Skip to main content

Effect of Box Size on Dilative Behaviour of Sand in Direct Shear Test

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 16))

Abstract

In this paper, an attempt is made to analyse the dilative behaviour of dense sand at two different sizes of the direct shear box, i.e., small (60 mm × 60 mm × 30 mm) and large (305 mm × 305 mm × 140 mm). A three-dimensional numerical model is developed using the FLAC3D software to analyse the size effect on dilative behaviour of dense sand along the top and the shear plane of the box at 15 kPa normal pressure. It is observed that the vertical deformation of soil on top plane increases linearly with horizontal displacement, whereas on shear plane, the vertical deformation remains constant after yielding of sand. It is also found that there is greater movement of sand particles at the front and the back of the box for the large shear box compared with that for the small shear box.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

B :

Width of the shear box

DSB:

Direct shear box

H :

Height of the shear box

L :

Length of the shear box

MC:

Mohr–Coulomb

2D:

Two dimensional

3D:

Three-dimensional

D 50 :

Diameter corresponding to percentage finer than 50%

ψ :

Dilation angle

ϕ :

Peak friction angle

ϕ cv :

Friction angle at 40-mm horizontal displacement

σ n :

Normal pressure

τ :

Peak shear stress

τ 40 :

Shear–stress at 40-mm horizontal displacement

References

  • AASHTO. (2008). Standard method of test for direct shear test of soil under consolidated drained conditions. Washington, D.C.: T236-08-UL American Association of State Highway and Transportation Officials.

    Google Scholar 

  • ASTM. (2011). ASTM D3080/D3080M: Standard test method for direct shear test for soils under consolidated drained conditions. West Conshohocken, Pennsylvania, USA: American Society for Testing and Materials.

    Google Scholar 

  • Bareither, C. A., Benson, C. H., & Edil, T. B. (2007). Reproducibility of direct shear tests conducted on granular backfill materials. ASTM Geotechnical Testing Journal, 31(1).

    Google Scholar 

  • Bareither, C. A., Benson, C. H., & Edil, T. B. (2008). Comparison of shear strength of sand backfills measured in small-scale and large-scale direct shear tests. Canadian Geotechnical Journal, 45, 1224–1236.

    Article  Google Scholar 

  • Bolton, M. D. (1986). The strength and dilatancy of sand. Géotechnique, 36(1), 65–78.

    Article  Google Scholar 

  • Chakraborty, T., & Salgado, R. (2010). Dilatancy and shear strength of sand at low confining pressures. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 136(3), 527–532.

    Article  Google Scholar 

  • Cui, L., & O’Sullivan, C. (2006). Exploring the macro- and micro-scale response of an idealized granular material in the direct shear apparatus. Géotechnique, 56(7), 455–468.

    Article  Google Scholar 

  • Houlsby, G. T. (1991). How the dilatancy of soils affect their behaviour. Report No. OUEL-1888/91. Oxford, UK: Oxford University Engineering Laboratory.

    Google Scholar 

  • Indraratna, B., Ngo, N. T., Rujikiatkamjorn, C., & Vinod, J. S. (2014). Behavior of fresh and fouled railway ballast subjected to direct shear testing: Discrete element simulation. International Journal of Geomechanics, 14(1), 34–44.

    Article  Google Scholar 

  • Itasca. (2005). FLAC3D 5.00 user’s manual. Minneapolis, USA: Itasca Consulting Group Inc.

    Google Scholar 

  • Jewell, R. A. (1989). Direct shear tests on sand. Géotechnique, 39(2), 309–322.

    Article  Google Scholar 

  • Jewell, R. A., & Wroth, C. P. (1987). Direct shear tests on reinforced sand. Géotechnique, 37(1), 53–68.

    Article  Google Scholar 

  • Lings, M. L., & Dietz, M. S. (2004). An improved direct shear apparatus for sand. Géotechnique, 54(4), 245–256.

    Article  Google Scholar 

  • Liu, H. S. (2006). Simulating a direct shear box test by DEM. Canadian Geotechnical Journal, 43, 165–178.

    Article  MathSciNet  Google Scholar 

  • Mohapatra, S. R., Rajagopal, K., & Sharma, J. S. (2014). Analysis of geotextile-reinforced stone columns subjected to lateral loading. In Proceedings of the 10th International Conference on Geosynthetics, Berlin, Germany.

    Google Scholar 

  • Mohapatra, S. R., Rajagopal, K., & Sharma, J. S. (2016). Large direct shear load test on geosynthetic encased granular columns. Geotextiles & Geomembranes, 44(3), 396–405.

    Article  Google Scholar 

  • Newland, P. L., & Allely, B. H. (1957). Volume changes in drained triaxial tests on granular materials. Géotechnique, 7(1), 17–34.

    Article  Google Scholar 

  • Ozer, C., & Arshiya, A. (2015). Dilatancy and friction angles based on in situ soil conditions. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 141.

    Google Scholar 

  • Potts, D. M., Dounias, G. T., & Vaughan, P. R. (1987). Géotechnique, 37(1), 1l–23.

    Article  Google Scholar 

  • Shibuya, S., Mitachi, T., & Tamate, S. (1997). Interpretation of direct shear box testing of sands as quasi-simple shear. Géotechnique, 47(4), 769–790.

    Article  Google Scholar 

  • Thronton, C., & Zhang, L. (2003). Numerical simulations of the direct shear test. Chemical Engineering & Technology, 26(2), 153–156.

    Article  Google Scholar 

  • Zhang, L., & Thornton, C. (2007). A numerical examination of the direct shear test. Géotechnique, 57(4), 343–354.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohapatra, S.R., Mishra, S.R., Nithin, S., Rajagopal, K., Sharma, J. (2019). Effect of Box Size on Dilative Behaviour of Sand in Direct Shear Test. In: Stalin, V., Muttharam, M. (eds) Geotechnical Characterisation and Geoenvironmental Engineering. Lecture Notes in Civil Engineering , vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-13-0899-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0899-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0898-7

  • Online ISBN: 978-981-13-0899-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics