Fabrication of Hydrogel Materials for Biomedical Applications

  • Jen Ming YangEmail author
  • Olajire Samson Olanrele
  • Xing ZhangEmail author
  • Chih Chin Hsu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)


Hydrogels are three-dimensional hydrophilic polymeric networks that can be made from a wide range of natural and synthetic polymers. This review discusses recent advanced engineering methods to fabricate hydrogels for biomedical applications with emphasis in cardiac constructs and wound healing. Layer-by-Layer (LbL) assembly offers a tissue-engineered construct with robust and highly ordered structures for cell proliferation and differentiation. Three-dimensional printings, including inkjet printing, fused deposition modeling, and stereolithographic apparatus, have been widely employed to fabricate complex structures (e.g., heart valves). Moreover, the state-of-the-art design of intelligent/stimulus-responsive hydrogels can be used for a wide range of biomedical applications, including drug delivery, glucose delivery, shape memory, wound dressings, and so on. In the future, an increasing number of hydrogels with tunable mechanical properties and versatile functions will be developed for biomedical applications by employing advanced engineering techniques with novel material design.


Hydrogels 3D printing Layer-by-layer Tissue engineering Heart valve Wound dressing 


  1. 1.
    Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 6:105–121PubMedCrossRefGoogle Scholar
  2. 2.
    Amano Y, Nishiguchi A, Matsusaki M, Iseoka H, Miyagawa S, Sawa Y, Seo M, Yamaguchi T, Akashi M (2016) Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration layer-by-layer technique and their application for pharmaceutical assays. Acta Biomater 33:110–121PubMedCrossRefGoogle Scholar
  3. 3.
    Amsden B (1998) Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31:8382–8395CrossRefGoogle Scholar
  4. 4.
    Annabi N, Tsang K, Mithieux SM, Nikkhah M, Ameri A, Khademhosseini A, Weiss AS (2013) Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. Adv Funct Mater 23:4950–4959CrossRefGoogle Scholar
  5. 5.
    Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R (2014) 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 16:247–276PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bártolo PJ (2011) Stereolithography: materials, processes and applications. Springer, New York/Dordrecht/Heidelberg/London, pp 1–340CrossRefGoogle Scholar
  7. 7.
    Becker AL, Zelikin AN, Johnston AP, Caruso F (2009) Tuning the formation and degradation of layer-by-layer assembled polymer hydrogel microcapsules. Langmuir 25:14079–14085PubMedCrossRefGoogle Scholar
  8. 8.
    Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, Barabaschi G, Demarchi D, Dokmeci MR, Yang Y, Khademhosseini A (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13):2202–2211PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Best C, Onwuka E, Pepper V, Sams M, Breuer J, Breuer C (2016) Cardiovascular tissue engineering: preclinical validation to bedside application. Physiology 31(1):7–15PubMedCrossRefGoogle Scholar
  10. 10.
    Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. Indian J Pharm Sci 97:2892–2923CrossRefGoogle Scholar
  11. 11.
    Boffito M, Sartoria S, Ciardellia G (2014) Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies. Polym Int 63:2–11CrossRefGoogle Scholar
  12. 12.
    Borges J, Rodrigues LC, Reis RL, Mano JF (2014) Layer-by-layer assembly of light-responsive polymeric multilayer systems. Adv Funct Mater 24:5624–5648CrossRefGoogle Scholar
  13. 13.
    Bryant SJ, Vernerey FJ (2016) Programmable hydrogels for cell encapsulation and neo-tissue growth to enable personalized tissue engineering. Adv Health Mater 7:1–13Google Scholar
  14. 14.
    Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  15. 15.
    Canal T, Peppas NA (1989) Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J Biomed Mater Res 23:1183–1193PubMedCrossRefGoogle Scholar
  16. 16.
    Cannegieter SC, Rosendaal FR, Briët E (1994) Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89(2):635–641PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cha C, Oh J, Kim K, Qiu Y, Joh M, Shin SR, Wang X, Unal GC, Wan KT, Liao R, Khademhosseini A (2014) Microfluidics-assisted fabrication of gelatin-silica core–shell microgels for injectable tissue constructs. Biomacromolecules 15:283–290PubMedCrossRefGoogle Scholar
  18. 18.
    Chambers J (2014) Prosthetic heart valves. Int J Clin Pract 68:1227–1230PubMedCrossRefGoogle Scholar
  19. 19.
    Chen JP, Cheng TH (2006) Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci 6(12):1026–1039PubMedCrossRefGoogle Scholar
  20. 20.
    Cheng SY, Gross J, Sambanis A (2004) Hybrid pancreatic tissue substitute consisting of recombinant insulin-secreting cells and glucoseresponsive material. Biotechnol Bioeng 87:863–873PubMedCrossRefGoogle Scholar
  21. 21.
    Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(4):1–14Google Scholar
  22. 22.
    Chu C, Graf G, Posen DW (2008) Design for additive manufacturing of cellular structures. Comput Aided Des Appl 5:680–696CrossRefGoogle Scholar
  23. 23.
    Chua LK, Leong KF, Lim CS (2004) Rapid prototyping: principles and applications. World Scientific Publishing, SingaporeGoogle Scholar
  24. 24.
    Chung HJ, Park TG (2009) Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4:429–437CrossRefGoogle Scholar
  25. 25.
    Clark RA (1996) Wound repair overview and general considerations. The molecular and cellular biology of wound repair, 2nd edn. Plenum, New York, pp 3–5Google Scholar
  26. 26.
    Cruise GM, Scharp DS, Hubbell JA (1998) Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19:1287–1294PubMedCrossRefGoogle Scholar
  27. 27.
    Daamen WF, Veerkamp JH, van Hest JC, van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28(30):4378–4398PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Degreef HJ (1998) How to heal a wound fast. Dermatol Clin 16:365–375PubMedCrossRefGoogle Scholar
  29. 29.
    Deshmukh M, Singh Y, Gunaseelan S, Gao D, Stein S, Sinko PJ (2010) Biodegradable poly(ethylene glycol) hydrogels based on a self-elimination degradation mechanism. Biomaterials 31(26):6675–6684PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Dhivya S, Padma VV, Santhini E (2015) Wound dressings – a review. Biomedicine 5(4):24–28CrossRefGoogle Scholar
  31. 31.
    Díaz Lantada A, Valle-Fernández RD, Morgado PL, Muñoz-García J, Muñoz-Sanz JL, Munoz-Guijosa JM, Otero JE (2010) Development of personalized annuloplasty rings: combination of CT images and CAD-CAM tools. Ann Biomed Eng 38:280–290PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Díez P, Sánchez A, Gamella M, Martínez-Ruíz P, Aznar E, de la Torre C, Murguía JR, Martínez-Máñez R, Villalonga R, Pingarrón JM (2014) Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J Am Chem Soc 136:9116–9123PubMedCrossRefGoogle Scholar
  33. 33.
    Dowsett C, Newton H (2005) Wound bed preparation: time in practice. Wounds UK 1:58–70Google Scholar
  34. 34.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351CrossRefGoogle Scholar
  35. 35.
    Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101A:1255–1264CrossRefGoogle Scholar
  36. 36.
    Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10:1836–1846PubMedCrossRefGoogle Scholar
  37. 37.
    Eschenhagen T, Zimmermann WH (2005) Engineering myocardial tissue. Circ Res 97(12):1220–1231PubMedCrossRefGoogle Scholar
  38. 38.
    Farahani RD, Dube M, Therriault D (2016) Threedimensional printing of multifunctional nanocomposites:manufacturing techniques and applications. Adv Mater 28:5794–5821PubMedCrossRefGoogle Scholar
  39. 39.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, p 672Google Scholar
  40. 40.
    Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, .Sluijter JP(2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33(6):1782–1790CrossRefGoogle Scholar
  41. 41.
    Gan LH, Gan YY, Deen GR (2000) Poly(N-acryloyl-N’-propylpiperazine): a new stimuli-responsive polymer. Macromolecules 33:7893–7897CrossRefGoogle Scholar
  42. 42.
