Skip to main content

Computational EEG Analysis for Hyperscanning and Social Neuroscience

  • Chapter
  • First Online:
Computational EEG Analysis

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Hyperscanning, the technique that simultaneously records neural activities from multiple interacting participants, has attracted increasing attention in the field of social neuroscience. EEG is among the most popular neuroimaging techniques for hyperscanning, as its high portability enables neural signal recordings in naturalistic social interaction scenarios. This chapter summarizes the state-of-the-art progress on the computational EEG analysis methods for hyperscanning and social neuroscience. These methods are divided into two categories, focusing on social perception and social interaction, respectively. A variety of computational models have been proposed and implemented to quantitatively describe the hyperlinks among interacting brains, and significant hyperlinks have been reported in social tasks covering typical social activities. As the development of hyperscanning methods is still at its early beginning, future perspectives are discussed at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Babiloni, F. Cincotti, D. Mattia et al., Hypermethods for EEG hyperscanning, in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (New York, NY, USA, 30 August–3 September 2006)

    Google Scholar 

  2. F. Babiloni, L. Astolfi, Social neuroscience and hyperscanning techniques: past, present and future. Neurosci. Biobehav. Rev. 44, 76–93 (2014)

    Article  Google Scholar 

  3. D.A. Bridwell, C. Roth, C.N. Gupta, V.D. Calhoun, Cortical response similarities predict which audiovisual clips individuals viewed, but are unrelated to clip preference. PLoS ONE 10(6), e0128833 (2015)

    Article  Google Scholar 

  4. W.-T. Chang, I.P. Jääskeläinen, J.W. Belliveau et al., Combined MEG and EEG show reliable patterns of electromagnetic brain activity during natural viewing. NeuroImage 114, 49–56 (2015)

    Article  Google Scholar 

  5. A. de Cheveigné, L.C. Parra, Joint decorrelation, a versatile tool for multichannel data analysis. NeuroImage 98, 487–505 (2014)

    Article  Google Scholar 

  6. A. de Cheveigné, Sparse time artifact removal. J. Neurosci. Methods 262, 14–20 (2016)

    Article  Google Scholar 

  7. H. De Jaegher, E. Di Paolo, R. Adolphs, What does the interactive brain hypothesis mean for social neuroscience? A dialogue. Phil. Trans. R. Soc. B 371(1693), 20150379 (2016)

    Article  Google Scholar 

  8. E.A. Di Paolo, H. De Jaegher, The interactive brain hypothesis. Front. Hum. Neurosci. 6, 163 (2012)

    Article  Google Scholar 

  9. J.P. Dmochowski, P. Sajda, J. Dias, L.C. Parra, Correlated components of ongoing EEG point to emotionally laden attention–a possible marker of engagement? Front. Hum. Neurosci. 6, 112 (2012)

    Article  Google Scholar 

  10. J.P. Dmochowski, M.A. Bezdek, B.P. Abelson et al., Audience preferences are predicted by temporal reliability of neural processing. Nat. Commun. 5, 4567 (2014)

    Article  Google Scholar 

  11. J.P. Dmochowski, A.S. Greaves, A.M. Norcia, Maximally reliable spatial filtering of steady state visual evoked potentials. NeuroImage 109, 63–72 (2015)

    Article  Google Scholar 

  12. T.D. Duane, T. Behrendt, Extrasensory electroencephalographic induction between identical twins. Science 150(3694), 367 (1965)

    Article  ADS  Google Scholar 

  13. G. Dumas, J. Nadel, R. Soussignan et al., Inter-brain synchronization during social interaction. PLoS ONE 5(8), e12166 (2010)

    Article  ADS  Google Scholar 

  14. G. Dumas, F. Lachat, J. Martinerie et al., From social behaviour to brain synchronization: review and perspectives in hyperscanning. Irbm 32(1), 48–53 (2011)

