Skip to main content

Hydrographical and Physical–Geographical Characteristics of the Issyk-Kul Lake Basin and Use of Water Resources of the Basin, and Impact of Climate Change on It

  • Chapter
  • First Online:

Part of the book series: Water Resources Development and Management ((WRDM))

Abstract

The Issyk-Kul lake basin is located in a vast intermontane basin. Its width in the meridian direction near the Tosor village is 75 km. From here to the east and west, the basin narrows. Its total length from Chaar-Zhon to Kyzyl-Ompol is 240 km.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abadi LSK, Shamsai A, Goharnejad H (2015) An analysis of the sustainability of basin water resources using vensim model. KSCE J Civ Eng 19:1941–1949

    Article  Google Scholar 

  • Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45. https://doi.org/10.1029/2008wr007615

  • Abdyzhapar uulu SAU, Abuduwaili J, Shaidyldaeva N (2015) Impact of climate change on water level fluctuation of Issyk-Kul Lake. Arab J Geosci 8: 5361–537

    Google Scholar 

  • Afolayan SO, Ogedengbe K, Lateef SA, Akintola OA, Oladele OJ (2014) Response of tomato (Lycopersicium lycopersicun, CV UC82B) to drip irrigation and planting conditions. Afr J Agric Res 9:1543–1549

    Article  Google Scholar 

  • Ahmad S, Prashar D (2010) Evaluating municipal water conservation policies using a dynamic simulation model. Water Resour Manage 24:3371–3395

    Article  Google Scholar 

  • Ahmad S, Simonovic SP (2001) Integration of heuristic knowledge with analytical tools for the selection of flood damage reduction measures. Can J Civ Eng 28:208–221

    Article  Google Scholar 

  • Aizen VB, Aizen EM, Melack JN, Dozier J (1997) Climatic and hydrologic changes in the Tien Shan, Central Asia. J Clim 10:1393–1403

    Article  Google Scholar 

  • Aladin NV, Plotnikov IS (1993) Large saline lakes of former USSR: a summary review. Hydrobiology 267:1–12 (in Russian)

    Article  Google Scholar 

  • Alamanov A, Mikkola H (2011) Is biodiversity friendly fisheries management possible on Issyk-Kul Lake in the Kyrgyz Republic? AMBIO 40:479–495

    Article  Google Scholar 

  • Alcamo J, Doll P, Henrichs T, Kaspar F, Lehner B, Rosch T, Siebert S (2003) Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions. Hydrol Sci J 48:339–348

    Article  Google Scholar 

  • Alymkulova B, Abuduwaili J, Issanova G, Nahayo L (2016) Consideration of water uses for its sustainable management, the case of Issyk-Kul Lake, Kyrgyzstan. Water 8:298

    Article  Google Scholar 

  • Amanaliev M (2008) Water resources management system of Kyrgyzstan. In: Sustainable use and development of watersheds, pp 61–80

    Google Scholar 

  • Angelakis AN, Zheng XY (2015) Evolution of water supply, sanitation, wastewater, and stormwater technologies globally. Water 7:455–463

    Article  Google Scholar 

  • Antwi-Agyei P, Fraser ED, Dougill AJ, Stringer LC, Simelton E (2012) Mapping the vulnerability of crop production to drought in Ghana using rainfall, yield and socioeconomic data. Appl Geogr 32:324–334

    Article  Google Scholar 

  • Asykulov T (2002) The socio-economics and natural environment of eastern Kyrgyzstan and development issues of biosphere reserve Issyk-Kul. Dissertation, Graysvald (in Russian)

    Google Scholar 

  • Atadjanov S, Tulegabylov N, Bekkulova D, Baidakova N, Grebnev V (2012) The national report on the state of the environment of the Kyrgyz Republic for 2006–2011. United Nations Development Programme (UNDP), New York, NY, USA

    Google Scholar 

  • Avramoski O (2004) The role of public participation and citizen involvement in lake basin management. Available online: http://www.worldlakes.org/uploads/Thematic_Paper_PP_16Feb04.pdf. Accessed 14 Apr 2004

  • Badescu V, Schuiling RD (2010) Aral Sea; irretrievable loss or irtysh imports? Water Resour Manage 24:597–616

    Article  Google Scholar 

  • Bai J, Chen X, Li J, Yang L, Fang H (2011) Changes in the area of inland lakes in arid regions of Central Asia during the past 30 years. Environ Monit Assess 178:247–256. https://doi.org/10.1007/s10661-010-1686-9

    Article  Google Scholar 

  • Bayer S (2004) Business dynamics: systems thinking and modeling for a complex world. Interfaces 34:324–326

