Skip to main content

Computational EEG Analysis for Brain-Computer Interfaces

  • Chapter
  • First Online:
Computational EEG Analysis

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2654 Accesses

Abstract

EEG activity can be actively or passively modulated in a way to provide commands to external devices. The feedback provided by interacting with the EEG-controlled device creates a closed-loop system with the user in the loop. Such a system is known as a Brain-Computer Interface (BCI). The selection of an analysis approach for BCIs should be guided by the nature of the signals in consideration. This chapter presents the most fundamental and widely-used EEG analysis techniques organized by the type of control signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ahn, K. Kim, S.C. Jun, Steady-state somatosensory evoked potential for brain-computer interface-present and future. Front. Hum. Neurosci 16, 832 (2015)

    Google Scholar 

  2. F. Aloise, I. Lasorsa, F. Schettini, A. Brouwer, D. Mattila, F. Babiloni, F. Cincotti, Multimodal stimulation for a P300-based BCI. Int. J. Bioelectromagn. 9, 128–130 (2007)

    Google Scholar 

  3. C.W. Anderson, E.A. Stolz, S. Shamsunder, Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks. IEEE Trans. Biomed. Eng. 45, 277–286 (1998)

    Article  Google Scholar 

  4. A. Bashashati, M. Fatourechi, R.K. Ward, G.E. Birch, A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J. Neural Eng. 4, R32–R57 (2007)

    Article  Google Scholar 

  5. G. Bin, X. Gao, Y. Wang, Y. Li, B. Hong, S. Gao, A high-speed BCI based on code modulation VEP. J. Neural Eng. 8, 025015 (2011)

    Article  ADS  Google Scholar 

  6. G. Bin, X. Gao, Z. Yan, B. Hong, S. Gao, An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method. J. Neural Eng. 6, 046002 (2009)

    Article  ADS  Google Scholar 

  7. X. Chen, Y. Wang, M. Nakanishi, X. Gao, T.P. Jung, S. Gao, High-speed spelling with a noninvasive brain–computer interface. Proc. Natl. Acad. Sci. USA 112, E6058–E6067 (2015)

    Article  ADS  Google Scholar 

  8. J. Dien, K.M. Spencer, E. Donchin, Localization of the event-related potential novelty response as defined by principal components analysis. Cognitive Brain Res. 17, 637–650 (2003)

    Article  Google Scholar 

  9. G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, K.R. Muller, Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans. Biomed. Eng. 53, 2274–2281 (2006)

    Article  Google Scholar 

  10. L.A. Farwell, E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Article  Google Scholar 

  11. R. Fazel-Rezai, B.Z. Allison, C. Guger, E.W. Sellers, S.C. Kleih, A. Kübler, P300 brain computer interface: current challenges and emerging trends. Front. Neuroeng. 5, 14 (2012)

    Article  Google Scholar 

  12. A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications. Neural. Netw. 13, 411–430 (2000)

    Article  Google Scholar 

  13. S.P. Kelly, E.C. Lalor, R.B. Reilly, J.J. Foxe, Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 172–178 (2005)

    Article  Google Scholar 

  14. D.J. Krusienski, E.W. Sellers, F. Cabestaing, S. Bayoudh, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw, A comparison of classification techniques for the P300 Speller. J. Neural Eng. 3, 299 (2006)

    Article  ADS  Google Scholar 

  15. D.J. Krusienski, E.W. Sellers, D.J. McFarland, T.M. Vaughan, J.R. Wolpaw, Toward enhanced P300 speller performance. J. Neurosci. Methods 167, 15–21 (2008)

    Article  Google Scholar 

  16. S. Lemm, B. Blankertz, G. Curio, K.R. Muller, Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52, 1541–1548 (2005)

    Article  Google Scholar 

  17. Z. Lin, C. Zhang, W. Wu, X. Gao, Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans. Biomed. Eng. 54, 1172–1176 (2007)

