Skip to main content

EEG Source Imaging and Multimodal Neuroimaging

  • Chapter
  • First Online:
  • 2679 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

During most common applications, the signals produced by cortical dipoles are detected at the scalp level. While these measurements can be highly informative and feature optimal temporal resolution, their spatial detection is hindered by the conduction through the tissues of the head. A deeper understanding of cortical sources can be provided by source imaging techniques. These methods first create mathematical models of the head, assigning appropriate properties to each layer. Brain activity is then calculated based on these assigned models and the observed EEG measurements, greatly improving the spatial resolution of EEG measurement and providing insights regarding otherwise hidden cortical dynamics. Source Imaging approaches can be further enhanced by integrating a second imaging modality. This is particularly useful with imaging methods that feature high spatial resolution or whose signals are not blurred by transduction. In the following chapter, we provide a detailed introduction to the general principles and basic algorithms of source imaging techniques. The discussion then expands to explore how other modalities can interact with these techniques to improve our results. At its conclusion, readers should have a good idea on how EEG data can be expanded to provide cortical insight.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.P. Ahlfors, J. Han, J.W. Belliveau, M.S. Hämäläinen, Sensitivity of MEG and EEG to source orientation. Brain Topogr. 23(3), 227–232 (2010)

    Article  Google Scholar 

  2. S. Ahn, S.C. Jun, Multi-modal integration of EEG-fNIRS for brain-computer interfaces–current limitations and future directions. Front. Hum. Neurosci. 11, 503 (2017)

    Article  Google Scholar 

  3. T. Aihara, Y. Takeda, K. Takeda et al., Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior. Neuroimage 59(4), 4006–4021 (2012)

    Article  Google Scholar 

  4. A. Babajani-Feremi, H. Soltanian-Zadeh, Multi-area neural mass modeling of EEG and MEG signals. Neuroimage 52(3), 793–811 (2010)

    Article  Google Scholar 

  5. A. Babajani, H. Soltanian-Zadeh, Integrated MEG/EEG and fMRI model based on neural masses. IEEE Trans. Biomed. Eng. 53(9), 1794–1801 (2006)

    Article  Google Scholar 

  6. F. Babiloni, D. Mattia, C. Babiloni et al., Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle. Magn. Reson. Imaging 22(10), 1471–1476 (2004)

    Article  Google Scholar 

  7. S. Baillet, J.C. Mosher, R.M. Leahy, Electromagnetic brain mapping. IEEE Signal Process. Mag. 18(6), 14–30 (2001)

    Article  ADS  Google Scholar 

  8. S.B. Baumann, D.R. Wozny, S.K. Kelly, F.M. Meno, The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans. Biomed. Eng. 44(3), 220–223 (1997)

    Article  Google Scholar 

  9. A.J. Bell, T.J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  10. A. Bradley, J. Yao, J. Dewald, C.-P. Richter, Evaluation of electroencephalography source localization algorithms with multiple cortical sources. PLoS ONE 11(1), e0147266 (2016)

    Article  Google Scholar 

  11. M. Breakspear, Dynamic models of large-scale brain activity. Nat. Neurosci. 20(3), 340 (2017)

    Article  Google Scholar 

  12. M.J. Brookes, C.M. Stevenson, G.R. Barnes et al., Beamformer reconstruction of correlated sources using a modified source model. Neuroimage 34(4), 1454–1465 (2007)

    Article  Google Scholar 

  13. R.B. Buxton, E.C. Wong, L.R. Frank, Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn. Reson. Med. 39(6), 855–864 (1998)

    Article  Google Scholar 

  14. R.B. Buxton, K. Uludağ, D.J. Dubowitz, T.T. Liu, Modeling the hemodynamic response to brain activation. Neuroimage 23, S220–S233 (2004)

    Article  Google Scholar 

  15. V.D. Calhoun, T. Adali, G. Pearlson, K. Kiehl, Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data. Neuroimage 30(2), 544–553 (2006)

    Article  Google Scholar 

  16. D. Cohen, B.N. Cuffin, Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 56(1), 38–51 (1983)

    Article  Google Scholar 

  17. A.M. Dale, M.I. Sereno, Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J. Cogn. Neurosci. 5(2), 162–176 (1993)

    Article  Google Scholar 

  18. A.M. Dale, B. Fischl, M.I. Sereno, Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)

    Article  Google Scholar 

  19. A.M. Dale, A.K. Liu, B.R. Fischl et al., Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26(1), 55–67 (2000)

    Article  Google Scholar 

  20. J. Daunizeau, C. Grova, J. Mattout et al., Assessing the relevance of fMRI-based prior in the EEG inverse problem: a Bayesian model comparison approach. IEEE Trans. Signal Process. 53(9), 3461–3472 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Daunizeau, C. Grova, G. Marrelec et al., Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. Neuroimage 36(1), 69–87 (2007)