    Gao Y, Li X, Serpe MJ (2015) Stimuli-responsive microgel-based etalons for optical sensing. RSC Adv 5:44074–44087CrossRefGoogle Scholar
  43. 43.
    Garnica-Palafox IM, Sánchez-Arévalo FM (2016) Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels. Carbohydr Polym 151:1073–1081PubMedCrossRefGoogle Scholar
  44. 44.
    Ghandehari H, Kopeckova P, Kopecek J (1997) In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomaterials 18(12):861–872PubMedCrossRefGoogle Scholar
  45. 45.
    Giannopoulos AA, Chepelev L, Sheikh A, Wang A, Dang W, Akyuz E, Hong C, Wake N, Pietila T, Dydynski PB, Mitsouras D, Rybicki, FJ (2015) 3D printed ventricular septal defect patch:a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing. 3D Print Medi 1(3):1–20Google Scholar
  46. 46.
    Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ (2016) Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol 13:701–718PubMedCrossRefGoogle Scholar
  47. 47.
    Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222CrossRefGoogle Scholar
  48. 48.
    Gil ES, Hudson SM (2007) Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly (N-isopropylacrylamide) hydrogels. Biomacromolecules 8:258–264PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Gilmore MA (1991) Phases of wound healing. Dimens Oncol Nurs 5(3):32–34PubMedGoogle Scholar
  50. 50.
    Glowacki J, Mizuno S (2007) Collagen scaffolds for tissue engineering. Biopolymers 89(5):338–344CrossRefGoogle Scholar
  51. 51.
    Goyanes A, Det-Amornrat U, Basit JA, Gaisford S (2016) 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release 234:41–46PubMedCrossRefGoogle Scholar
  52. 52.
    Gupta B, Agarwal R, Alam MS (2010) Textile-based smart wound dressings. Ind J Fibre Textile Res 35:174–187Google Scholar
  53. 53.
    Hacker MC, Mikos AG (2011) Synthetic polymers. In: Principles of regenerative medicine, 2nd edn. Academic Press, San Diego, pp 587–622CrossRefGoogle Scholar
  54. 54.
    Harvey JA (1995) Smart materials. In: Kroschwitz JI, Howe-Grant M (eds) Encyclopedia of chemical technology. Wiley, New York, pp 502–514Google Scholar
  55. 55.
    Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R, Sayegh M, Hossain MM, Paul A (2015) Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv Sci 1500122:1–18Google Scholar
  56. 56.
    Hassan CM, Doyle FJ, Peppas NA (1997) Dynamic behavior of glucoseresponsive poly(methacrylic acid-g-ethylene glycol) hydrogels. Macromolecules 30:6166–6173CrossRefGoogle Scholar
  57. 57.
    Henke S, Leijten J, Kemna E, Neubauer M, Fery A, van den Berg A, van Apeldoorn A, Karperien M (2016) Enzymatic crosslinking of polymer conjugates is superior over ionic or UV crosslinking for the on-chip production of cell-laden microgels. Macromol Biosci 16:1524–1532PubMedCrossRefGoogle Scholar
  58. 58.
    Hisamitsu I, Kataoka K, Okano T, Sakurai Y (1997) Glucose-responsive gel from phenylborate polymer and poly(vinyl alcohol): prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm Res 14:289–293PubMedCrossRefGoogle Scholar
  59. 59.
    Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, Wu J, Girardi LN, Bonassar LJ, Lipson H, Chu CC, Butcher JT (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3):1–12CrossRefGoogle Scholar
  60. 60.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv drug deliver Rev 43(1):3–12CrossRefGoogle Scholar
  61. 61.
    Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliver Rev 65:10–16CrossRefGoogle Scholar
  62. 62.
    Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524PubMedCrossRefGoogle Scholar
  63. 63.
    Hunt TK, Hopf H, Hussain Z (2000) Physiology of wound healing. Adv Skin Wound Care 13:6–11PubMedGoogle Scholar
  64. 64.
    Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362PubMedCrossRefGoogle Scholar
  65. 65.
    Jana S, Lerman A (2015) Bioprinting a cardiac valve. Biotech Adv 33:1503–1521CrossRefGoogle Scholar
  66. 66.
    Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kamoun EA, Kenawy ES, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kamperman T, Henke S, van den Berg A, Shin SR, Tamayol A, Khademhosseini A, Karperien M, Leijten J (2017) Single cell microgel based modular bioinks for uncoupled cellular micro- and macroenvironments. Adv Healthc Mater 6:1600913CrossRefGoogle Scholar
  69. 69.
    Karikkineth BC, Zimmermann WH (2013) Myocardial tissue engineering and heart muscle repair. Curr Pharm Biotechnol 14(1):4–11PubMedGoogle Scholar
  70. 70.
    Kashyap N, Kumar N, Kumar MR (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 22:107–150PubMedCrossRefGoogle Scholar
  71. 71.
    Kearney JN (2001) Clinical evaluation of skin substitutes. Burns 27:545–551PubMedCrossRefGoogle Scholar
  72. 72.
    Kehl D, Weber B, Hoerstrup SP (2016) Bioengineered living cardiac and venous valve replacements: current status and future prospects. Cardiovasc Pathol 25:300–305PubMedCrossRefGoogle Scholar
  73. 73.
    Kickhöfen B, Wokalek H, Scheel D, Ruh H (1986) Chemical and physical properties of a hydrogel wound dressing. Biomaterials 7(1):67–72PubMedCrossRefGoogle Scholar
  74. 74.
    Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD (2008) Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 117:2388–2394PubMedCrossRefGoogle Scholar
  75. 75.
    Kost J, Langer R (2001) Responsive polymeric delivery systems. Adv Drug Deliv Rev 46(1–3):125–148PubMedCrossRefGoogle Scholar
  76. 76.
    Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42:49–62Google Scholar
  77. 77.
    Lee VK, Dai G (2016) Printing of three-dimensional tissue analogs for regenerative medicine. Biomed Eng Soc 45(1):115–131Google Scholar
  78. 78.
    Lee MR, Phang IY, Cui Y, Lee YH, Ling XY (2015) Shape-shifting 3D protein microstructures with programmable directionality via quantitative nanoscale stiffness modulation. Small 11(6):740–748PubMedCrossRefGoogle Scholar
  79. 79.
    Li Y, Zhang D (2017) Artificial cardiac muscle with or without the use of scaffolds. Biomed Res Int 8473465:1–15Google Scholar
  80. 80.
    Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, Lu TJ, Xu F (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23:660–672CrossRefGoogle Scholar
  81. 81.
    Li S, Zhang HG, Li DD, Wu JP, Sun CY, Hu QX (2017) Characterization of engineered scaffolds with spatial prevascularized networks for bulk tissue regeneration. ACS Biomater Sci Eng 3:2493–2501CrossRefGoogle Scholar
  82. 82.
    Lia Q, Liua C, Wena J, Wua Y, Shana Y, Liaoa J (2017) The design, mechanism and biomedical application of self-healing hydrogels. Chinese Chem Lett 28:1857–1874CrossRefGoogle Scholar
  83. 83.
    Lim HL, Hwang Y, Kar M, Varghese S (2014) Smart hydrogels as functional biomimetic systems. Biomater Sci 2:603–618CrossRefGoogle Scholar
  84. 84.
    Lin FH, Tsai JC, Chen TM, Chen KS, Yang JM, Kang PL, Wu TH (2007) Fabrication and evaluation of auto-stripped tri-layer wound dressing for extensive burn injury. Mater Chem Phys 102:152–158CrossRefGoogle Scholar
  85. 85.
    Luo J, Cao S, Chen X, Liu S, Tan H, Wu W, Li J (2012) Super long-term glycemic control in diabetic rats by glucose-sensitive lbl films constructed of supramolecular insulin assembly. Biomaterials 33:8733–8742PubMedCrossRefGoogle Scholar
  86. 86.
    Lustig SR, Peppas NA (1988) Solute diffusion in swollen membranes. 9. Scaling laws for solute diffusion in gels. J Appl Polym Sci 36:735–747CrossRefGoogle Scholar
  87. 87.
    Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 2008 10(6):515–527CrossRefGoogle Scholar
  88. 88.
    Mason MN, Metters AT, Bowman CN, Anseth KS (2001) Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels. Macromolecules 34:4630–4635CrossRefGoogle Scholar
  89. 89.
    Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 1(2):142–149PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Melchels FP, Feijen J, Grijpma DW (2010a) Review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130PubMedCrossRefGoogle Scholar
  91. 91.
    Melchels FP, Bertoldi K, Gabbrielli R, Velders AH, Feijen J, Grijpma DW (2010b) Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31(27):6909–6916PubMedCrossRefGoogle Scholar
  92. 92.
    Miyataa T, Uragamia T, Nakamaeb K (2002) Biomolecule-sensitive hydrogels. Adv Drug Deliver Rev 54:79–98CrossRefGoogle Scholar
  93. 93.
    Mol A, van Lieshout MI, Dam-deVeen CG, Neuenschwander S, Hoerstrup SP, Baaijens FP, Bouten CV (2005) Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials 26(16):3113–3121PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mosadegh B, Xiong G, Dunham S, Min KJ (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 10(3):1–12CrossRefGoogle Scholar
  95. 95.
    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Nguyen TK, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314PubMedCrossRefGoogle Scholar
  97. 97.
    Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B 14(2):149CrossRefGoogle Scholar
  98. 98.
    Osada Y, Matsuda A (1995) Shape memory in hydrogels. Nature 376(6537):219PubMedCrossRefGoogle Scholar
  99. 99.
    Park JH, Jang J, Lee SJ, Cho DW (2017) Three-dimensional printing of tissue/organ analogues containing living cells. Ann Biomed Eng 45(1):180–194PubMedCrossRefGoogle Scholar
  100. 100.
    Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, Kim DH, Cho DW (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:1–11CrossRefGoogle Scholar
  101. 101.
    Pati F, Song TH, Rijal G, Jang J, Kim SW, Cho DW (2015) Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37:230–241PubMedCrossRefGoogle Scholar
  102. 102.
    Peppas NA, Keys KB, Torres-Lugo M, Lowman AM (1999) Poly(ethylene glycol)-containing hydrogels in drug delivery. J Control Release 62:81–87PubMedCrossRefGoogle Scholar
  103. 103.
    Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29PubMedCrossRefGoogle Scholar
  104. 104.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360CrossRefGoogle Scholar
  105. 105.
    Prabaharan M, Rodrigues-Perez MA, de Saja JA, Mano JF (2007) Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability. J Biomed Mater Res B 81:427–434CrossRefGoogle Scholar
  106. 106.
    Pradhan KA, Keller JL, Sperduto L, Slater JH (2017) Fundamentals of laser-based hydrogel degradation and applications in cell and tissue engineering. Adv Healthc Mater 1700681:1–28Google Scholar
  107. 107.
    Purna SK, Babu M (2000) Collagen based dressing- a review. Burns 26(1):54–62PubMedCrossRefGoogle Scholar
  108. 108.
    Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339PubMedCrossRefGoogle Scholar
  109. 109.
    Radisic M, Malda J, Epping E, Geng WL, Langer R, Vunjak-Novakovic G (2006) Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol Bioeng 93:332–343PubMedCrossRefGoogle Scholar
  110. 110.
    Rajendran S, Anand SC (2011) Hi-tech textiles for interactive wound therapies. In: Handbook of medical textiles. Woodhead Publishing, OxfordGoogle Scholar
  111. 111.
    Richards D, Jia J, Yost M, Markwald R, Mei Y (2017) 3D Bioprinting for vascularized tissue fabrication. Ann Biomed Eng 45(1):132–147PubMedCrossRefGoogle Scholar
  112. 112.
    Rivera AE, Spencer JM (2007) Clinical aspects of full-thickness wound healing. Clin Dermatol 25:39–48PubMedCrossRefGoogle Scholar
  113. 113.
    Robson MC, Steed DL, Franz MG (2001) Wound healing: biological features and approaches to maximize healing trajectories. Curr Prob Surg 38:77–89CrossRefGoogle Scholar
  114. 114.
    Rouwkema J, Khademhosseini A (2016) Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol 34(9):733–745CrossRefGoogle Scholar
  115. 115.
    Rzaev ZM, Dinçer S, Piskin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595CrossRefGoogle Scholar
  116. 116.
    Saito H, Kato N (2016) Polyelectrolyte/carbon nanotube composite microcapsules and drug release triggered by laser irradiation. Jpn J Appl Phys Pt 155:03DF06CrossRefGoogle Scholar
  117. 117.
    Sato K, Yoshida K, Takahashi S, Anzai J (2011) pH- and sugar-sensitive layer-by-layer films and microcapsules for drug delivery. Adv Drug Deliv Rev 63:809–821PubMedCrossRefGoogle Scholar
  118. 118.
    Schaefermeier PK, Szymanski D, Weiss F, Fu P, Lueth T, Schmitz C, Meiser BM, Reichart B, Sodian R (2008) Design and fabrication of three-dimensional scaffolds for tissue engineering of human heart valves. Eur Surg Res 42:49–53PubMedCrossRefGoogle Scholar
  119. 119.
    Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  120. 120.
    Schmedlen RH, Masters KS, West JL (2002) Photocrosslinked polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23(22):4325–4332CrossRefGoogle Scholar
  121. 121.
    Schoen FJ, Levy RJ (1999) Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res 47:439–465PubMedCrossRefGoogle Scholar
  122. 122.
    Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163:257–268PubMedCrossRefGoogle Scholar
  123. 123.
    Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128CrossRefGoogle Scholar
  124. 124.
    Seol YJ, Kang TY, Cho DW (2012) Solid freeform fabrication technology applied to tissue engineering with various biomaterials. Soft Matter 8:1730–1735CrossRefGoogle Scholar
  125. 125.
    Seol YJ, Kang HY, Lee SJ, Atala A, Yoo JJ (2014) Bioprinting technology and its applications. Eur J Cardiothorac Surg 46(3):342–348PubMedCrossRefGoogle Scholar
  126. 126.
    Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22:254–265PubMedCrossRefGoogle Scholar
  127. 127.
    Shin SR, Bolagh BA, Gao X, Nikkhah M, Jung SM, Pirouz AD, Kim SB, Kim SM, Dokmeci MR, Tang XS, Khademhosseini A (2014) Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. Adv Funct Mater 24:6136–6144PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Siddiqui RF, Abraham JR, Butany J (2009) Bioprosthetic heart valves: modes of failure. Histopathology 55(2):135–144PubMedCrossRefGoogle Scholar
  129. 129.
    Siltanen C, Yaghoobi M, Haque A, You J, Lowen J, Soleimani M, Revzin A (2016) Microfluidic fabrication of bioactive microgels for rapid formation and enhanced differentiation of stem cell spheroids. Acta Biomater 34:125–132PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Skardal A, Atala A (2015) Biomaterials for integration with 3D bioprinting. Ann Biomed Eng 43:730–746PubMedCrossRefGoogle Scholar
  131. 131.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini K, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Sood A, Granick MS, Tomaselli NL (2014) Wound dressings and comparative effectiveness data. Adv Wound Care 3(8):511–529CrossRefGoogle Scholar
  133. 133.
    Stashak TS, Farstvedt E, Othic A (2004) Update on wound dressings: indications and best use. Clin Tech Equine Pract 3:148–163CrossRefGoogle Scholar
  134. 134.
    Stock UA, Nagashima M, Khalil PN, Nollert GD, Herden T, Sperling JS, Moran A, Lien J, Martin DP, Schoen FJ, Vacanti JP, Mayer JE (2000) Tissue-engineered valved conduits in the pulmonary circulation. J Thorac Cardiovasc Surg 119:732–740PubMedCrossRefGoogle Scholar
  135. 135.
    Strecker-Mcgraw MK, Jones TR, Baer DG (2007) Soft tissue wounds and principles of healing. Emerg Med Clin North Am 25:1–22PubMedCrossRefGoogle Scholar
  136. 136.
    Szycher M, Lee SJ (1992) Modern wound dressings: a systemic approach to wound healing. J Biomater Appl 7:142–213PubMedCrossRefGoogle Scholar
  137. 137.
    Tarnuzzer RW, Schultz GS (1996) Biochemical analysis of acute and chronic wound environments. Wound Repair Regen 4:321–325PubMedCrossRefGoogle Scholar
  138. 138.
    Tsukamoto Y, Akagi T, Shima F, Akashi M (2017) Fabrication of orientation-controlled 3D tissues using a layer-by-layer technique and 3D printed a thermoresponsive gel frame. Tissue Eng Part C 23(6):357–365CrossRefGoogle Scholar
  139. 139.
    Ulijin RV (2006) Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem 16:2217–2225CrossRefGoogle Scholar
  140. 140.
    Ullah F, Othman MB, Javed F, Ahmada Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433CrossRefGoogle Scholar
  141. 141.
    Van der Veen VC, Van der Wal M, van Leeuwev MC, Magda MW (2010) Biological background of dermal substitutes. Burns 36(3):305–321PubMedCrossRefGoogle Scholar
  142. 142.
    Vanwijck R (2000) Surgical biology of wound healing. Bulletin et memoires de l’Academieroyale de medecine de Belgique 156:175–184Google Scholar
  143. 143.
    Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888PubMedCrossRefGoogle Scholar
  144. 144.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  145. 145.
    Xiao CH, Tian HY, Zhuang XL, Chen XS, Jing XB (2009) Recent developments in intelligent biomedical polymers. Sci China Ser B Chem 52(2):117–130CrossRefGoogle Scholar
  146. 146.
    Xu XD, Li X, Chen H, Qu Q, Zhao L, Agren H, Zhao Y (2015) Host–guest interaction-mediated construction of hydrogels and nanovesicles for drug delivery. Small 11(44):5901–5906PubMedCrossRefGoogle Scholar
  147. 147.
    Yang JM, Huang HT (2012) Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing. Mater Sci Eng C 32:1578–1587CrossRefGoogle Scholar
  148. 148.
    Yang JM, Lin HT (2004) Properties of chitosan containing PP-g-AA-g-NIPAAmbigraft nonwoven fabric for wound dressing. J Membrane Sci 243:1–7CrossRefGoogle Scholar
  149. 149.
    Yang JM, Su WY (2011) Preparation and characterization of chitosan hydrogel membrane for the permeation of 5-fluorouracil. Mater Sci Eng C 31:1002–1009CrossRefGoogle Scholar
  150. 150.
    Yang JM, Tsai SC (2010) Biocompatibility of epoxidized styrene– butadiene – styrene block copolymer membrane. Mater Sci Eng C 30(8):1151–1156CrossRefGoogle Scholar
  151. 151.
    Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235:1–15PubMedCrossRefGoogle Scholar
  152. 152.
    Yang JM, Lin W, Wu TH, Chen CC (2003) Wettability and antibacterial assessment of chitosan containing radiation induced graft nonwoven fabric of polypropylene-g-acrylic acid. J Appl Polym Sci 90:1331–1336CrossRefGoogle Scholar
  153. 153.
    Yang JM, Yang SJ, Lin HT, Chen JK (2007) Modification of HTPB-based polyurethane with temperature-sensitive poly(N-isopropyl acrylamide) for biomaterial usage. J Biomed Mater Res Part B Appl Biomater 80(1):43–51PubMedCrossRefGoogle Scholar
  154. 154.
    Yang JM, Yang SJ, Lin HT, Wu TH, Chen HJ (2008) Chitosan containing PU/poly(NIPAAm) thermosensitive membrane for wound dressing. Mater Sci Eng C 28:150–156CrossRefGoogle Scholar
  155. 155.
    Yang X, Ma C, Li C, Xie Y, Huang X, Jin Y, Zhu Z, Liu J, Li T (2015) Three dimensional responsive structure of tough hydrogels. Electroactive Polym Actuators Devices 9430:1–6Google Scholar
  156. 156.
