Advertisement

Baseline Wander and Power-Line Interference Removal from ECG Signals Using Fourier Decomposition Method

  • Pushpendra SinghEmail author
  • Ishita Srivastava
  • Amit Singhal
  • Anubha Gupta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 748)

Abstract

Analysis of electrocardiogram (ECG) signals helps us in detecting various abnormalities and diseases of heart. These signals commonly suffer from the problems of baseline wander and power-line interference. In this paper, we propose a new approach to eliminate such noises from ECG signals using the Fourier decomposition method. Simulation results are presented to show the efficacy of our method over previously used EMD-based methods. The proposed method has been shown to preserve shape characteristics of ECG signals of heart abnormalities.

Keywords

Baseline wander and Power-line interference ECG signal Empirical mode decomposition Fourier decomposition method Linearly independent non-orthogonal yet energy preserving (LINOEP) vectors 

References

  1. 1.
    Weiting, Y., Runjing, Z.: An improved self-adaptive filter based on LMS algorithm for filtering 50 Hz interference in ECG signals. In: Proceedings of the 8th International Conference on Electronic Measurement and Instruments, vol. 3, pp. 874–878 (2007)Google Scholar
  2. 2.
    Pettis, K.S., Savona, M.R., Leibrandt, P.N., Maynard, C., Lawson, W.T., Wagner, G.S.: Evaluation of the efficacy of hand held computer screens for cardiologists interpretations of 12-lead electrocardiograms. Am. Heart J. 138, 765–770 (1990)CrossRefGoogle Scholar
  3. 3.
    Islam, M.K., Haque, A.N.M.M., Tangim, G., Ahammad, T., Khondokar, M.R.H.: Study and analysis of ECG signal using MATLAB and LABVIEW as effective tools. Int. J. Comput. Electr. Eng. 4, 404–408 (2012)CrossRefGoogle Scholar
  4. 4.
    Huang, N.E., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N., Tung, C., Liu, H.: The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. R. Soc. A 454, 903–995 (1988)CrossRefGoogle Scholar
  5. 5.
    Singh, P., Joshi, S.D., Patney, R.K., Saha, K.: The Hilbert spectrum and the Energy Preserving Empirical Mode Decomposition. arXiv:1504.04104 [cs.IT] (2015)
  6. 6.
    Singh, P., Joshi, S.D., Patney, R.K., Saha, K.: Some studies on nonpolynomial interpolation and error analysis. Appl. Math. Comput. 244, 809–821 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Singh, P., Srivastava, P.K., Patney, R.K., Joshi, S.D., Saha, K.: Nonpolynomial spline based empirical mode decomposition. In: 2013 International Conference on Signal Processing and Communication (ICSC), pp. 435–440 (2013)Google Scholar
  8. 8.
    Velazquez, R.: An optimal adaptive filtering approach for stress-tests motion artifacts removal: application on an ECG for telediagnosis. In: Proceedings of the 6th International Conference on Signal Processing, vol. 2, pp. 1504–1507 (2002)Google Scholar
  9. 9.
    Shaik, B.S., Chakka, V.K., Goli, S., Reddy, A.S.: Removal of narroband interference (PLI in ECG signal) using Ramanujan periodic transform(RPT). In: Proceedings of the 2016 International Conference on Signal Processing and Communication (ICSC), pp. 233–237 (2016)Google Scholar
  10. 10.
    Argenti, F., Bamieh, B., Giarre, L.: Regularized LMS methods for baseline wandering removal in wearable ECG devices. In: Proceedings of the 2016 IEEE Conference on Decision and Control (CDC), pp. 5029–5034 (2016)Google Scholar
  11. 11.
    Yadav, S.K., Sinha, R., Bora, P.K.: Electrocardiogram signal denoising using non-local wavelet transform domain filtering. IET Signal Process. 9(1), 88–96 (2015)CrossRefGoogle Scholar
  12. 12.
    Agrawal, S., Gupta, A.: Projection operator based removal of baseline wander noise from ECG signals. In: Proceedings of the 2013 Asilomar Conference on Signals, Systems and Computers, pp. 957–961 (2013)Google Scholar
  13. 13.