    Google Scholar 

  • Berdovskaya NI, Egorov AN (1986) Reconstruction of nature condition between Pleistocene and Holocene. Issyk-Kul Lake and its natural development tendency. Nauka, Leningrad, pp 165–179 (in Russian)

    Google Scholar 

  • Berg LS (1930) Hydrologic research in Issyk-Kul Lake in 1928. In: Proceedings of the State Hydrological Institute. No 28, pp 9–24

    Google Scholar 

  • Bolch T (2007) Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global Planet Change 56:1–12

    Article  Google Scholar 

  • Bolch T, Peters J, Egorov A, Pradhan B, Buchroithner M, Blagoveshensky V (2011) Identification of potentially dangerous glacial lakes in the northern Tien Shan. Nat Hazards 59:1691–1714. https://doi.org/10.1007/s11069-011-9860-2

    Article  Google Scholar 

  • Bolshakov NM (1974) Water resources of rivers of the Soviet Tian Shan and methods of their calculation. Ilim, Frunze, 305 p (in Russian)

    Google Scholar 

  • Bolshakov MN, Shpak VG (1960) Water and energy resources of Kyrgyz SSR. Academy of Sciences of Kyrgyz SSR, Frunze, 248 p (in Russian)

    Google Scholar 

  • Bolshakov VA, Virina EI, Faustov SS, Chernova LM (1986) Magnetic-properties of Issyk-Kul Lake bottom sediments. Izv Akad Nauk SSSR Fiz Zemli 1:99–105

    Google Scholar 

  • Braden JB, Jolejole-Foreman MC, Schneider DW (2013) Humans and the water environment: the need for coordinated data collection. Water 6:1–16

    Article  Google Scholar 

  • Butler C, Adamowski J (2015) Empowering marginalized communities in water resources management: addressing inequitable practices in participatory model building. J Environ Manage 153:153–162

    Article  Google Scholar 

  • Caruso B, Newton S, King R, Zammit C (2017) Modelling climate change impacts on hydropower lake inflows and braided rivers in a mountain basin. Hydrol Sci J 62:928–946

    Article  Google Scholar 

  • Choubin B, Khalighi-Sigaroodi S, Malekian A, Ahmad S, Attarod P (2014) Drought forecasting in a semi-arid watershed using climate signals: a neuro-fuzzy modeling approach. J Mt Sci 11:1593–1605

    Article  Google Scholar 

  • Chupakhin VM (1964) Physical geography of Tian Shan. Academy of Sciences, Alma-Ata, 373 p (in Russian)

    Google Scholar 

  • Dawadi S, Ahmad S (2013) Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population. J Environ Manage 114:261–275

    Article  Google Scholar 

  • De Batist M, Imbo Y, Vermeesch P, Klerkx J, Giralt S, Delvaux D, Lignier V, Beck C, Kalugin I, Abdrakhmatov KE (2002) Bathymetry and sedimentary environments of Lake Issyk-Kul, Kyrgyz Republic (Central Asia): a large, high-altitude, tectonic lake. Lake Issyk-Kul Its Nat Environ 13:101–123

    Article  Google Scholar 

  • De Grave J, Glorie S, Buslov MM, Stockli DF, McWilliams MO, Batalev VY, Van den Haute P (2013) Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz northern Tien Shan, Central Asia). Gondwana Res 23:998–1020

    Article  Google Scholar 

  • Deng HJ, Chen YN, Wang HJ, Zhang SH (2015) Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Glob Planet Change 135:28–37

    Article  Google Scholar 

  • Dikikh AO (2000) Glaciations in the Issyk-Kul Basin: its role as a flow source. In: Nature and people of Kyrgyzstan. Special edition. Bishkek

    Google Scholar 

  • Dukhovny VA, Sokolov VI, Ziganshina DR (2013) Integrated water resources management in central Asia, as a way of survival in conditions of water scarcity. Quat Int 311:181–188

    Article  Google Scholar 

  • Dusini DS, Foster DL, Shore JA, Merry C (2009) The effect of Lake Erie water level variations on sediment resuspension. J Gt Lakes Res 35:1–12

    Article  Google Scholar 

  • Farre I, Faci JM (2009) Deficit irrigation in maize for reducing agricultural water use in a mediterranean environment. Agric Water Manage 96:383–394

    Article  Google Scholar 

  • Fereres E, Soriano MA (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58:147–159

    Article  Google Scholar 

  • Forrester JW (1971) Counterintuitive behavior of social systems. Theor Decis 2:109–144