    Article  Google Scholar 

  18. F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B. Arnaldi, A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4, R1 (2007)

    Article  Google Scholar 

  19. S. Makeig, S. Enghoff, T.P. Jung, T.J. Sejnowski, A natural basis for efficient brain-actuated control. IEEE Trans. Neural Syst. Rehabil. Eng. 8, 208–211 (2000)

    Article  Google Scholar 

  20. S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, Orlando, FL, 2008)

    MATH  Google Scholar 

  21. D.J. McFarland, D.J. Krusienski, W.A. Sarnacki, J.R. Wolpaw, Emulation of computer mouse control with a noninvasive brain–computer interface. J. Neural Eng. 5, 101 (2008)

    Article  ADS  Google Scholar 

  22. D.J. McFarland, L.M. McCane, S.V. David, J.R. Wolpaw, Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 103, 386–394 (1997)

    Article  Google Scholar 

  23. D.J. McFarland, W.A. Sarnacki, J.R. Wolpaw, Should the parameters of a BCI translation algorithm be continually adapted? J. Neurosci. Methods 199, 103–107 (2011)

    Article  Google Scholar 

  24. D.J. McFarland, J.R. Wolpaw, Sensorimotor rhythm-based brain–computer interface (BCI): model order selection for autoregressive spectral analysis. J. Neural Eng. 5, 155 (2008)

    Article  ADS  Google Scholar 

  25. K.R. Muller, C.W. Anderson, G.E. Birch, Linear and nonlinear methods for brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 165–169 (2003)

    Article  Google Scholar 

  26. J. Müller-Gerking, G. Pfurtscheller, H. Flyvbjerg, Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110, 787–798 (1999)

    Article  Google Scholar 

  27. A.M. Norcia, L.G. Appelbaum, J.M. Ales, B.R. Cottereau, B. Rossion, The steady-state visual evoked potential in vision research: a review. J. Vis. 15, 4 (2015)

    Article  Google Scholar 

  28. J. Proakis, D. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications (Prentice Hall, New York, NY, US, 2007)

    Google Scholar 

  29. L. Qin, B. He, A wavelet-based time–frequency analysis approach for classification of motor imagery for brain–computer interface applications. J. Neural Eng. 2, 65 (2005)

    Article  ADS  Google Scholar 

  30. H. Ramoser, J. Muller-Gerking, G. Pfurtscheller, Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8, 441–446 (2000)

    Article  Google Scholar 

  31. E.W. Sellers, D. Krusienski, D. Mcfarland, J. Wolpaw, Non-invasive brain-computer interface research at the wadsworth center, in Toward Brain-Computer Interfacing, ed. by G. Dornhege, J.R. Millan, T. Hinterberger, D.J. McFarland, K.R. Muller (The MIT Press, Cambridge, 2007), pp. 31–42

    Google Scholar 

  32. J.R. Wolpaw, D.J. McFarland, Multichannel EEG-based brain-computer communication. Electroencephalogr. Clin. Neurophysiol. 90, 444–449 (1994)

    Article  Google Scholar 

  33. J.R. Wolpaw, D.J. McFarland, Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. USA 101, 17849–17854 (2004)

    Article  ADS  Google Scholar 

  34. T.O. Zander, C. Kothe, S. Jatzev, M. Gaertner, Enhancing human-computer interaction with input from active and passive brain-computer interfaces, in Brain-Computer Interfaces, ed. by D.S. Tan, A. Nijholt (Springer, London, 2010), pp. 181–199

    Chapter  Google Scholar 

  35. T.O. Zander, C. Kothe, Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 8, 025005 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean J. Krusienski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, G.D., Krusienski, D.J. (2018). Computational EEG Analysis for Brain-Computer Interfaces. In: Im, CH. (eds) Computational EEG Analysis. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0908-3_9

Download citation

Publish with us

Policies and ethics