Briët E (1994) Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89(2):635–641

    Article  CAS  PubMed  Google Scholar 

  17. Cha C, Oh J, Kim K, Qiu Y, Joh M, Shin SR, Wang X, Unal GC, Wan KT, Liao R, Khademhosseini A (2014) Microfluidics-assisted fabrication of gelatin-silica core–shell microgels for injectable tissue constructs. Biomacromolecules 15:283–290

    Article  CAS  PubMed  Google Scholar 

  18. Chambers J (2014) Prosthetic heart valves. Int J Clin Pract 68:1227–1230

    Article  CAS  PubMed  Google Scholar 

  19. Chen JP, Cheng TH (2006) Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci 6(12):1026–1039

    Article  CAS  PubMed  Google Scholar 

  20. Cheng SY, Gross J, Sambanis A (2004) Hybrid pancreatic tissue substitute consisting of recombinant insulin-secreting cells and glucoseresponsive material. Biotechnol Bioeng 87:863–873

    Article  CAS  PubMed  Google Scholar 

  21. Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(4):1–14

    CAS  Google Scholar 

  22. Chu C, Graf G, Posen DW (2008) Design for additive manufacturing of cellular structures. Comput Aided Des Appl 5:680–696

    Article  Google Scholar 

  23. Chua LK, Leong KF, Lim CS (2004) Rapid prototyping: principles and applications. World Scientific Publishing, Singapore

    Google Scholar 

  24. Chung HJ, Park TG (2009) Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4:429–437

    Article  CAS  Google Scholar 

  25. Clark RA (1996) Wound repair overview and general considerations. The molecular and cellular biology of wound repair, 2nd edn. Plenum, New York, pp 3–5

    Google Scholar 

  26. Cruise GM, Scharp DS, Hubbell JA (1998) Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19:1287–1294

    Article  CAS  PubMed  Google Scholar 

  27. Daamen WF, Veerkamp JH, van Hest JC, van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28(30):4378–4398

    Article  CAS  PubMed  Google Scholar 

  28. Degreef HJ (1998) How to heal a wound fast. Dermatol Clin 16:365–375

    Article  CAS  PubMed  Google Scholar 

  29. Deshmukh M, Singh Y, Gunaseelan S, Gao D, Stein S, Sinko PJ (2010) Biodegradable poly(ethylene glycol) hydrogels based on a self-elimination degradation mechanism. Biomaterials 31(26):6675–6684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dhivya S, Padma VV, Santhini E (2015) Wound dressings – a review. Biomedicine 5(4):24–28

    Article  Google Scholar 

  31. Díaz Lantada A, Valle-Fernández RD, Morgado PL, Muñoz-García J, Muñoz-Sanz JL, Munoz-Guijosa JM, Otero JE (2010) Development of personalized annuloplasty rings: combination of CT images and CAD-CAM tools. Ann Biomed Eng 38:280–290

    Article  PubMed  Google Scholar 

  32. Díez P, Sánchez A, Gamella M, Martínez-Ruíz P, Aznar E, de la Torre C, Murguía JR, Martínez-Máñez R, Villalonga R, Pingarrón JM (2014) Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J Am Chem Soc 136:9116–9123

    Article  PubMed  CAS  Google Scholar 

  33. Dowsett C, Newton H (2005) Wound bed preparation: time in practice. Wounds UK 1:58–70

    Google Scholar 

  34. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    Article  CAS  PubMed  Google Scholar 

  35. Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101A:1255–1264

    Article  CAS  Google Scholar 

  36. Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10:1836–1846

    Article  CAS  PubMed  Google Scholar 

  37. Eschenhagen T, Zimmermann WH (2005) Engineering myocardial tissue. Circ Res 97(12):1220–1231

    Article  CAS  PubMed  Google Scholar 

  38. Farahani RD, Dube M, Therriault D (2016) Threedimensional printing of multifunctional nanocomposites:manufacturing techniques and applications. Adv Mater 28:5794–5821