    Article  Google Scholar 

  • Fullerton TM, Elias A (2004) Short-term water consumption dynamics in El Paso, Texas. Water Resour Res 40(8)

    Google Scholar 

  • Gavshin VM, Sukhorukov FV, Bobrov VA, Melgunov MS, Miroshnichenko LV, Klerkx J, Kovalev SI, Romashkin PA (2004) Chemical composition of the uranium tail storages at Kadji-Sai (southern shore of Issyk-Kul lake, Kyrgyzstan). Water Air Soil Pollut 154:71–83

    Article  Google Scholar 

  • Gavshin VM, Melgunov MS, Sukhorukov FV, Bobrov VA, Kalugin IA, Klerkx J (2005) Disequilibrium between uranium and its progeny in the Lake Issyk-Kul system (Kyrgyzstan) under a combined effect of natural and manmade processes. J Environ Radioact 83:61–74

    Article  Google Scholar 

  • Giralt S, Klerkx J, Riera S, Julia R, Lignier V, Beck C, De Batist M, Kalugin I (2002) Recent paleoenvironmental evolution of lake Issyk-Kul, in lake Issyk-Kul: its natural environment. Springer, Berlin, pp 125–145

    Book  Google Scholar 

  • Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, Steffen W, Glaser G, Kanie N, Noble I (2013) Policy: sustainable development goals for people and planet. Nature 495:305–307

    Article  Google Scholar 

  • Gronskaya TP (1983) Water balance and expecting water level of Issyk-Kul lake. Dissertation, State Hydrology Inst, Leningrad (in Russian)

    Google Scholar 

  • Guo HC, Liu L, Huang GH, Fuller GA, Zou R, Yin YY (2001) A system dynamics approach for regional environmental planning and management: a study for the Lake Erhai Basin. J Environ Manage 61:93–111

    Article  Google Scholar 

  • Hassanzadeh E, Zarghami M, Hassanzadeh Y (2012) Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water Resour Manage 26:129–145

    Article  Google Scholar 

  • Heinicke T (2003) Mires within the dry steppe zone of the Issyk-Kul basin (Kyrgyzstan)—part 1: soils, stratigraphy and hydrology. Telma 33:35–58

    Google Scholar 

  • Hofer M, Peeters F, Aeschbach-Hertig W, Brennwald M, Holocher J, Livingstone DM, Romanovski V, Kipfer R (2002) Rapid deep-water renewal in Lake Issyk-Kul (Kyrgyzstan) indicated by transient tracers. Limnol Oceanogr 47:1210–1216

    Article  Google Scholar 

  • Hofmann H, Lorke A, Peeters F (2008) Temporal scales of water-level fluctuations in lakes and their ecological implications. Hydrobiologia 613:85–96. https://doi.org/10.1007/s10750-008-9474-1

    Article  Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319(1–4):83–95. https://doi.org/10.1016/j.jhydrol.2005.07.003

    Article  Google Scholar 

  • Hwang C, Kao YC, Tangdamrongsub N (2011) Preliminary analysis of lake level and water storage changes over lakes Baikal and Balkhash from satellite altimetry and gravimetry. Terr Atmos Ocean Sci 22:97–108

    Article  Google Scholar 

  • Ibatullin S (2009) Sector report: the impact of climate change on water resources in central Asia. Eurasian Development Bank, Almaty, Kazakhstan

    Google Scholar 

  • Issaev DI (1959) The features of relief of the Issyk-Kul hollow. In: Questions on physical geography of the Tian Shan. Frunze, 40–46 p (in Russian)

    Google Scholar 

  • Issaev DI (1962) Relief. In: Nature of Kyrgyzia. Frunze. 72–86 p (in Russian)

    Google Scholar 

  • Jailoobayev A, Neronova T, Nikolayenko A, Mirkhashimov I (2009) Water quality standards and norms in Kyrgyz Republic. Regional Environmental Centre for Central Asia (CAREC), Almaty, Kazakhstan

    Google Scholar 

  • Jalili S, Kirchner I, Livingstone DM, Morid S (2012) The influence of large-scale atmospheric circulation weather types on variations in the water level of Lake Urmia, Iran. Int J Climatol 32:1990–1996

    Article  Google Scholar 

  • Jellison R, Zadereev YS, DasSarma PA, Melack JM, Rosen MR, Degermendzhy AG, DasSarma S, Zambrana G (2016) Conservation and management challenges of saline lakes: a review of five experience briefs. Lake basin management initiative: thematic paper. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.552.9109&rep=rep1&type=pdf. Accessed on 14 July 2016