    Agrawal, S., Gupta, A.: Fractal and EMD based removal of baseline wander and powerline interference from ECG signals. Comput. Biol. Med. 43(11), 1889–1899 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhao, Z., Chen, Y.: A new method for removal of baseline wander and power-line interference in ECG signals. In: Proceedings of the 2006 International Conference on Machine Learning and Cybernetics, pp. 4342–4347 (2006)Google Scholar
  15. 15.
    Bansod, P., Lambhate, R.: A new approach for removal of baseline wander in ECG signal using empirical mode decomposition and hurst exponent. In: Proceedings of the 2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE), pp. 1–6 (2016)Google Scholar
  16. 16.
    Wu, C., Zhang, Y., Hong, C., Chiueh, H.: Implementation of ECG signal processing algorithms for removing baseline wander and electromyography interference. In: Proceedings of the 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), pp. 118–121 (2016)Google Scholar
  17. 17.
    Anapagamini, S.A., Rajavel, R.: Removal of baseline wander from ECG signal using cascaded empirical mode decomposition and morphological functions. In: Proceedings of the 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN), pp. 769–774 (2016)Google Scholar
  18. 18.
    Anapagamini, S.A., Rajavel, R.: Removal of artifacts in ECG using empirical mode decomposition. In: Proceedings of the 2013 International Conference on Communication and Signal Processing, pp. 288–292 (2013)Google Scholar
  19. 19.
    Daubechies, I., Lu, J., Wu, H.T.: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30, 243–261 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jain, P., Pachori, R.B.: An iterative approach for decomposition of multi-componentnon-stationary signals based on eigenvalue decomposition of the Hankel matrix. J. Franklin Inst. 352(10), 4017–4044 (2015)CrossRefGoogle Scholar
  22. 22.
    Gilles, J.: Empirical wavelet transform. IEEE Trans. Signal Process. 61(16), 3999–4010 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Agrawal, S., Gupta, A.: Removal of baseline wander in ECG using the statistical properties of fractional Brownian motion. In: 2013 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (2013)Google Scholar
  24. 24.
    Singh, P., Joshi, S.D., Patney, R.K., Saha, K.: The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc. R. Soc. A 20160871 (2017). https://doi.org/10.1098/rspa.2016.0871
  25. 25.
    Singh, P.: Some studies on a generalized Fourier expansion for nonlinear and nonstationary time series analysis. Ph.D. thesis, Department of Electrical Engineering, IIT Delhi, India (2016)Google Scholar
  26. 26.
    Singh, P.: Time-Frequency analysis via the Fourier Representation. arXiv:1604.04992 [cs.IT] (2016)
  27. 27.
    Singh, P., Joshi, S.D.: Some studies on multidimensional Fourier theory for Hilbert transform, analytic signal and space-time series analysis. arXiv:1507.08117 [cs.IT] (2015)
  28. 28.
    Singh, P.: LINOEP vectors, spiral of Theodorus, and nonlinear time-invariant system models of mode decomposition. arXiv:1509.08667 [cs.IT] (2015)
  29. 29.
    Singh, P., Joshi, S.D., Patney, R.K., Saha, K.: Fourier-based feature extraction for classification of EEG signals using EEG rhythms. Circuits Syst. Signal Process. 35(10), 3700–3715 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Singh, P.: Breaking the limits: Redefining the instantaneous frequency. Circuits Syst. Signal Process. (2017). https://doi.org/10.1007/s00034-017-0719-y

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pushpendra Singh
    • 1
    Email author
  • Ishita Srivastava
    • 2
  • Amit Singhal
    • 2
  • Anubha Gupta
    • 3
  1. 1.School of Engineering and Applied SciencesBennett UniversityGreater NoidaIndia
  2. 2.Jaypee Institute of Information TechnologyNoidaIndia
  3. 3.Indraprastha Institute of Information Technology-Delhi (IIIT-D)New DelhiIndia

Personalised recommendations