    Article  CAS  PubMed  Google Scholar 

  39. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, p 672

    Google Scholar 

  40. Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, .Sluijter JP(2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33(6):1782–1790

    Article  CAS  PubMed  Google Scholar 

  41. Gan LH, Gan YY, Deen GR (2000) Poly(N-acryloyl-N’-propylpiperazine): a new stimuli-responsive polymer. Macromolecules 33:7893–7897

    Article  CAS  Google Scholar 

  42. Gao Y, Li X, Serpe MJ (2015) Stimuli-responsive microgel-based etalons for optical sensing. RSC Adv 5:44074–44087

    Article  CAS  Google Scholar 

  43. Garnica-Palafox IM, Sánchez-Arévalo FM (2016) Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels. Carbohydr Polym 151:1073–1081

    Article  CAS  PubMed  Google Scholar 

  44. Ghandehari H, Kopeckova P, Kopecek J (1997) In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomaterials 18(12):861–872

    Article  CAS  PubMed  Google Scholar 

  45. Giannopoulos AA, Chepelev L, Sheikh A, Wang A, Dang W, Akyuz E, Hong C, Wake N, Pietila T, Dydynski PB, Mitsouras D, Rybicki, FJ (2015) 3D printed ventricular septal defect patch:a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing. 3D Print Medi 1(3):1–20

    Google Scholar 

  46. Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ (2016) Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol 13:701–718

    Article  CAS  PubMed  Google Scholar 

  47. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    Article  CAS  Google Scholar 

  48. Gil ES, Hudson SM (2007) Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly (N-isopropylacrylamide) hydrogels. Biomacromolecules 8:258–264

    Article  CAS  PubMed  Google Scholar 

  49. Gilmore MA (1991) Phases of wound healing. Dimens Oncol Nurs 5(3):32–34

    CAS  PubMed  Google Scholar 

  50. Glowacki J, Mizuno S (2007) Collagen scaffolds for tissue engineering. Biopolymers 89(5):338–344

    Article  CAS  Google Scholar 

  51. Goyanes A, Det-Amornrat U, Basit JA, Gaisford S (2016) 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release 234:41–46

    Article  CAS  PubMed  Google Scholar 

  52. Gupta B, Agarwal R, Alam MS (2010) Textile-based smart wound dressings. Ind J Fibre Textile Res 35:174–187

    CAS  Google Scholar 

  53. Hacker MC, Mikos AG (2011) Synthetic polymers. In: Principles of regenerative medicine, 2nd edn. Academic Press, San Diego, pp 587–622

    Chapter  Google Scholar 

  54. Harvey JA (1995) Smart materials. In: Kroschwitz JI, Howe-Grant M (eds) Encyclopedia of chemical technology. Wiley, New York, pp 502–514

    Google Scholar 

  55. Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R, Sayegh M, Hossain MM, Paul A (2015) Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv Sci 1500122:1–18

    Google Scholar 

  56. Hassan CM, Doyle FJ, Peppas NA (1997) Dynamic behavior of glucoseresponsive poly(methacrylic acid-g-ethylene glycol) hydrogels. Macromolecules 30:6166–6173

    Article  CAS  Google Scholar 

  57. Henke S, Leijten J, Kemna E, Neubauer M, Fery A, van den Berg A, van Apeldoorn A, Karperien M (2016) Enzymatic crosslinking of polymer conjugates is superior over ionic or UV crosslinking for the on-chip production of cell-laden microgels. Macromol Biosci 16:1524–1532

    Article  CAS  PubMed  Google Scholar 

  58. Hisamitsu I, Kataoka K, Okano T, Sakurai Y (1997) Glucose-responsive gel from phenylborate polymer and poly(vinyl alcohol): prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm Res 14:289–293

    Article  CAS  PubMed  Google Scholar 

  59. Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, Wu J, Girardi LN, Bonassar LJ, Lipson H, Chu CC, Butcher JT (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3):1–12

    Article  CAS  Google Scholar 

  60. Hoffman AS (2002) Hydrogels for biomedical applications. Adv drug deliver Rev 43(1):3–12

    Article  Google Scholar 

  61. Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliver Rev 65:10–16

    Article  CAS  Google Scholar 

  62. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  CAS  PubMed  Google Scholar 