  • Ji J, Yang R, Sun ZH, Yuan HY (2006) Validation and evaluation of large eddy simulation based field-zone model for smoke movement in building fires. Prog Saf Sci Technol 6:721–724

    Google Scholar 

  • Jiang SH, Ren LL, Hong Y, Yong B, Yang XL, Yuan F, Ma MW (2012) Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the bayesian model averaging method. J Hydrol 452:213–225

    Article  Google Scholar 

  • Kadyrov VK (1986) Hydrochemistry of Issyk-Kul and its basin. Ilim, Frunze (in Russian)

    Google Scholar 

  • Kaigorodov AI (1955) The natural zonal classification of the climate in Earth. Academy of Sciences, Moscow, 119 p (in Russian)

    Google Scholar 

  • Kalra A, Ahmad S, Nayak A (2013) Increasing streamflow forecast lead time for snowmelt-driven catchment based on large-scale climate patterns. Adv Water Resour 53:150–162

    Article  Google Scholar 

  • Kaplinsky MI, Timchenko LS (1997) Water balance of Lake Issyk-Kul over many years. Bull SARNIGMI iss 50:87–101 (in Russian)

    Google Scholar 

  • Karmanchuk AS (2002) Water chemistry and ecology of Lake Issyk-Kul. Lake Issyk-Kul Its Nat Environ 13:13–26

    Article  Google Scholar 

  • Karthe D, Chalov S, Borchardt D (2015) Water resources and their management in central Asia in the early twenty first century: status, challenges and future prospects. Environ Earth Sci 73:487–499

    Article  Google Scholar 

  • Kawabata Y, Kurita T, Nagai M, Aparin V, Onwona-Agyeman S, Yamada M, Fujii Y, Katayama Y (2014) Water quality in the Issyk-Kul and the river flowing into it. J Arid Land Stud 24(1):105–108

    Google Scholar 

  • Kazimir A, Karimov KA, Gainutdinova RD (2011) Regional climate changes in Kyrgyzstan: impact of natural and anthropogenic factors. In: Baba A et al (eds) Climate change and its effects on water resources. NATO Science for peace and security series C: environ security 3. https://doi.org/10.1007/978-94-007-1143-3_15

  • Kezer K, Matsuyama H (2006) Decrease of river runoff in the Lake Balkhash basin in Central Asia. Hydrol Process 20:1407–1423

    Article  Google Scholar 

  • Klerx J, Imanackunov B (2002) Lake Issyk-Kul: its natural environment, vol 13. Springer Science & Business Media, Berlin

    Google Scholar 

  • Koop SH, van Leeuwen CJ (2015) Assessment of the sustainability of water resources management: a critical review of the city blueprint approach. Water Resour Manage 29:5649–5670

    Article  Google Scholar 

  • Korolev VG (1978) Issyk-Kul lake. Ilim, Frunze, 209 p (in Russian)

    Google Scholar 

  • Kotir JH, Smith C, Brown G, Marshall N, Johnstone R (2016) A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana. Sci Total Environ 573:444–457

    Article  Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Jimenez B, Miller K, Oki T, Şen Z, Shiklomanov I (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53:3–10

    Google Scholar 

  • Kutseva PP (1980) Elements of the balance of chemical substances in the Issyk-Kul Lake. Collection of articles: studies of water balance, thermal and hydrochemical regime of Lake Issyk-Kul. Hydrometeorological Publishing, Leningrad

    Google Scholar 

  • Lamek Nahayo LL, Zhao X (2016) Consideration of precipitation variability under climate change at Kaidu river watershed, China. East Afr J Sci Technol 6:16–23

    Google Scholar 

  • Lehner B, D ll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22

    Google Scholar 

  • Levchenko VM (1946) Mineral waters from a geochemical point of view, vol 4–5. Izvestia of Kyrgyz Department of the Academy of Sciences of USSR, 101–105 pp (in Russian)

    Google Scholar 

  • Levchenko VM (1953) Classification of the natural waters. Materials of hydrochemistry. Part 21, 86–96 pp (in Russian)

    Google Scholar 

  • Li YH, Jin HL, Zhao SW (2010) Based on system dynamics model of evolvement of water resources and social economic system in Xinjiang Aibi Lake area. Model Simul 4:122–125

    Google Scholar 

  • Li B, Chen Y, Chen Z, Li W (2012) Trends in runoff versus climate change in typical rivers in the arid region of northwest China. Quat Int 282:87–95

    Article  Google Scholar 

  • Libert B, Orolbaev E, Steklov Y (2008) Water and energy crisis in Central Asia. In: China and Eurasia forum quarterly, vol 6. Central Asia-Caucasus Institute & Silk Road Studies Program, Bishkek, Kyrgyzstan, pp 9–20