    Yang J, Katagiri D, Mao S, Zeng H, Nakajima H, Kato S, Uchiyama K (2016) Inkjet printing based assembly of thermoresponsive core–shell polymer microcapsules for controlled drug release. J Mater Chem B 4:4156–4163CrossRefGoogle Scholar
  157. 157.
    Yeh PY, Kopeckova P, Kopecek P (1995) Degradability of hydrogels containing azoaromatic crosslinks. Macromol Chem Phys 196:2183–2202CrossRefGoogle Scholar
  158. 158.
    Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22:354–362CrossRefGoogle Scholar
  159. 159.
    Yeong WY, Sudarmadji N, Yu HN, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP (2010) Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater 6:2028–2034PubMedCrossRefGoogle Scholar
  160. 160.
    Yin X, Hoffman AS, Stayton PS (2016) Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 7(5):1381–1385CrossRefGoogle Scholar
  161. 161.
    Zhai M, Li J, Yi M, Ha H (2000) The swelling behaviour of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiat Phys Chem 58:397–400CrossRefGoogle Scholar
  162. 162.
    Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science 356(3627):1–10Google Scholar
  163. 163.
    Zhang X, Xu B, Puperi DS, Wu Y, Westc JL, Grande-Allena KJ (2015) Application of hydrogels in heart valve TissueEngineering. J Long-Term Eff Med Implants 25(1–2):105–134PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell'Erba V, Bishop C, Demarchi D, Moretti M, Rasponi M, Dokmeci MR (2016a) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, Jia W, Dell'Erba V, Assawes P, Shin SR, Dokmeci M, Oklu R, Khademhosseini A (2016b) 3D Bioprinting for tissue and organ fabrication. Ann Biomed Eng 45(1):148–163PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Zhao W, Zhang H, He Q, Li Y, Gu J, Li L, Li H, Shi J (2011) A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. Chem Commun 47:9459–9461CrossRefGoogle Scholar
  167. 167.
    Zhao L, Xiao C, Ding J, He P, Tang Z, Pang X, Zhuang X, Chen X (2013) Facile one-pot synthesis of glucose-sensitive nanogel via thiol-ene click chemistry for self-regulated drug delivery. Acta Biomater 9:6535–6543PubMedCrossRefGoogle Scholar
  168. 168.
    Zhao L, Xiao C, Ding J, Zhuang X, Gai G, Wang L, Chen X (2015) Competitive binding-accelerated insulin release from a polypeptide nanogel for potential therapy of diabetes. Polym Chem 6:3807–3815CrossRefGoogle Scholar
  169. 169.
    Zhao L, Xiao C, Wang L, Gai G, Ding J (2016) Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chem Commun 52:7633–7652CrossRefGoogle Scholar
  170. 170.
    Zhao L, Wang L, Zhang Y, Xiao S, Bi F, Zhao J, Gai G, Ding J (2017) Glucose oxidase-based glucose-sensitive drug delivery for diabetes treatment. Polymers 9(255):1–21Google Scholar
  171. 171.
    Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Zhu W, Li J, Leong YJ, Rozen I, Qu X, Dong R, Wu Z, Gao W, Chung PH, Wang J, Chen S (2015) 3D-Printed artifi cial microfish. Adv Mater 27:4411–4417PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW, Manbachi A, Bae H, Chen S, Khademhosseini A (2012) Microfabricated biomaterials for engineering 3D tissues. Adv Mater 24:1782–1804PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringChang Gung UniversityTaoYuanRepublic of China
  2. 2.Department of General DentistryChang Gung Memorial HospitalTaoYuanRepublic of China
  3. 3.Division of Pediatric Infectious Diseases, Department of PediatricsChang Gung Memorial HospitalTaoyuanRepublic of China
  4. 4.Institute of Metal Research, Chinese Academy of SciencesShenyangPeople’s Republic of China
  5. 5.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  6. 6.Department of Physical Medicine and RehabilitationChang Gung Memorial Hospital at KeelungKeelungRepublic of China
  7. 7.School of Traditional Chinese MedicineChang Gung UniversityTaoyuanRepublic of China

Personalised recommendations