  63. Hunt TK, Hopf H, Hussain Z (2000) Physiology of wound healing. Adv Skin Wound Care 13:6–11

    CAS  PubMed  Google Scholar 

  64. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362

    Article  CAS  PubMed  Google Scholar 

  65. Jana S, Lerman A (2015) Bioprinting a cardiac valve. Biotech Adv 33:1503–1521

    Article  Google Scholar 

  66. Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kamoun EA, Kenawy ES, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kamperman T, Henke S, van den Berg A, Shin SR, Tamayol A, Khademhosseini A, Karperien M, Leijten J (2017) Single cell microgel based modular bioinks for uncoupled cellular micro- and macroenvironments. Adv Healthc Mater 6:1600913

    Article  CAS  Google Scholar 

  69. Karikkineth BC, Zimmermann WH (2013) Myocardial tissue engineering and heart muscle repair. Curr Pharm Biotechnol 14(1):4–11

    CAS  PubMed  Google Scholar 

  70. Kashyap N, Kumar N, Kumar MR (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 22:107–150

    Article  CAS  PubMed  Google Scholar 

  71. Kearney JN (2001) Clinical evaluation of skin substitutes. Burns 27:545–551

    Article  CAS  PubMed  Google Scholar 

  72. Kehl D, Weber B, Hoerstrup SP (2016) Bioengineered living cardiac and venous valve replacements: current status and future prospects. Cardiovasc Pathol 25:300–305

    Article  PubMed  Google Scholar 

  73. Kickhöfen B, Wokalek H, Scheel D, Ruh H (1986) Chemical and physical properties of a hydrogel wound dressing. Biomaterials 7(1):67–72

    Article  PubMed  Google Scholar 

  74. Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD (2008) Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 117:2388–2394

    Article  PubMed  Google Scholar 

  75. Kost J, Langer R (2001) Responsive polymeric delivery systems. Adv Drug Deliv Rev 46(1–3):125–148

    Article  CAS  PubMed  Google Scholar 

  76. Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42:49–62

    CAS  Google Scholar 

  77. Lee VK, Dai G (2016) Printing of three-dimensional tissue analogs for regenerative medicine. Biomed Eng Soc 45(1):115–131

    Google Scholar 

  78. Lee MR, Phang IY, Cui Y, Lee YH, Ling XY (2015) Shape-shifting 3D protein microstructures with programmable directionality via quantitative nanoscale stiffness modulation. Small 11(6):740–748

    Article  CAS  PubMed  Google Scholar 

  79. Li Y, Zhang D (2017) Artificial cardiac muscle with or without the use of scaffolds. Biomed Res Int 8473465:1–15

    Google Scholar 

  80. Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, Lu TJ, Xu F (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23:660–672

    Article  CAS  Google Scholar 

  81. Li S, Zhang HG, Li DD, Wu JP, Sun CY, Hu QX (2017) Characterization of engineered scaffolds with spatial prevascularized networks for bulk tissue regeneration. ACS Biomater Sci Eng 3:2493–2501

    Article  CAS  PubMed  Google Scholar 

  82. Lia Q, Liua C, Wena J, Wua Y, Shana Y, Liaoa J (2017) The design, mechanism and biomedical application of self-healing hydrogels. Chinese Chem Lett 28:1857–1874

    Article  CAS  Google Scholar 

  83. Lim HL, Hwang Y, Kar M, Varghese S (2014) Smart hydrogels as functional biomimetic systems. Biomater Sci 2:603–618

    Article  CAS  PubMed  Google Scholar 

  84. Lin FH, Tsai JC, Chen TM, Chen KS, Yang JM, Kang PL, Wu TH (2007) Fabrication and evaluation of auto-stripped tri-layer wound dressing for extensive burn injury. Mater Chem Phys 102:152–158