    Article  Google Scholar 

  22. B.G. Edwards, V.D. Calhoun, K.A. Kiehl, Joint ICA of ERP and fMRI during error-monitoring. Neuroimage 59(2), 1896–1903 (2012)

    Article  Google Scholar 

  23. S. Fazli, J. Mehnert, J. Steinbrink et al., Enhanced performance by a hybrid NIRS–EEG brain computer interface. Neuroimage 59(1), 519–529 (2012)

    Article  Google Scholar 

  24. B. Fischl, A. Liu, A.M. Dale, Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans. Med. Imaging 20(1), 70–80 (2001)

    Article  Google Scholar 

  25. B. Fischl, D.H. Salat, E. Busa et al., Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)

    Article  Google Scholar 

  26. J.M. Ford, B.J. Roach, V.A. Palzes, D.H. Mathalon, Using concurrent EEG and fMRI to probe the state of the brain in schizophrenia. NeuroImage-Clin. 12, 429–441 (2016)

    Article  Google Scholar 

  27. K. Friston, L. Harrison, J. Daunizeau et al., Multiple sparse priors for the M/EEG inverse problem. Neuroimage 39(3), 1104–1120 (2008)

    Article  Google Scholar 

  28. K. Friston, C. Chu, J. Mourão-Miranda et al., Bayesian decoding of brain images. Neuroimage 39(1), 181–205 (2008)

    Article  Google Scholar 

  29. K.J. Friston, W. Penny, C. Phillips et al., Classical and Bayesian inference in neuroimaging: theory. Neuroimage 16(2), 465–483 (2002)

    Article  Google Scholar 

  30. M. Fuchs, M. Wagner, J. Kastner, Boundary element method volume conductor models for EEG source reconstruction. Clin. Neurophysiol. 112(8), 1400–1407 (2001)

    Article  Google Scholar 

  31. L. Geddes, L. Baker, The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 5(3), 271–293 (1967)

    Article  Google Scholar 

  32. G.H. Golub, M. Heath, G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)

    Article  MathSciNet  Google Scholar 

  33. S.I. Gonçalves, J.C. de Munck, J.P. Verbunt et al., In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head. IEEE Trans. Biomed. Eng. 50(6), 754–767 (2003)

    Article  Google Scholar 

  34. R.L. Goris, T. Putzeys, J. Wagemans, F.A. Wichmann, A neural population model for visual pattern detection. Psychol. Rev. 120(3), 472 (2013)

    Article  Google Scholar 

  35. R. Grech, T. Cassar, J. Muscat et al., Review on solving the inverse problem in EEG source analysis. J. NeuroEng. Rehabil. 5(1), 25 (2008)

    Article  Google Scholar 

  36. D. Gutiérrez, A. Nehorai, C.H. Muravchik, Estimating brain conductivities and dipole source signals with EEG arrays. IEEE Trans. Biomed. Eng. 51(12), 2113–2122 (2004)

    Article  Google Scholar 

  37. M. Hämäläinen, R. Hari, R.J. Ilmoniemi et al., Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(2), 413 (1993)

    Article  ADS  Google Scholar 

  38. H. Hallez, B. Vanrumste, R. Grech et al., Review on solving the forward problem in EEG source analysis. J. NeuroEng. Rehabil. 4(1), 46 (2007)

    Article  Google Scholar 

  39. M.S. Hamalainen, Interpreting Measured Magnetic Fields of the Brain: Estimates of Current Distributions (Helsinki University of Technology, Rep, 1984)

    Google Scholar 

  40. Hansen PC (1999) The L-curve and its use in the numerical treatment of inverse problems

    Google Scholar 

  41. O. Hauk, D.G. Wakeman, R. Henson, Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics. Neuroimage 54(3), 1966–1974 (2011)

    Article  Google Scholar 

  42. R.J. Huster, S. Debener, T. Eichele, C.S. Herrmann, Methods for simultaneous EEG-fMRI: an introductory review. J. Neurosci. 32(18), 6053–6060 (2012)

    Article  Google Scholar 

  43. B.H. Jansen, V.G. Rit, Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73(4), 357–366 (1995)

    Article  Google Scholar 

  44. J. Jorge, W. Van der Zwaag, P. Figueiredo, EEG–fMRI integration for the study of human brain function. Neuroimage 102, 24–34 (2014)

    Article  Google Scholar 

  45. Y. Lai, W. Van Drongelen, L. Ding et al., Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra-and intra-cranial electrical potential recordings. Clin. Neurophysiol. 116(2), 456–465 (2005)