    Google Scholar 

  • Ling H, Xu H, Shi W, Zhang Q (2011) Regional climate change and its effects on the runoff of Manas river, Xinjiang, China. Environ Earth Sci 64:2203–2213. https://doi.org/10.1007/s12665-011-1048-2

    Article  Google Scholar 

  • Lyons WB, Welch KA, Bonzongo JC, Graham EY, Shabunin G, Gaudette HE, Poreda RJ (2001) A preliminary assessment of the geochemical dynamics of Issyk-Kul Lake, Kirghizstan. Limnol Oceanogr 46:713–718

    Article  Google Scholar 

  • Ma M, Wang X, Veroustraete F, Dong L (2007) Change in area of Ebinur Lake during the 1998–2005 period. Int J Remote Sens 28(24):5523–5533

    Article  Google Scholar 

  • Ma L, Wu J, Abuduwaili J (2011) The climatic and hydrological changes and environmental responses recorded in lake sediments of Xinjiang,China. J Arid Land 3(1):1–8

    Article  Google Scholar 

  • Ma L, Wu J, Abuduwaili J (2012) Climate and environmental changes over the past 150 years inferred from the sediments of Chaiwopu Lake, Central Tianshan Mountains, Northwest China. Int J Earth Sci. https://doi.org/10.1007/s00531-012-0838-4

  • Macaulay EA, Sobel ER, Mikolaichuk A, Wack M, Gilder SA, Mulch A, Fortuna AB, Hynek S, Apayarov F (2016) The sedimentary record of the Issyk Kul basin, Kyrgyzstan: climatic and tectonic inferences. Basin Res 28:57–80

    Article  Google Scholar 

  • Makhmudov EJ, Makhmudov IE, Sherfedinov LZ (2008) Problems of water resource management in central Asia. In: Moerlins JE, Khankhasayev MK, Leitman SF, Makhmudov EJ (eds) Transboundary water resources: a foundation for regional stability in central Asia. Springer, Dordrecht, pp 11–28

    Chapter  Google Scholar 

  • Mamatkanov DM, Bajanova LV, Romanovskiy VV (2006) Water resources of Kyrgyzstan in modern days. Ilim, Bishkek (in Russian)

    Google Scholar 

  • Mancosu N, Snyder RL, Kyriakakis G, Spano D (2015) Water scarcity and future challenges for food production. Water 7:975–992

    Article  Google Scholar 

  • Mandychev AN (2002) Groundwater in the Issyk Kul basin. Lake Issyk-Kul Its Nat Environ 13:71–76

    Article  Google Scholar 

  • Mason IM, Guzkowska MA, Rapley CG (1994) The response of lake levels and areas to climate change. Clim Change 27:161–197

    Article  Google Scholar 

  • Matsuyama H, Kezer K (2009) Long-term variation of precipitation around Lake Balkhash in central Asia from the end of the 19th century. Sola 5:73–76

    Article  Google Scholar 

  • Matveev VP (1930) Hydrological and hydrochemical researches in Issyk-Kul in 1928. Materials of the Commission for Expeditionary Research of the USSR Academy of Sciences. Issyk Kul expedition of 1928. Leningrad, pp 71–110

    Google Scholar 

  • Matveev VP (1932). About water salinity of the Issyk-Kul lake, vol 6. West State Hydrological Institute,80–90 pp (in Russian)

    Google Scholar 

  • Matveev VP (1935) Hydrological researches in Issyk-Kul in 1932. Lake Issyk-Kul. Materials on hydrology, ichthyology and fisheries, Issue 2. Publishing House of the USSR Academy of Sciences, Moscow, pp 7–56

    Google Scholar 

  • Meybeck M (2003) Global analysis of river systems: from earth system controls to anthropocene syndromes. Philos Trans R Soc B 358:1935–1955

    Article  Google Scholar 

  • Mirchi A, Madani K, Watkins D, Ahmad S (2012) Synthesis of system dynamics tools for holistic conceptualization of water resources problems. Water Resour Manage 26:2421–2442

    Article  Google Scholar 

  • Moazami S, Golian S, Kavianpour MR, Hong Y (2013) Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran. Int J Remote Sens 34:8156–8171

    Article  Google Scholar 

  • Morrison J, Quick MC, Foreman MGG (2002) Climate change in the Fraser river watershed: flow and temperature projections. J Hydrol 263:230–244

    Article  Google Scholar 

  • Omlin M, Brun R, Reichert P (2001) Biogeochemical model of Lake Zurich: sensitivity, identifiability and uncertainty analysis. Ecol Model 141:105–123