    Article  CAS  Google Scholar 

  85. Luo J, Cao S, Chen X, Liu S, Tan H, Wu W, Li J (2012) Super long-term glycemic control in diabetic rats by glucose-sensitive lbl films constructed of supramolecular insulin assembly. Biomaterials 33:8733–8742

    Article  CAS  PubMed  Google Scholar 

  86. Lustig SR, Peppas NA (1988) Solute diffusion in swollen membranes. 9. Scaling laws for solute diffusion in gels. J Appl Polym Sci 36:735–747

    Article  CAS  Google Scholar 

  87. Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 2008 10(6):515–527

    Article  CAS  Google Scholar 

  88. Mason MN, Metters AT, Bowman CN, Anseth KS (2001) Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels. Macromolecules 34:4630–4635

    Article  CAS  Google Scholar 

  89. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 1(2):142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Melchels FP, Feijen J, Grijpma DW (2010a) Review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130

    Article  CAS  PubMed  Google Scholar 

  91. Melchels FP, Bertoldi K, Gabbrielli R, Velders AH, Feijen J, Grijpma DW (2010b) Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31(27):6909–6916

    Article  CAS  PubMed  Google Scholar 

  92. Miyataa T, Uragamia T, Nakamaeb K (2002) Biomolecule-sensitive hydrogels. Adv Drug Deliver Rev 54:79–98

    Article  Google Scholar 

  93. Mol A, van Lieshout MI, Dam-deVeen CG, Neuenschwander S, Hoerstrup SP, Baaijens FP, Bouten CV (2005) Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials 26(16):3113–3121

    Article  CAS  PubMed  Google Scholar 

  94. Mosadegh B, Xiong G, Dunham S, Min KJ (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 10(3):1–12

    Article  CAS  Google Scholar 

  95. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  96. Nguyen TK, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314

    Article  CAS  PubMed  Google Scholar 

  97. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B 14(2):149

    Article  CAS  Google Scholar 

  98. Osada Y, Matsuda A (1995) Shape memory in hydrogels. Nature 376(6537):219

    Article  CAS  PubMed  Google Scholar 

  99. Park JH, Jang J, Lee SJ, Cho DW (2017) Three-dimensional printing of tissue/organ analogues containing living cells. Ann Biomed Eng 45(1):180–194

    Article  PubMed  Google Scholar 

  100. Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, Kim DH, Cho DW (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:1–11

    Article  CAS  Google Scholar 

  101. Pati F, Song TH, Rijal G, Jang J, Kim SW, Cho DW (2015) Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37:230–241

    Article  CAS  PubMed  Google Scholar 

  102. Peppas NA, Keys KB, Torres-Lugo M, Lowman AM (1999) Poly(ethylene glycol)-containing hydrogels in drug delivery. J Control Release 62:81–87

    Article  CAS  PubMed  Google Scholar 

  103. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29

    Article  CAS  PubMed  Google Scholar 

  104. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  105. Prabaharan M, Rodrigues-Perez MA, de Saja JA, Mano JF (2007) Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability. J Biomed Mater Res B 81:427–434

    Article  CAS  Google Scholar 

  106. Pradhan KA, Keller JL, Sperduto L, Slater JH (2017) Fundamentals of laser-based hydrogel degradation and applications in cell and tissue engineering. Adv Healthc Mater 1700681:1–28

    Google Scholar 

  107. Purna SK, Babu M (2000) Collagen based dressing- a review. Burns 26(1):54–62

    Article  CAS  PubMed  Google Scholar 

  108. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  PubMed  Google Scholar 

  109. Radisic M, Malda J, Epping E, Geng WL, Langer R, Vunjak-Novakovic G (2006) Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol Bioeng 93:332–343

    Article  CAS  PubMed  Google Scholar 

  110. Rajendran S, Anand SC (2011) Hi-tech textiles for interactive wound therapies. In: Handbook of medical textiles. Woodhead Publishing, Oxford

    Google Scholar 

  111. Richards D, Jia J, Yost M, Markwald R, Mei Y (2017) 3D Bioprinting for vascularized tissue fabrication. Ann Biomed Eng 45(1):132–147

    Article  PubMed  Google Scholar 

  112. Rivera AE, Spencer JM (2007) Clinical aspects of full-thickness wound healing. Clin Dermatol 25:39–48

    Article  PubMed  Google Scholar 

  113. Robson MC, Steed DL, Franz MG (2001) Wound healing: biological features and approaches to maximize healing trajectories. Curr Prob Surg 38:77–89

    Article  Google Scholar 

  114. Rouwkema J, Khademhosseini A (2016) Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol 34(9):733–745

    Article  CAS  PubMed  Google Scholar 

  115. Rzaev ZM, Dinçer S, Piskin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595

    Article  CAS  Google Scholar 

  116. Saito H, Kato N (2016) Polyelectrolyte/carbon nanotube composite microcapsules and drug release triggered by laser irradiation. Jpn J Appl Phys Pt 155:03DF06

    Article  CAS  Google Scholar 

  117. Sato K, Yoshida K, Takahashi S, Anzai J (2011) pH- and sugar-sensitive layer-by-layer films and microcapsules for drug delivery. Adv Drug Deliv Rev 63:809–821

    Article  CAS  PubMed  Google Scholar 

  118. Schaefermeier PK, Szymanski D, Weiss F, Fu P, Lueth T, Schmitz C, Meiser BM, Reichart B, Sodian R (2008) Design and fabrication of three-dimensional scaffolds for tissue engineering of human heart valves. Eur Surg Res 42:49–53

    Article  PubMed  CAS  Google Scholar 

  119. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  120. Schmedlen RH, Masters KS, West JL (2002) Photocrosslinked polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23(22):4325–4332

    Article  CAS  PubMed  Google Scholar 

  121. Schoen FJ, Levy RJ (1999) Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res 47:439–465

    Article  CAS  PubMed  Google Scholar 

  122. Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163:257–268

    Article  CAS  PubMed  Google Scholar 

  123. Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128

    Article  CAS  PubMed  Google Scholar 

  124. Seol YJ, Kang TY, Cho DW (2012) Solid freeform fabrication technology applied to tissue engineering with various biomaterials. Soft Matter 8:1730–1735

    Article  CAS  Google Scholar 

  125. Seol YJ, Kang HY, Lee SJ, Atala A, Yoo JJ (2014) Bioprinting technology and its applications. Eur J Cardiothorac Surg 46(3):342–348

    Article  PubMed  Google Scholar 

  126. Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22:254–265

    Article  PubMed  Google Scholar 

  127. Shin SR, Bolagh BA, Gao X, Nikkhah M, Jung SM, Pirouz AD, Kim SB, Kim SM, Dokmeci MR, Tang XS, Khademhosseini A (2014) Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. Adv Funct Mater 24:6136–6144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Siddiqui RF, Abraham JR, Butany J (2009) Bioprosthetic heart valves: modes of failure. Histopathology 55(2):135–144

    Article  PubMed  Google Scholar 

  129. Siltanen C, Yaghoobi M, Haque A, You J, Lowen J, Soleimani M, Revzin A (2016) Microfluidic fabrication of bioactive microgels for rapid formation and enhanced differentiation of stem cell spheroids. Acta Biomater 34:125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Skardal A, Atala A (2015) Biomaterials for integration with 3D bioprinting. Ann Biomed Eng 43:730–746

    Article  PubMed  Google Scholar 

  131. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini K, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sood A, Granick MS, Tomaselli NL (2014) Wound dressings and comparative effectiveness data. Adv Wound Care 3(8):511–529

    Article  Google Scholar 

  133. Stashak TS, Farstvedt E, Othic A (2004) Update on wound dressings: indications and best use. Clin Tech Equine Pract 3:148–163

    Article  Google Scholar 

  134. Stock UA, Nagashima M, Khalil PN, Nollert GD, Herden T, Sperling JS, Moran A, Lien J, Martin DP, Schoen FJ, Vacanti JP, Mayer JE (2000) Tissue-engineered valved conduits in the pulmonary circulation. J Thorac Cardiovasc Surg 119:732–740

    Article  CAS  PubMed  Google Scholar 

  135. Strecker-Mcgraw MK, Jones TR, Baer DG (2007) Soft tissue wounds and principles of healing. Emerg Med Clin North Am 25:1–22

    Article  PubMed  Google Scholar 

  136. Szycher M, Lee SJ (1992) Modern wound dressings: a systemic approach to wound healing. J Biomater Appl 7:142–213

    Article  CAS  PubMed  Google Scholar 

  137. Tarnuzzer RW, Schultz GS (1996) Biochemical analysis of acute and chronic wound environments. Wound Repair Regen 4:321–325

    Article  CAS  PubMed  Google Scholar 

  138. Tsukamoto Y, Akagi T, Shima F, Akashi M (2017) Fabrication of orientation-controlled 3D tissues using a layer-by-layer technique and 3D printed a thermoresponsive gel frame. Tissue Eng Part C 23(6):357–365

    Article  CAS  Google Scholar 

  139. Ulijin RV (2006) Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem 16:2217–2225

    Article  CAS  Google Scholar 

  140. Ullah F, Othman MB, Javed F, Ahmada Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433

    Article  CAS  Google Scholar 

  141. Van der Veen VC, Van der Wal M, van Leeuwev MC, Magda MW (2010) Biological background of dermal substitutes. Burns 36(3):305–321

    Article  PubMed  Google Scholar 

  142. Vanwijck R (2000) Surgical biology of wound healing. Bulletin et memoires de l’Academieroyale de medecine de Belgique 156:175–184

    Google Scholar 

  143. Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888

    Article  CAS  PubMed  Google Scholar 

  144. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  145. Xiao CH, Tian HY, Zhuang XL, Chen XS, Jing XB (2009) Recent developments in intelligent biomedical polymers. Sci China Ser B Chem 52(2):117–130

    Article  CAS  Google Scholar 

  146. Xu XD, Li X, Chen H, Qu Q, Zhao L, Agren H, Zhao Y (2015) Host–guest interaction-mediated construction of hydrogels and nanovesicles for drug delivery. Small 11(44):5901–5906

    Article  CAS  PubMed  Google Scholar 

  147. Yang JM, Huang HT (2012) Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing. Mater Sci Eng C 32:1578–1587

    Article  CAS  Google Scholar 

  148. Yang JM, Lin HT (2004) Properties of chitosan containing PP-g-AA-g-NIPAAmbigraft nonwoven fabric for wound dressing. J Membrane Sci 243:1–7

    Article  CAS  Google Scholar 

  149. Yang JM, Su WY (2011) Preparation and characterization of chitosan hydrogel membrane for the permeation of 5-fluorouracil. Mater Sci Eng C 31:1002–1009

    Article  CAS  Google Scholar 

  150. Yang JM, Tsai SC (2010) Biocompatibility of epoxidized styrene– butadiene – styrene block copolymer membrane. Mater Sci Eng C 30(8):1151–1156

    Article  CAS  Google Scholar 

  151. Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235:1–15

    Article  CAS  PubMed  Google Scholar 

  152. Yang JM, Lin W, Wu TH, Chen CC (2003) Wettability and antibacterial assessment of chitosan containing radiation induced graft nonwoven fabric of polypropylene-g-acrylic acid. J Appl Polym Sci 90:1331–1336

    Article  CAS  Google Scholar 

  153. Yang JM, Yang SJ, Lin HT, Chen JK (2007) Modification of HTPB-based polyurethane with temperature-sensitive poly(N-isopropyl acrylamide) for biomaterial usage. J Biomed Mater Res Part B Appl Biomater 80(1):43–51

    Article  CAS  Google Scholar 

  154. Yang JM, Yang SJ, Lin HT, Wu TH, Chen HJ (2008) Chitosan containing PU/poly(NIPAAm) thermosensitive membrane for wound dressing. Mater Sci Eng C 28:150–156