    Article  Google Scholar 

  46. X. Lei, C. Qiu, P. Xu, D. Yao, A parallel framework for simultaneous EEG/fMRI analysis: methodology and simulation. Neuroimage 52(3), 1123–1134 (2010)

    Article  Google Scholar 

  47. X. Lei, D. Ostwald, J. Hu et al., Multimodal functional network connectivity: an EEG-fMRI fusion in network space. PLoS ONE 6(9), e24642 (2011)

    Article  ADS  Google Scholar 

  48. R. Li, T. Potter, W. Huang, Y. Zhang, Enhancing performance of a hybrid EEG-fNIRS system using channel selection and early temporal features. Front. Hum. Neurosci. 11, 462 (2017)

    Article  Google Scholar 

  49. A.K. Liu, J.W. Belliveau, A.M. Dale, Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc. Natl. Acad. Sci. 95(15), 8945–8950 (1998)

    Article  ADS  Google Scholar 

  50. Y. Liu, Y. Ning, S. Li et al., Three-dimensional innervation zone imaging from multi-channel surface EMG recordings. Int. J. Neural Syst. 25(06), 1550024 (2015)

    Article  Google Scholar 

  51. Z. Liu, F. Kecman, B. He, Effects of fMRI–EEG mismatches in cortical current density estimation integrating fMRI and EEG: a simulation study. Clin. Neurophysiol. 117(7), 1610–1622 (2006)

    Article  Google Scholar 

  52. Z. Liu, B. He, fMRI–EEG integrated cortical source imaging by use of time-variant spatial constraints. Neuroimage 39(3), 1198–1214 (2008)

    Article  Google Scholar 

  53. M. Luessi, S.D. Babacan, R. Molina et al., Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors. Neuroimage 55(1), 113–132 (2011)

    Article  Google Scholar 

  54. J. Malmivuo, R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University Press, USA, 1995)

    Book  Google Scholar 

  55. E. Martınez-Montes, P.A. Valdés-Sosa, F. Miwakeichi et al., Concurrent EEG/fMRI analysis by multiway partial least squares. NeuroImage 22(3), 1023–1034 (2004)

    Article  Google Scholar 

  56. T. Medani, D. Lautru, D. Schwartz et al., FEM method for the EEG forward problem and improvement based on modification of the saint venant’s method. Prog Electromagn Res 153, 11–22 (2015)

    Article  Google Scholar 

  57. J.W. Meijs, O.W. Weier, M.J. Peters, A. Van Oosterom, On the numerical accuracy of the boundary element method (EEG application). IEEE Trans. Biomed. Eng. 36(10), 1038–1049 (1989)

    Article  Google Scholar 

  58. M.M. Monti, Statistical analysis of fMRI time-series: a critical review of the GLM approach. Front. Hum. Neurosci. 5, 28 (2011)

    Article  Google Scholar 

  59. M. Moosmann, T. Eichele, H. Nordby et al., Joint independent component analysis for simultaneous EEG–fMRI: principle and simulation. Int. J. Psychophysiol. 67(3), 212–221 (2008)

    Article  Google Scholar 

  60. T. Nguyen, T. Potter, T. Nguyen, et al., EEG source imaging guided by spatiotemporal specific fMRI: toward an understanding of dynamic cognitive processes. Neural Plast. (2016)

    Google Scholar 

  61. T. Nguyen, T. Potter, R. Grossman, Y. Zhang, Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging. J. Neural Eng. (2017)

    Google Scholar 

  62. T.F. Oostendorp, J. Delbeke, D.F. Stegeman, The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans. Biomed. Eng. 47(11), 1487–1492 (2000)

    Article  Google Scholar 

  63. D. Ostwald, C. Porcaro, A.P. Bagshaw, An information theoretic approach to EEG–fMRI integration of visually evoked responses. Neuroimage 49(1), 498–516 (2010)

    Article  Google Scholar 

  64. R.D. Pascual-Marqui, C.M. Michel, D. Lehmann, Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18(1), 49–65 (1994)

    Article  Google Scholar 

  65. R.D. Pascual-Marqui, Review of methods for solving the EEG inverse problem. Int. J. Bioeletromagn. 1(1), 75–86 (1999)

    Google Scholar 

  66. R.D. Pascual-Marqui, Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl D), 5–12 (2002)

    Google Scholar 

  67. S. Peca, C.R. McCreary, E. Donaldson et al., Neurovascular decoupling is associated with severity of cerebral amyloid angiopathy. Neurology 81(19), 1659–1665 (2013)