    Article  Google Scholar 

  15. M.P. Eckstein, K. Das, B.T. Pham et al., Neural decoding of collective wisdom with multi-brain computing. NeuroImage 59(1), 94–108 (2012)

    Article  Google Scholar 

  16. S. Gao, Y. Wang, X. Gao, B. Hong, Visual and auditory brain–computer interfaces. IEEE Trans. Biomed. Eng. 61(5), 1436–1447 (2014)

    Article  ADS  Google Scholar 

  17. G.H. Golub, C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, 1996)

    MATH  Google Scholar 

  18. N. Hachmeister, A. Finke, H. Ritter, Does machine-mediated interaction induce inter-brain synchrony?—A hyperscanning study, in 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014

    Google Scholar 

  19. R. Hari, L. Henriksson, S. Malinen, L. Parkkonen, Centrality of social interaction in human brain function. Neuron 88(1), 181–193 (2015)

    Article  Google Scholar 

  20. D. Hassabis, D. Kumaran, C. Summerfield, M. Botvinick, Neuroscience-inspired artificial intelligence. Neuron 95(2), 245–258 (2017)

    Article  Google Scholar 

  21. U. Hasson, Y. Nir, I. Levy et al., Intersubject synchronization of cortical activity during natural vision. Science 303(5664), 1634–1640 (2004)

    Article  ADS  Google Scholar 

  22. U. Hasson, R. Malach, D.J. Heeger, Reliability of cortical activity during natural stimulation. Trends. Cogn. Sci. 14(1), 40–48 (2010)

    Article  Google Scholar 

  23. U. Hasson, A.A. Ghazanfar, B. Galantucci et al., Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends. Cogn. Sci. 16(2), 114–121 (2012)

    Article  Google Scholar 

  24. J.V. Haxby, A.C. Connolly, J.S. Guntupalli, Decoding neural representational spaces using multivariate pattern analysis. Annu. Rev. Neurosci. 37(1), 435–456 (2014)

    Article  Google Scholar 

  25. J.-D. Haynes, G. Rees, Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523–534 (2006)

    Article  Google Scholar 

  26. J. Jahng, J.D. Kralik, D.-U. Hwang, J. Jeong, Neural dynamics of two players when using nonverbal cues to gauge intentions to cooperate during the Prisoner’s Dilemma Game. NeuroImage 157, 263–274 (2017)

    Article  Google Scholar 

  27. D.-Y. Kang, J. Kim, Y.-S. Shin et al., Coherent neural responses of human populations during watching movie, in 14th International Conference on Control, Automation and Systems, Seoul, South Korea, 22–25 October 2014

    Google Scholar 

  28. A.Y. Kaplan, A.A. Fingelkurts, A.A. Fingelkurts et al., Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges. Sig. Process. 85(11), 2190–2212 (2005)

    Article  Google Scholar 

  29. M. Kawasaki, Y. Yamada, Y. Ushiku et al., Inter-brain synchronization during coordination of speech rhythm in human-to-human social interaction. Sci. Rep. 3, 1692 (2013)

    Article  Google Scholar 

  30. J.J. Ki, S.P. Kelly, L.C. Parra, Attention strongly modulates reliability of neural responses to naturalistic narrative stimuli. J. Neurosci. 36(10), 3092–3101 (2016)

    Article  Google Scholar 

  31. B. King-Casas, D. Tomlin, C. Anen et al., Getting to know you: reputation and trust in a two-person economic exchange. Science 308(5718), 78–83 (2005)

    Article  ADS  Google Scholar 

  32. T. Koike, H.C. Tanabe, N. Sadato, Hyperscanning neuroimaging technique to reveal the “two-in-one” system in social interactions. Neurosci. Res. 90, 25–32 (2015)

    Article  Google Scholar 

  33. I. Konvalinka, A. Roepstorff, The two-brain approach: how can mutually interacting brains teach us something about social interaction? Front. Hum. Neurosci. 6, 215 (2012)

