Skip to main content

Production of Bioplastic Compounds by Genetically Manipulated and Metabolic Engineered Cyanobacteria

  • Chapter
  • First Online:
Synthetic Biology of Cyanobacteria

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1080))

Abstract

Direct conversion of carbon dioxide to valuable compounds is a desirable way to reduce the environmental burden and switch from fossil to renewable fuels. Cyanobacteria are photosynthetic bacteria that perform oxygenic photosynthesis and are able to produce valuable compounds from carbon dioxide in the air. Synechocystis and Synechococcus species, model unicellular cyanobacteria, can produce succinate and lactate, which are commodity chemicals used to generate bioplastics. Several cyanobacteria are also able to produce polyhydroxybutyrate, a biodegradable polyester that accumulates under nitrogen or phosphorus starvation. Genetic manipulation succeeded in increasing the productivity of succinate, lactate, and polyhydroxybutyrate from cyanobacteria. We summarize the recent findings in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Rahman MA, Sonomoto K (2016) Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J Biotechnol 236:176–192

    Article  CAS  PubMed  Google Scholar 

  2. Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66

    Article  CAS  PubMed  Google Scholar 

  3. Angermayr SA, Gorchs Rovira A, Hellingwerf KJ (2015) Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol 33:352–361

    Article  CAS  PubMed  Google Scholar 

  4. Angermayr SA, Paszota M, Hellingwerf KJ (2012) Engineering a cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol 78:7098–7106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Angermayr SA, van der Woude AD, Correddu D, Kern R, Hagemann M, Hellingwerf KJ (2016) Chirality matters: synthesis and consumption of the d-enantiomer of lactic acid by Synechocystis sp. strain PCC6803. Appl Environ Microbiol 82:1295–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Angermayr SA, van der Woude AD, Correddu D, Vreugdenhil A, Verrone V, Hellingwerf KJ (2014) Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol Biofuels 7:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arrieta MP, Samper MD, Aldas M, López J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10:1008

    Article  PubMed Central  Google Scholar 

  8. Azuma M, Osanai T, Hirai MY, Tanaka K (2011) A response regulator Rre37 and an RNA polymerase sigma factor SigE represent two parallel pathways to activate sugar catabolism in a cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 52:404–412

    Article  CAS  PubMed  Google Scholar 

  9. Burnap RL (2015) Systems and photosystems: cellular limits of autotrophic productivity in cyanobacteria. Front Bioeng Biotechnol 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Camsund D, Lindblad P (2014) Engineered transcriptional systems for cyanobacterial biotechnology. Front Bioeng Biotechnol 2:40

    Article  PubMed  PubMed Central  Google Scholar 

  11. Case AE, Atsumi S (2016) Cyanobacterial chemical production. J Biotechnol 231:106–114

    Article  CAS  PubMed  Google Scholar 

  12. Cassier-Chauvat C, Veaudor T, Chauvat F (2014) Advances in the function and regulation of hydrogenase in the cyanobacterium Synechocystis PCC6803. Int J Mol Sci 15:19938–19951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chia DW, Yoder TJ, Reiter WE, Gibson SI (2000) Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species. Planta 211:743–751

    Article  CAS  PubMed  Google Scholar 

  14. Cooley JW, Howitt CA, Vermaas WFJ (2000) Succinate:quinol oxidoreductases in the cyanobacterium Synechocystis sp. strain PCC 6803: presence and function in metabolism and electron transport. J Bacteriol 182:714–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cooley JW, Vermaas WFJ (2001) Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: capacity comparisons and physiological function. J Bacteriol 183:4251–4258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Espinosa J, Forchhammer K, Burillo S, Contreras A (2006) Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA. Mol Microbiol 61:457–469

    Article  CAS  PubMed  Google Scholar 

  17. Espinosa J, Forchhammer K, Contreras A (2007) Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes. Microbiology 153:711–718

    Article  CAS  PubMed  Google Scholar 

  18. Espinosa J, Rodríguez-Mateos F, Salinas P, Lanza VF, Dixon R, de la Cruz F, Contreras A (2014) PipX, the coactivator of NtcA, is a global regulator in cyanobacteria. Proc Natl Acad Sci U S A 111:E2423–E2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fujisawa T, Narikawa R, Maeda S-I (2017) CyanoBase: a large-scale update on its 20th anniversary. Nucleic Acids Res 45:D551–D554