    Article  Google Scholar 

  68. Y. Peng, J. He, B. Yao et al., Motor unit number estimation based on high-density surface electromyography decomposition. Clin. Neurophysiol. 127(9), 3059–3065 (2016)

    Article  Google Scholar 

  69. T.K. Perrachione, S.S. Ghosh, Optimized design and analysis of sparse-sampling FMRI experiments. Front. Neurosci. 7, 55 (2013)

    Article  Google Scholar 

  70. S.E. Robinson, J. Vrba, Functional Neuroimaging by Synthetic Aperture Magnetometry (SAM). Recent Advances in Biomagnetism (Tokyo University Press, Sendai, Japan, 1999), pp 302–305

    Google Scholar 

  71. M. Rosa, J. Daunizeau, K.J. Friston, EEG-fMRI integration: a critical review of biophysical modeling and data analysis approaches. J. Integr. Neurosci. 9(04), 453–476 (2010)

    Article  Google Scholar 

  72. S. Rush, D.A. Driscoll, Current distribution in the brain from surface electrodes. Anesth. Analg. 47(6), 717–723 (1968)

    Article  Google Scholar 

  73. S. Rush, D.A. Driscoll, EEG electrode sensitivity-an application of reciprocity. IEEE Trans. Biomed. Eng. 1, 15–22 (1969)

    Article  Google Scholar 

  74. Y. Salu, L.G. Cohen, D. Rose et al., An improved method for localizing electric brain dipoles. IEEE Trans. Biomed. Eng. 37(7), 699–705 (1990)

    Article  Google Scholar 

  75. U. Schridde, M. Khubchandani, J.E. Motelow et al., Negative BOLD with large increases in neuronal activity. Cereb. Cortex 18(8), 1814–1827 (2007)

    Article  Google Scholar 

  76. K. Sekihara, S. Nagarajan, D. Poeppel, Y. Miyashita, Reconstructing spatio-temporal activities of neural sources from magnetoencephalographic data using a vector beamformer, in Acoustics, Speech, and Signal Processing, 2001 Proceedings (ICASSP’01) 2001 IEEE International Conference on 2021–2024 (2001)

    Google Scholar 

  77. D. Sharon, M.S. Hämäläinen, R.B. Tootell et al., The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex. Neuroimage 36(4), 1225–1235 (2007)

    Article  Google Scholar 

  78. K. Uutela, M. Hamalainen, R. Salmelin, Global optimization in the localization of neuromagnetic sources. IEEE Trans. Biomed. Eng. 45(6), 716–723 (1998)

    Article  Google Scholar 

  79. B.D. Van Veen, K.M. Buckley, Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 5(2), 4–24 (1988)

    Article  ADS  Google Scholar 

  80. B.D. Van Veen, W. Van Drongelen, M. Yuchtman, A. Suzuki, Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44(9), 867–880 (1997)

    Article  Google Scholar 

  81. Y. Zhang, S. Zhu, L. Ding, et al., On the forward problem of EEG cortical imaging by means of finite element method. Engineering in Medicine and Biology Society, in IEMBS’04 26th Annual International Conference of the IEEE, pp 440–442 (2004)

    Google Scholar 

  82. Y. Zhang, S. Zhu, B. He, A second-order finite element algorithm for solving the three-dimensional EEG forward problem. Phys. Med. Biol. 49(13), 2975 (2004)

    Article  Google Scholar 

  83. Y. Zhang, W. Van Drongelen, B. He, Estimation of in vivo brain-to-skull conductivity ratio in humans. Appl. Phys. Lett. 89(22), 223903 (2006)

    Article  ADS  Google Scholar 

  84. Y. Zhang, L. Ding, W. van Drongelen et al., A cortical potential imaging study from simultaneous extra-and intracranial electrical recordings by means of the finite element method. Neuroimage 31(4), 1513–1524 (2006)

    Article  Google Scholar 

  85. Y. Zhang, W. van Drongelen, M. Kohrman, B. He, Three-dimensional brain current source reconstruction from intra-cranial ECoG recordings. Neuroimage 42(2), 683–695 (2008)

    Article  Google Scholar 

  86. Y. Zhang, D. Wang, G.W. Timm, A three-dimensional muscle activity imaging technique for assessing pelvic muscle function. Inverse Probl 26(11), 115018 (2010)

    Article  ADS  Google Scholar 

  87. Zhang Y (2013) Noninvasive imaging of internal muscle activities from multi-channel surface EMG recordings, in Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp 5430–5432

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y. (2018). EEG Source Imaging and Multimodal Neuroimaging. In: Im, CH. (eds) Computational EEG Analysis. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0908-3_5

Download citation

Publish with us

Policies and ethics