    Article  Google Scholar 

  34. I. Konvalinka, M. Bauer, C. Stahlhut et al., Frontal alpha oscillations distinguish leaders from followers: multivariate decoding of mutually interacting brains. NeuroImage 94, 79–88 (2014)

    Article  Google Scholar 

  35. A.K. Kuhlen, C. Allefeld, J.-D. Haynes, Content-specific coordination of listeners’ to speakers’ EEG during communication. Front. Hum. Neurosci. 6, 266 (2012)

    Article  Google Scholar 

  36. S. Lemm, B. Blankertz, T. Dickhaus, K.-R. Müller, Introduction to machine learning for brain imaging. NeuroImage 56(2), 387–399 (2011)

    Article  Google Scholar 

  37. M.D. Lieberman, Social cognitive neuroscience: a review of core processes. Annu. Rev. Psychol. 58, 259–289 (2007)

    Article  Google Scholar 

  38. T. Liu, M. Pelowski, A new research trend in social neuroscience: Towards an interactive-brain neuroscience. PsyCh J. 3(3), 177–188 (2014)

    Article  Google Scholar 

  39. P.R. Montague, G.S. Berns, J.D. Cohen et al., Hyperscanning: simultaneous fMRI during linked social interactions. NeuroImage 16(4), 1159–1164 (2002)

    Article  Google Scholar 

  40. S. Motamedi-Fakhr, M. Moshrefi-Torbati, M. Hill et al., Signal processing techniques applied to human sleep EEG signals—a review. Biomed. Signal Process. Control 10, 21–33 (2014)

    Article  Google Scholar 

  41. V. Müller, J. Sänger, U. Lindenberger, Intra-and inter-brain synchronization during musical improvisation on the guitar. PLoS ONE 8(9), e73852 (2013)

    Article  ADS  Google Scholar 

  42. M. Nakanishi, Y. Wang, X. Chen et al., Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans. Biomed. Eng. 65(1), 104–112 (2018)

    Article  Google Scholar 

  43. J. Pajula, J. Tohka, How many is enough? Effect of sample size in inter-subject correlation analysis of fMRI. Comput. Intell. Neurosci. 2016, 2094601 (2016)

    Article  Google Scholar 

  44. L. Parra, P. Sajda, Blind source separation via generalized eigenvalue decomposition. J. Mach. Learn. Res. 4(Dec), 1261–1269 (2003)

    Google Scholar 

  45. A. Pérez, M. Carreiras, J.A. Duñabeitia, Brain-to-brain entrainment: EEG interbrain synchronization while speaking and listening. Sci. Rep. 7(1), 4190 (2017)

    Article  ADS  Google Scholar 

  46. R. Raina, Y. Shen, A. Mccallum, A.Y. Ng, Classification with hybrid generative/discriminative models, in Advances in neural information processing systems 16, Vancouver and Whistler, British Columbia, Canada, 8–13 December 2003 (2004)

    Google Scholar 

  47. K. Sameshima, L.A. Baccalá, Using partial directed coherence to describe neuronal ensemble interactions. J. Neurosci. Methods 94(1), 93–103 (1999)

    Article  Google Scholar 

  48. P. Sauseng, W. Klimesch, What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci. Biobehav. Rev. 32(5), 1001–1013 (2008)

    Article  Google Scholar 

  49. L. Schilbach, B. Timmermans, V. Reddy et al., Toward a second-person neuroscience 1. Behav. Brain Sci. 36(4), 393–414 (2013)

    Article  Google Scholar 

  50. R.T. Schirrmeister, J.T. Springenberg, L.D.J. Fiederer et al., Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  51. R. Schmälzle, F.E. Häcker, C.J. Honey, U. Hasson, Engaged listeners: shared neural processing of powerful political speeches. Soc. Cogn. Affect. Neurosci. 10(8), 1137–1143 (2015)

    Article  Google Scholar 

  52. C.E. Schroeder, P. Lakatos, Y. Kajikawa et al., Neuronal oscillations and visual amplification of speech. Trends. Cogn. Sci. 12(3), 106–113 (2008)

    Article  Google Scholar 

  53. N. Sciaraffa, G. Borghini, P. Aricò et al., Brain interaction during cooperation: evaluating local properties of multiple-brain network. Brain Sci. 7(7), 90 (2017)

    Article  Google Scholar 

  54. X. Shen, Q. Sun, Y. Yuan, A unified multiset canonical correlation analysis framework based on graph embedding for multiple feature extraction. Neurocomputing 148, 397–408 (2015)

    Article  Google Scholar 

  55. G. Shmueli, To explain or to predict? Stat. Sci. 25(3), 289–310 (2010)

    Article  MathSciNet  Google Scholar 

  56. M. Siegel, T.H. Donner, A.K. Engel, Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13(2), 121–134 (2012)

    Article  Google Scholar 

  57. L.J. Silbert, C.J. Honey, E. Simony et al., Coupled neural systems underlie the production and comprehension of naturalistic narrative speech. Proc. Natl. Acad. Sci. 111(43), E4687–E4696 (2014)

    Article  Google Scholar 

  58. N. Sinha, T. Maszczyk, Z. Wanxuan et al., EEG hyperscanning study of inter-brain synchrony during cooperative and competitive interaction, in 2016 IEEE International Conference on Systems, Man, and Cybernetics (2016)

    Google Scholar 

  59. C.J. Stam, Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116(10), 2266–2301 (2005)

    Article  Google Scholar 

  60. D.A. Stanley, R. Adolphs, Toward a neural basis for social behavior. Neuron 80(3), 816–826 (2013)

    Article  Google Scholar 

  61. G.J. Stephens, L.J. Silbert, U. Hasson, Speaker–listener neural coupling underlies successful communication. Proc. Natl. Acad. Sci. 107(32), 14425–14430 (2010)

    Article  ADS  Google Scholar 

  62. C. Szymanski, A. Pesquita, A.A. Brennan et al., Teams on the same wavelength perform better: Inter-brain phase synchronization constitutes a neural substrate for social facilitation. NeuroImage 152, 425–436 (2017)

    Article  Google Scholar 

  63. J. Toppi, G. Borghini, M. Petti et al., Investigating cooperative behavior in ecological settings: an EEG hyperscanning study. PLoS One 11(4), e0154236 (2016)

    Article  Google Scholar 

  64. D. Valeriani, R. Poli, C. Cinel, Enhancement of group perception via a collaborative brain–computer interface. IEEE Trans. Biomed. Eng. 64(6), 1238–1248 (2017)

    Article  Google Scholar 

  65. F. van Overwalle, Social cognition and the brain: a meta-analysis. Hum. Brain Mapp. 30(3), 829–858 (2009)

    Article  Google Scholar 

  66. Y. Wang, T.-P. Jung, A collaborative brain-computer interface for improving human performance. PLoS ONE 6(5), e20422 (2011)

    Article  ADS  Google Scholar 

  67. J. Wolpaw, E.W. Wolpaw, Brain-Computer Interfaces: Principles and Practice (Oxford University Press, New York, 2012)

    Book  Google Scholar 

  68. D. Zhang, B. Hong, S. Gao, B. Röder, Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials. Exp. Brain Res. 235(5), 1575–1591 (2017)

    Article  Google Scholar 

  69. J.R. Zhang, J. Sherwin, J. Dmochowski et al., Correlating speaker gestures in political debates with audience engagement measured via EEG. In: Proceedings of the 22nd ACM international conference on multimedia, Orlando, Florida, USA, 3–7 November 2014 (2014)

    Google Scholar 

  70. Y. Zhang, G. Zhou, J. Jin et al., Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition. Neurocomputing 225, 103–110 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, D. (2018). Computational EEG Analysis for Hyperscanning and Social Neuroscience. In: Im, CH. (eds) Computational EEG Analysis. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0908-3_10

Download citation

Publish with us

Policies and ethics