    Article  CAS  Google Scholar 

  155. Yang X, Ma C, Li C, Xie Y, Huang X, Jin Y, Zhu Z, Liu J, Li T (2015) Three dimensional responsive structure of tough hydrogels. Electroactive Polym Actuators Devices 9430:1–6

    Google Scholar 

  156. Yang J, Katagiri D, Mao S, Zeng H, Nakajima H, Kato S, Uchiyama K (2016) Inkjet printing based assembly of thermoresponsive core–shell polymer microcapsules for controlled drug release. J Mater Chem B 4:4156–4163

    Article  CAS  PubMed  Google Scholar 

  157. Yeh PY, Kopeckova P, Kopecek P (1995) Degradability of hydrogels containing azoaromatic crosslinks. Macromol Chem Phys 196:2183–2202

    Article  CAS  Google Scholar 

  158. Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22:354–362

    Article  CAS  Google Scholar 

  159. Yeong WY, Sudarmadji N, Yu HN, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP (2010) Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater 6:2028–2034

    Article  CAS  PubMed  Google Scholar 

  160. Yin X, Hoffman AS, Stayton PS (2016) Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 7(5):1381–1385

    Article  CAS  Google Scholar 

  161. Zhai M, Li J, Yi M, Ha H (2000) The swelling behaviour of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiat Phys Chem 58:397–400

    Article  CAS  Google Scholar 

  162. Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science 356(3627):1–10

    CAS  Google Scholar 

  163. Zhang X, Xu B, Puperi DS, Wu Y, Westc JL, Grande-Allena KJ (2015) Application of hydrogels in heart valve TissueEngineering. J Long-Term Eff Med Implants 25(1–2):105–134

    Article  PubMed  PubMed Central  Google Scholar 

  164. Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell'Erba V, Bishop C, Demarchi D, Moretti M, Rasponi M, Dokmeci MR (2016a) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, Jia W, Dell'Erba V, Assawes P, Shin SR, Dokmeci M, Oklu R, Khademhosseini A (2016b) 3D Bioprinting for tissue and organ fabrication. Ann Biomed Eng 45(1):148–163

    Article  PubMed  PubMed Central  Google Scholar 

  166. Zhao W, Zhang H, He Q, Li Y, Gu J, Li L, Li H, Shi J (2011) A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. Chem Commun 47:9459–9461

    Article  CAS  Google Scholar 

  167. Zhao L, Xiao C, Ding J, He P, Tang Z, Pang X, Zhuang X, Chen X (2013) Facile one-pot synthesis of glucose-sensitive nanogel via thiol-ene click chemistry for self-regulated drug delivery. Acta Biomater 9:6535–6543

    Article  CAS  PubMed  Google Scholar 

  168. Zhao L, Xiao C, Ding J, Zhuang X, Gai G, Wang L, Chen X (2015) Competitive binding-accelerated insulin release from a polypeptide nanogel for potential therapy of diabetes. Polym Chem 6:3807–3815

    Article  CAS  Google Scholar 

  169. Zhao L, Xiao C, Wang L, Gai G, Ding J (2016) Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chem Commun 52:7633–7652

    Article  CAS  Google Scholar 

  170. Zhao L, Wang L, Zhang Y, Xiao S, Bi F, Zhao J, Gai G, Ding J (2017) Glucose oxidase-based glucose-sensitive drug delivery for diabetes treatment. Polymers 9(255):1–21

    Google Scholar 

  171. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Zhu W, Li J, Leong YJ, Rozen I, Qu X, Dong R, Wu Z, Gao W, Chung PH, Wang J, Chen S (2015) 3D-Printed artifi cial microfish. Adv Mater 27:4411–4417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW, Manbachi A, Bae H, Chen S, Khademhosseini A (2012) Microfabricated biomaterials for engineering 3D tissues. Adv Mater 24:1782–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jen Ming Yang or Xing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, J.M., Olanrele, O.S., Zhang, X., Hsu, C.C. (2018). Fabrication of Hydrogel Materials for Biomedical Applications. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_12

Download citation

Publish with us

Policies and ethics