    Article  Google Scholar 

  • Ososkova T, Gorelkin N, Chub V (2000) Water resources of central Asia and adaptation measures for climate change. Environ Monit Assess 61:161–166

    Article  Google Scholar 

  • Peeters FD, Hofer M, Brennwald DM, Livingstone Kipfer R (2003) Deep-water renewal in Lake Issyk-Kul driven by differential cooling. Limnol Oceanogr 48:1419–1431

    Article  Google Scholar 

  • Pereira LS, Oweis T, Zairi A (2002) Irrigation management under water scarcity. Agric Water Manage 57:175–206

    Article  Google Scholar 

  • Pereira Filho AJ, Carbone RE, Janowiak JE, Arkin P, Joyce R, Hallak R, Ramos CG (2010) Satellite rainfall estimates over South America-possible applicability to the water management of largewatersheds. Wiley, Hoboken

    Google Scholar 

  • Perova OA (1960) Energy resources of the Sun in Kyrgyzia. All Union Geographical Community Issue 2, 43–57 p (in Russian)

    Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y et al (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51

    Article  Google Scholar 

  • Polunin NVC (2008) Aquatic ecosystems: trends and global prospects. Cambridge University Press, Cambridge, pp 94–110

    Book  Google Scholar 

  • Propastin P (2013) Assessment of climate and human induced disaster risk over shared water resources in the Balkhash Lake drainage basin. Springer, Berlin, pp 41–54

    Google Scholar 

  • Qaiser K, Ahmad S, Johnson W, Batista J (2011) Evaluating the impact of water conservation on fate of outdoor water use: a study in an arid region. J Environ Manage 92:2061–2068

    Article  Google Scholar 

  • Qaiser K, Ahmad S, Johnson W, Batista JR (2013) Evaluating water conservation and reuse policies using a dynamic water balance model. Environ Manage 51:449–458

    Article  Google Scholar 

  • Qin BQ, Yu G (1998) Implications of lake level variations at 6 ka and 18 ka in mainland Asia. Glob Planet Change 18:59–72

    Article  Google Scholar 

  • Ragni M, Steffenhagen F, Klein A (2011) Generalized dynamic stock and flow systems: an AI approach. Cogn Syst Res 12:309–320

    Article  Google Scholar 

  • Ramana RV, Krishna B, Kumar SR, Pandey NG (2013) Monthly rainfall prediction using wavelet neural network analysis. Water Resour Manage 27:3697–3711

    Article  Google Scholar 

  • Rantzman EY (1959) Geomorphology of the Issyk-Kul hollow and its Mountain frame. Academy of Sciences of the USSR, Moscow, 88 p (in Russian)

    Google Scholar 

  • Ricketts RD, Johnson TC, Brown ET, Rasmussen KA, Romanovsky VV (2001) The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr Palaeoclimatol Palaeoecol 176:207–227

    Article  Google Scholar 

  • Romanovsky VV (2002a) Water level variations and water balance of Lake Issyk-Kul. In: Klerkx J, Imanackunov B (eds) Lake Issyk-Kul: its natural environment, NATO science series. Kluwer Academic, The Netherlands, pp 45–57

    Chapter  Google Scholar 

  • Romanovsky VV (2002b) Water level variations and water balance of Lake Issyk-Kul. Lake Issyk-Kul Its Nat Environ 13:45–57

    Article  Google Scholar 

  • Romanovsky VV, Tashbaeva S, Crétaux J-F, Calmant S, Drolon V (2013) The closed Lake Issyk-Kul as an indicator of global warming in Tien-Shan. Nat Sci 5:608–623

    Google Scholar 

  • Romanovsky V, Mamatkanov D, Kuz’michenok V, Podrezov O (2014) All about the Issyk-Kul Lake. Bishkek, 444 pp (in Russian)

    Google Scholar 

  • Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44(9)

    Google Scholar 

  • Rusuli Y, Li L, Ahmad S, Zhao X (2015) Dynamics model to simulate water and salt balance of bosten lake in Xinjiang, China. Environ Earth Sci 74:2499–2510

    Article  Google Scholar 

  • Rykiel EJ (1996) Testing ecological models: the meaning of validation. Ecol Model 90:229–244

    Article  Google Scholar 

  • Salamat AU, Abuduwaili J, Shaidyldaeva N (2015) Impact of climate change on water level fluctuation of Issyk-Kul Lake. Arab J Geosci 8:5361–5371

    Article  Google Scholar 

  • Sapkota M, Arora M, Malano H, Moglia M, Sharma A, George B, Pamminger F (2014) An overview of hybrid water supply systems in the context of urban water management: challenges and opportunities. Water 7:153–174

