Investigating the Influence of Prior Expectation in Face Pareidolia using Spatial Pattern

  • Kasturi BarikEmail author
  • Rhiannon Jones
  • Joydeep Bhattacharya
  • Goutam Saha
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 748)


The perception of an external stimulus is not just stimulus-dependent but is also influenced by the ongoing brain activity prior to the presentation of stimulus. In this work, we directly tested whether spontaneous electroencephalogram (EEG) signal in prestimulus period could predict perceptual outcome in face pareidolia (visualizing face in noise images) on a trial-by-trial basis using machine learning framework. Participants were presented with only noise images but with the prior information that some faces would be hidden in these images while their electrical brain activities were recorded; participants reported their perceptual decision, face or no-face, on each trial. Using features based on the Regularized Common Spatial Patterns (RCSP) in a machine learning classifier, we demonstrated that prestimulus brain activities could discriminate face and no-face perception with an accuracy of 73.15%. The channels corresponding to the maximal coefficients of spatial pattern vectors may be the channels most correlated with the task-specific sources, i.e., frontal and parieto-occipital regions activate for ‘face’ and ‘no-face’ imagery class, respectively. These findings suggest a mechanism of how prior expectations in the prestimulus period may affect post-stimulus decision-making.


EEG Prior Expectation Face Pareidolia Single-trial Classification Spatial Pattern Artificial Neural Network 


  1. 1.
    Babiloni, C., Vecchio, F., Bultrini, A., Romani, G.L., Rossini, P.M.: Pre- and poststimulus alpha rhythms are related to conscious visual perception: a high-resolution EEG study. Cereb. Cortex 16(12), 1690–1700 (2006)CrossRefGoogle Scholar
  2. 2.
    Bhushan, V., Saha, G., Lindsen, J., Shimojo, S., Bhattacharya, J.: How we choose one over another: predicting trial-by-trial preference decision. PloS One 7(8), e43351 (2012)CrossRefGoogle Scholar
  3. 3.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)Google Scholar
  4. 4.
    Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008)CrossRefGoogle Scholar
  5. 5.
    Bode, S., Sewell, D.K., Lilburn, S., Forte, J.D., Smith, P.L., Stahl, J.: Predicting perceptual decision biases from early brain activity. J. Neurosci. 32(36), 12488–12498 (2012)CrossRefGoogle Scholar
  6. 6.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)CrossRefGoogle Scholar
  7. 7.
    Fitts, A.: Review of the holy tortilla and a pot of beans. J. Caribb. Lit. 7(1), 197 (2011)Google Scholar
  8. 8.
    Guthrie, S.: Faces in the Clouds. Oxford University Press, Oxford (2015)Google Scholar
  9. 9.
    Haykin, S., Network, N.: A comprehensive foundation. Neural Netw. 2 (2004)Google Scholar
  10. 10.
    Hsieh, P.J., Colas, J., Kanwisher, N.: Pre-stimulus pattern of activity in the fusiform face area predicts face percepts during binocular rivalry. Neuropsychologia 50(4), 522–529 (2012)CrossRefGoogle Scholar
  11. 11.
    Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)zbMATHGoogle Scholar
  12. 12.
    Kang, H., Nam, Y., Choi, S.: Composite common spatial pattern for subject-to-subject transfer. IEEE Signal Process. Lett. 16(8), 683–686 (2009)CrossRefGoogle Scholar
  13. 13.
    Kok, P., Brouwer, G.J., van Gerven, M.A., de Lange, F.P.: Prior expectations bias sensory representations in visual cortex. The J. Neurosci. 33(41), 16275–16284 (2013)CrossRefGoogle Scholar
  14. 14.
    Koles, Z.J., Lazar, M.S., Zhou, S.Z.: Spatial patterns underlying population differences in the background EEG. Brain Topogr. 2(4), 275–284 (1990)CrossRefGoogle Scholar
  15. 15.
    Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets: one-sided selection. In: ICML. vol. 97, pp. 179–186. Nashville, USA (1997)Google Scholar
  16. 16.
    Linkenkaer Hansen, K., Nikulin, V.V., Palva, S., Ilmoniemi, R.J., Palva, J.M.: Prestimulus oscillations enhance psychophysical performance in humans. J. Neurosci. 24(45), 10186–10190 (2004)CrossRefGoogle Scholar
  17. 17.
    Liu, J., Li, J., Feng, L., Li, L., Tian, J., Lee, K.: Seeing Jesus in toast: neural and behavioral correlates of face pareidolia. Cortex 53, 60–77 (2014)CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Chawla, N.V., Harper, M.P., Shriberg, E., Stolcke, A.: A study in machine learning from imbalanced data for sentence boundary detection in speech. Comput. Speech Lang. 20(4), 468–494 (2006)CrossRefGoogle Scholar
  19. 19.
    Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58(2), 355–362 (2011)CrossRefGoogle Scholar
  20. 20.
    Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: Regularized common spatial patterns with generic learning for EEG signal classification. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. pp. 6599–6602. IEEE (2009)Google Scholar
  21. 21.
    Mayer, A., Schwiedrzik, C.M., Wibral, M., Singer, W., Melloni, L.: Expecting to see a letter: alpha oscillations as carriers of top-down sensory predictions. Cereb. Cortex 26(7), 3146–3160 (2016)CrossRefGoogle Scholar
  22. 22.
    Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M.: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. In: Computational Intelligence and Neuroscience 2011 (2010)Google Scholar
  23. 23.
    Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8(4), 441–446 (2000)CrossRefGoogle Scholar
  24. 24.
    Sadaghiani, S., Hesselmann, G., Friston, K.J., Kleinschmidt, A.: The relation of ongoing brain activity, evoked neural responses, and cognition. Front. Syst. Neurosci. 4, 20 (2010)Google Scholar
  25. 25.
    Schölvinck, M.L., Friston, K.J., Rees, G.: The influence of spontaneous activity on stimulus processing in primary visual cortex. Neuroimage 59(3), 2700–2708 (2012)CrossRefGoogle Scholar
  26. 26.
    Summerfield, C., de Lange, F.P.: Expectation in perceptual decision making: neural and computational mechanisms. Nat. Rev. Neurosci. 15(11), 745–756 (2014)CrossRefGoogle Scholar
  27. 27.
    Von Stein, A., Sarnthein, J.: Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 38(3), 301–313 (2000)CrossRefGoogle Scholar
  28. 28.
    Wang, J., Plataniotis, K.N., Lu, J., Venetsanopoulos, A.N.: On solving the face recognition problem with one training sample per subject. Pattern Recognit. 39(9), 1746–1762 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kasturi Barik
    • 1
    Email author
  • Rhiannon Jones
    • 2
  • Joydeep Bhattacharya
    • 3
  • Goutam Saha
    • 1
  1. 1.Department of Electronics & Electrical Communication EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of PsychologyUniversity of WinchesterWinchesterUK
  3. 3.Department of PsychologyGoldsmiths University of LondonLondonUK

Personalised recommendations