Advertisement

Human Gait State Prediction Using Cellular Automata and Classification Using ELM

  • Vijay Bhaskar SemwalEmail author
  • Neha Gaud
  • G. C. Nandi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 748)

Abstract

In this research article, we have reported periodic cellular automata rules for different gait state prediction and classification of the gait data using Extreme Machine Leaning (ELM). This research is the first attempt to use cellular automaton to understand the complexity of bipedal walk. Due to nonlinearity, varying configurations throughout the gait cycle and the passive joint located at the unilateral foot-ground contact in bipedal walk resulting variation of dynamic descriptions and control laws from phase to phase for human gait is making difficult to predict the bipedal walk states. We have designed the cellular automata rules which will predict the next gait state of bipedal steps based on the previous two neighbor states. We have designed cellular automata rules for normal walk. The state prediction will help to correctly design the bipedal walk. The normal walk depends on next two states and has total eight states. We have considered the current and previous states to predict next state. So we have formulated 16 rules using cellular automata, eight rules for each leg. The priority order maintained using the fact that if right leg in swing phase then left leg will be in stance phase. To validate the model we have classified the gait Data using ELM (Huang et al. Proceedings of 2004 IEEE international joint conference on neural networks, vol 2. IEEE, 2004, [1]) and achieved accuracy 60%. We have explored the trajectories and compares with another gait trajectories. Finally we have presented the error analysis for different joints.

Keywords

Cellular automata (CA) Human gait Bipedal control Humanoid robot Extreme learning machine (ELM) Pseudo-inverse 

References

  1. 1.
    Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of 2004 IEEE International Joint Conference on Neural Networks, vol. 2. IEEE (2004)Google Scholar
  2. 2.
    Semwal, V.B., et al.: Design of vector field for different subphases of gait and regeneration of gait pattern. IEEE Trans. Autom. Sci. Eng. PP(99), 1–7 (2016)Google Scholar
  3. 3.
    Huang, G.-B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)Google Scholar
  4. 4.
    Raj, M., Semwal, V.B., Nandi, G.C.: Bidirectional association of joint angle trajectories for humanoid locomotion: the restricted Boltzmann machine approach. Neural Comput. Appl. 1–9 (2016)Google Scholar
  5. 5.
    Semwal, V.B., Raj, M., Nandi, G.C.: Biometric gait identification based on a multilayer perceptron. Robot. Auton. Syst. 65, 65–75 (2015)Google Scholar
  6. 6.
    Mukhopadhyay, S.C.: Wearable sensors for human activity monitoring: a review. IEEE Sens. J. 15(3), 1321–1330 (2015)CrossRefGoogle Scholar
  7. 7.
    Zhang, Z., Hu, M., Wang, Y.: A survey of advances in biometric gait recognition. In: Biometric Recognition, pp. 150–158. Springer, Berlin, Heidelberg (2011)Google Scholar
  8. 8.
    Gupta, J.P., et al.: Human activity recognition using gait pattern. Int. J. Comput. Vis. Image Process. (IJCVIP) 3(3), 31–53 (2013)Google Scholar
  9. 9.
    Semwal, V.B.: Data Driven Computational Model for Bipedal Walking and Push Recovery.  https://doi.org/10.13140/rg.2.2.18651.26403
  10. 10.
    Raj, M., Semwal, V.B., Nandi, G.C.: Hybrid model for passive locomotion control of a biped humanoid: the artificial neural network approach. Int. J. Interact. Multimed. Artif. Intell. (2017)Google Scholar
  11. 11.
    Semwal, V.B., et al.: Biologically-inspired push recovery capable bipedal locomotion modeling through hybrid automata. Robot. Auton. Syst. 70, 181–190 (2015)Google Scholar
  12. 12.
    Huang, G.-B., et al.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 42(2), 513–529 (2012)Google Scholar
  13. 13.
    Wang, C., Zhang, J., Wang, L., Pu, J., Yuan, X.: Human identification using temporal information preserving gait template. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2164–2176 (2012)CrossRefGoogle Scholar
  14. 14.
    Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)Google Scholar
  15. 15.
    Semwal, V.B., et al.: An optimized feature selection technique based on incremental feature analysis for bio-metric gait data classification. Multimed. Tools Appl. 1–19 (2016)Google Scholar
  16. 16.
    Nag, A., Mukhopadhyay, S.C., Kosel, J.: Wearable flexible sensors: a review. IEEE Sens. J. 17(13), 3949–3960 (2017)Google Scholar
  17. 17.
    Sinnet, R.W., Powell, M.J., Shah, R.P., Ames, A.D.: A human-inspired hybrid control approach to bipedal robotic walking. In: 18th IFAC World Congress, pp. 6904–6911 (2011)Google Scholar
  18. 18.
    Semwal, V.B., Nandi, G.C.: Toward developing a computational model for bipedal push recovery: a brief. Sens. J IEEE 15(4), 2021–2022 (2015)CrossRefGoogle Scholar
  19. 19.
    Parashar, A., Parashar, A., Goyal, S.: Push recovery for humanoid robot in dynamic environment and classifying the data using K-Mean. Int. J. Interact. Multimed. Artif. Intell. 4(2), 29–34 (2016)Google Scholar
  20. 20.
    Semwal, V.B., Nandi, G.C.: Generation of joint trajectories using hybrid automate-based model: a rocking block-based approach. IEEE Sens. J. 16(14), 5805–5816 (2016)Google Scholar
  21. 21.
    Semwal, V.B., Katiyar, S.A., Chakraborty, P., Nandi, G.C.: Biped model based on human Gait pattern parameters for sagittal plane movement. In: 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE), pp. 1–5, 16–18 Dec 2013Google Scholar
  22. 22.
    Raj, M., Semwal, V.B., Nandi, G.C.: Multiobjective optimized bipedal locomotion. Int. J. Mach. Learn. Cybern. 1–17 (2017)Google Scholar
  23. 23.
    Nandi, G.C., et al.: Modeling bipedal locomotion trajectories using hybrid automata. In: Region 10 Conference (TENCON), 2016 IEEE. IEEE (2016)Google Scholar
  24. 24.
    Semwal, V.B., Chakraborty, P., Nandi, G.C.: Biped model based on human gait pattern parameters for sagittal plane movement. In: IEEE International Conference on Control, Automation, Robotics and Embedded Systems (CARE), pp. 1–5 (2013)Google Scholar
  25. 25.
    Semwal, V.B., Nandi, G.C.: Robust and more accurate feature and classification using deep neural network. Neural Comput. Appl. 28(3), 565–574Google Scholar
  26. 26.
    Semwal, V.B., Nandi, G.C.: Study of humanoid push recovery based on experiments. In: IEEE International Conference on Control, Automation, Robotics and Embedded Systems (CARE) (2013)Google Scholar
  27. 27.
    Semwal, V.B., Chakraborty, P., Nandi, G.C.: Less computationally intensive fuzzy logic (type-1)-based controller for humanoid push recovery. Robot. Auton. Syst. 63, Part 1, 122–135 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Vijay Bhaskar Semwal
    • 1
    Email author
  • Neha Gaud
    • 2
  • G. C. Nandi
    • 3
  1. 1.Department of CSEIndian Institute of Information Technology, DharwadDharwadIndia
  2. 2.Institute of Computer Science, Vikram UniversityUjjainIndia
  3. 3.Robotics & AI LabIndian Institute of Information Technology, AllahabadAllahabadIndia

Personalised recommendations