    Article  Google Scholar 

  • Savvaitova K, Petr T (1992) Lake Issyk-Kul, Kirgizia. Int J Salt Lake Res 1(2):21–46

    Article  Google Scholar 

  • Schmidt K (1882) Research on the waters of Issyk-Kul Lake. Pharmacist J 878–884

    Google Scholar 

  • Sehring J (2007) Irrigation reform in Kyrgyzstan and Tajikistan. Irrig Drain Syst 21:277–290. https://doi.org/10.1007/s10795-007-9036-0

    Article  Google Scholar 

  • Setegn SG, Rayner D, Melesse AM, Dargahi B, Srinivasan R (2011) Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour Res 47. https://doi.org/10.1029/2010wr009248

  • Shabunin GD, Shabunin AG (2002) Climate and physical properties of water in Lake Issyk-Kul. Lake Issyk-Kul Its Nat Environ 13:3–11

    Article  Google Scholar 

  • Shnitnikov AV (1979) Issyk-Kul. Nature, protection and perspective of lake use. Academy of Science of Kirghiz SSR, Kirghiz Society of Geography. Ilim, Frunze (in Russian)

    Google Scholar 

  • Shnitnikov AV (1980) Lakes of Tien Shan and their history. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Shrestha E, Ahmad S, Johnson W, Batista JR (2012) The carbon footprint of water management policy options. Energy Policy 42:201–212

    Article  Google Scholar 

  • Shul’ts VL (1965) Rivers in Central Asia. Hydrometeoizdat, Leningrad, 691 p

    Google Scholar 

  • Sidike A, Chen X, Liu T, Durdiev K, Huang Y (2016) Investigating alternative climate data sources for hydrological simulations in the upstream of the Amu Darya River. Water 8:441

    Article  Google Scholar 

  • Siegfried T, Bernauer T, Guiennet R, Sellars S, Robertson AW, Mankin J, Bauer-Gottwein P, Yakovlev A (2012) Will climate change exacerbate water stress in Central Asia? Clim Change 112:881–899. https://doi.org/10.1007/s10584-011-0253-z

    Article  Google Scholar 

  • Smiatek G, Kunstmann H, Heckl A (2014) High-resolution climate change impact analysis on expected future water availability in the Upper Jordan catchment and the Middle East. J Hydrometeorol 15:1517–1531

    Article  Google Scholar 

  • Song CQ, Huang B, Ke LH, Richards KS (2014) Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. J Hydrol 514:131–144

    Article  Google Scholar 

  • Stanev EV, Peneva EL, Mercier F (2004) Temporal and spatial patterns of sea level in inland basins: recent events in the Aral Sea. Geophys Res 31(5505). https://doi.org/10.1029/2004gl020478

  • Taft BJ, Philippe LR, Dietrich CH, Robertson KR (2011) Grassland composition, structure, and diversity patterns along major environmental gradients in the Central Tien Shan. Plant Ecol 212:1349–1361. https://doi.org/10.1007/s11258-011-9911-5

    Article  Google Scholar 

  • Törnqvist R, Jarsjö J, Karimov B (2011) Health risks from large-scale water pollution: trends in Central Asia. Environ Int 37:435–442

    Article  Google Scholar 

  • Trofimov AK, Grigina OM (1979) Paleogeography of Issyk-Kul lake//Littoral zone of Issyk-Kul lake. Ilim, Frunze (in Russian)

    Google Scholar 

  • Tsigelnaya ID (1995) Issyk-Kul Lake. Enclosed seas and large lakes of Eastern Europe and Middle Asia, vol 199. SPB Academic Publishing, Amsterdam, p 229

    Google Scholar 

  • Tynybekov A (2011) Glacier degradation from GIS and remote sensing data. In: Kogan F et al. (eds) Use of satellite and in-situ data to improve sustainability. NATO Science for peace and security series C: environ security. Springer, Berlin, pp 159–274. https://doi.org/10.1007/978-90-481-9618-0_18

  • Uralbekov BM, Smodis B, Burkitbayev M (2011) Uranium in natural waters sampled within former uranium mining sites in Kazakhstan and Kyrgyzstan. J Radioanal Nucl Chem 289:805–810

    Article  Google Scholar 

  • Valipour M (2015) Future of agricultural water management in Africa. Arch Agron Soil Sci 61:907–927

    Article  Google Scholar 

  • Velazquez E (2006) An input–output model of water consumption: analysing intersectoral water relationships in Andalusia. Ecol Econ 56:226–240

    Article  Google Scholar 

  • Ventana Systems (2012) Vensim DSS. 6.0b ed. Ventana systems, Inc., Harvard, MA. Available online: http://vensim.com/vensim-software/. Accessed on 18 Dec 2017

  • Vermeesch P, Poort J, Duchkov AD, Klerkx J, de Batist M (2004) Lake Issyk-Kul (Tien Shan): unusually low heat flow in an active intermontane basin. Geol Geofiz 45:616–625

    Google Scholar 

  • Viala E (2008) Water for food, water for life a comprehensive assessment of water management in agriculture. Irrig Drain Syst 22:127–129

    Article  Google Scholar 

  • Vollmer MK, Weiss RF, Schlosser P, Williams RT (2002a) Deep-water renewal in Lake Issyk-Kul. Geophys Res Lett 29(8). https://doi.org/10.1029/2002gl014763

  • Vollmer MK, Weiss RF, Williams RT, Falkner KK, Qiu X, Ralph EA, Romanovsky VV (2002b) Physical and chemical properties of the waters of saline lakes and their importance for deep-water renewal: Lake Issyk-Kul, Kyrgyzstan. Geochim Cosmochim Acta 66:4235–4246

    Article  Google Scholar 

  • Vonk J, Shackelford TK (2012) The oxford handbook of comparative evolutionary psychology. Oxford University Press, New York, p 574

    Google Scholar 

  • Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288

    Article  Google Scholar 

  • Vorosmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    Article  Google Scholar 

  • Wang GY, Shen YP, Qin DH (2006) Issyk-Kul Lake level fluctuation during 1860–2005 and its relation with regional climatic and hydrological changes. J Glaciol Geocryol 28:855–860

    Google Scholar 

  • Wang GY, Shen YP, Wang NL, Wu QB (2010) The effects of climate change and human activities on the lake level of the Issyk-Kul during the past 100 years. Glaciol Geocryol 32:1097–1105

    Google Scholar 

  • Waugh DW, Vollmer MK, Weiss RF, Haine TWN, Hall TM (2002) Transit time distributions in Lake Issyk-Kul. Geophys Res Lett 29. https://doi.org/10.1029/2002gl016201

  • White CJ, Tanton TW, Rycroft DW (2014) The impact of climate change on the water resources of the Amu Darya basin in central Asia. Water Resour Manage 28:5267–5281

    Article  Google Scholar 

  • Wilson JR, Holst N, Rees M (2005) Determinants and patterns of population growth in water hyacinth. Aquat Bot 81:51–67

    Article  Google Scholar 

  • Winz I, Brierley G, Trowsdale S (2009) The use of system dynamics simulation in water resources management. Water Resour Manage 23:1301–1323

    Article  Google Scholar 

  • Xu CC, Chen YY, Li WH, Chen YP (2006) Climate change and hydrologic process response in the Tarim river basin over the past 50 years. Chin Sci Bull 51(Supp. I):25–36. https://doi.org/10.1007/s11434-006-8204-1

  • Yaeger MA, Housh M, Cai XM, Sivapalan M (2014) An integrated modeling framework for exploring flow regime and water quality changes with increasing biofuel crop production in the US Corn Belt. Water Resour Res 50:9385–9404

    Article  Google Scholar 

  • Yessekin B, Bogachev V (2004) Water resources and sustainable development in central Asia: roles of risk assessment and risk management. In: Teaf CM, Yessekin BK, Khankhasayev MK (eds) Risk assessment as a tool for water resources decision-making in central Asia, vol 34. Springer, Dordrecht, pp 197212

    Google Scholar 

  • Yuan Q (2017) Precipitation in central Asia in the mid- and late-21st century. J Clim (manuscript submitted for publication)

    Google Scholar 

  • Yuan YJ, Zeng GM, Liang J, Huang L, Hua SS, Li F, Zhu Y, Wu HP, Liu JY, He XX et al (2015) Variation of water level in dongting lake over a 50-year period: implications for the impacts of anthropogenic and climatic factors. J Hydrol 525:450–456

    Article  Google Scholar 

  • Zabirov RD (1963) Issyk-Kul. Academic Science of Kirghiz SSR, Kyrgyz Republic

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilili Abuduwaili .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abuduwaili, J., Issanova, G., Saparov, G. (2019). Hydrographical and Physical–Geographical Characteristics of the Issyk-Kul Lake Basin and Use of Water Resources of the Basin, and Impact of Climate Change on It. In: Hydrology and Limnology of Central Asia. Water Resources Development and Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0929-8_9

Download citation

Publish with us

Policies and ethics