    Article  CAS  PubMed  Google Scholar 

  20. Hai T, Hein S, Steinbüchel A (2001) Multiple evidence for widespread and general occurrence of type-III PHA synthases in cyanobacteria and molecular characterization of the PHA synthases from two thermophilic cyanobacteria: Chlorogloeopsis fritschii PCC 6912 and Synechococcus sp. strain MA19. Microbiology 147:3047–3060

    Article  CAS  PubMed  Google Scholar 

  21. Hasunuma T, Matsuda M, Kondo A (2016) Improved sugar-free succinate production by Synechocystis sp. PCC 6803 following identification of the limiting steps in glycogen catabolism. Metab Eng Commun 3:130–141

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hauf W, Watzer B, Roos N, Klotz A, Forchhammer K (2015) Photoautotrophic polyhydroxybutyrate granule formation is regulated by cyanobacterial phasin PhaP in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 81:4411–4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hein S, Tran H, Steinbüchel A (1999) Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch Microbiol 170:162–170

    Article  Google Scholar 

  24. Hirokawa Y, Goto R, Umetani Y, Hanai T (2017) Construction of a novel d-lactate producing pathway from dihydroxyacetone phosphate of the Calvin cycle in cyanobacterium, Synechococcus elongatus PCC 7942. J Biosci Bioeng 124:54–61

    Article  CAS  PubMed  Google Scholar 

  25. Hollinshead WD, Varman AM, You L, Hembree Z, Tang YJ (2014) Boosting d-lactate production in engineered cyanobacteria using sterilized anaerobic digestion effluents. Bioresour Technol 169:462–467

    Article  CAS  PubMed  Google Scholar 

  26. Hondo S, Takahashi M, Osanai T et al (2015) Genetic engineering and metabolite profiling for overproduction of polyhydroxybutyrate in cyanobacteria. J Biosci Bioeng 120:510–517

    Article  CAS  PubMed  Google Scholar 

  27. Iijima H, Shirai T, Okamoto M et al (2016) Metabolomics-based analysis revealing the alteration of primary carbon metabolism by the genetic manipulation of a hydrogenase HoxH in Synechocystis sp. PCC 6803. Algal Res 18:305–313

    Article  Google Scholar 

  28. Jansen ML, van Gulik WM (2014) Towards large scale fermentative production of succinic acid. Curr Opin Biotechnol 30:190–197

    Article  CAS  PubMed  Google Scholar 

  29. Jiang M, Ma J, Wu M, Liu R, Liang L, Xin F, Zhang W, Jia H, Dong W (2017) Progress of succinic acid production from renewable resources: metabolic and fermentative strategies. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.05.209

  30. Jin H, Chen L, Wang J, Zhang W (2014) Engineering biofuel tolerance in non-native producing microorganisms. Biotechnol Adv 32:541–548

    Article  CAS  PubMed  Google Scholar 

  31. Joseph A, Aikawa S, Sasaki K, Tsuge Y, Matsuda F, Tanaka T, Kondo A (2013) Utilization of lactic acid bacterial genes in Synechocystis sp. PCC 6803 in the production of lactic acid. Biosci Biotechnol Biochem 77:966–970

    Article  CAS  PubMed  Google Scholar 

  32. Joseph A, Aikawa S, Sasaki K et al (2014) Rre37 stimulates accumulation of 2-oxoglutarate and glycogen under nitrogen starvation in Synechocystis sp. PCC 6803. FEBS Lett 588:466–471

    Article  CAS  PubMed  Google Scholar 

  33. Kaewbai-Ngam A, Incharoensakdi A, Monshupanee T (2016) Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: an efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095. Bioresour Technol 212:342–347

    Article  CAS  PubMed  Google Scholar 

  34. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaneko T, Sato S, Kotani H et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  CAS  PubMed  Google Scholar 

  36. Kanesaki Y, Shiwa Y, Tajima N et al (2012) Identification of substrain-specific mutations by massively parallel whole-genome resequencing of Synechocystis sp. PCC 6803. DNA Res 19:67–79

    Article  CAS  PubMed  Google Scholar 

  37. Khanna N, Lindblad P (2015) Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects. Int J Mol Sci 16:10537–10561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khetkorn W, Incharoensakdi A, Lindblad P, Jantaro S (2016) Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Bioresour Technol 214:761–768

    Article  CAS  PubMed  Google Scholar 

  39. Lan EI, Wei CT (2016) Metabolic engineering of cyanobacteria for the photosynthetic production of succinate. Metab Eng 38:483–493

    Article  CAS  PubMed  Google Scholar 

  40. Li T, Elhadi D, Chen GQ (2017) Co-production of microbial polyhydroxyalkanoates with other chemicals. Metab Eng. https://doi.org/10.1016/j.ymben.2017.07.007

  41. Li C, Tao F, Ni J, Wang Y, Yao F, Xu P (2015) Enhancing the light-driven production of d-lactate by engineering cyanobacterium using a combinational strategy. Sci Rep 5:9777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Li J, Shin HD, Liu L, Du G, Chen J (2017) Protein and metabolic engineering for the production of organic acids. Bioresour Technol 239:412–421

    Article  CAS  PubMed  Google Scholar 

  44. Liu D, Yang C (2014) The nitrogen-regulated response regulator NrrA controls cyanophycin synthesis and glycogen catabolism in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 289:2055–2071

    Article  CAS  PubMed  Google Scholar 

  45. Mo H, Xie X, Zhu T, Lu X (2017) Effects of global transcription factor NtcA on photosynthetic production of ethylene in recombinant Synechocystis sp. PCC 6803. Biotechnol Biofuels 10:145

    Article  PubMed  PubMed Central  Google Scholar 

  46. Miyake M, Kataoka K, Shirai M, Asada Y (1997) Control of poly-beta-hydroxybutyrate synthase mediated by acetyl phosphate in cyanobacteria. J Bacteriol 179:5009–5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740

    Article  CAS  PubMed  Google Scholar 

  48. McNeely K, Kumaraswamy GK, Guerra T, Bennette N, Ananyev G, Dismukes GC (2014) Metabolic switching of central carbon metabolism in response to nitrate: application to autofermentative hydrogen production in cyanobacteria. J Biotechnol 182–183:83–91

    Article  CAS  PubMed  Google Scholar 

  49. McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76:5032–5038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Monshupanee T, Nimdach P, Incharoensakdi A (2016) Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Sci Rep 6:37121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muro-Pastor MI, Florencio FJ (1992) Purification and properties of NADP-isocitrate dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem 203:99–105

    Article  CAS  PubMed  Google Scholar 

  52. Muro-Pastor MI, Reyes JC, Florencio FJ (2001) Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem 276:38320–39328

    PubMed  CAS  Google Scholar 

  53. O’Leary B, Park J, Plaxton WC (2011) The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436:15–34

    Article  CAS  PubMed  Google Scholar 

  54. Oliver NJ, Atsumi S (2014) Metabolic design for cyanobacterial chemical synthesis. Photosynth Res 120:249–261

    Article  CAS  PubMed  Google Scholar 

  55. Oliver NJ, Rabinovitch-Deere CA, Carroll AL et al (2016) Cyanobacterial metabolic engineering for biofuel and chemical production. Curr Opin Chem Biol 35:43–50

    Article  CAS  PubMed  Google Scholar 

  56. Osanai T, Azuma M, Tanaka K (2007a) Sugar catabolism regulated by light- and nitrogen-status in the cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol Sci 6:508–514

    Article  CAS  PubMed  Google Scholar 

  57. Osanai T, Park Y-I, Nakamura Y (2017) Editorial: biotechnology of microalgae, based on molecular biology and biochemistry of eukaryotic algae and cyanobacteria. Front Microbiol 8:188

    Article  Google Scholar 

  58. Osanai T, Kanesaki Y, Nakano T et al (2005) Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor SigE. J Biol Chem 280:30653–30659

    Article  CAS  PubMed  Google Scholar 

  59. Osanai T, Numata K, Oikawa A et al (2013) Increased bioplastics production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis species PCC 6803. DNA Res 20:525–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Osanai T, Oikawa A, Azuma M et al (2011) Genetic engineering of group 2 sigma factor SigE widely activates expressions of sugar catabolic genes in Synechocystis species PCC 6803. J Biol Chem 286:30962–30971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Osanai T, Oikawa A, Iijima H et al (2014a) Metabolomic analysis reveals rewiring of Synechocystis sp. PCC 6803 primary metabolism by ntcA overexpression. Environ Microbiol 16:3304–3317

    Article  CAS  PubMed  Google Scholar 

  62. Osanai T, Oikawa A, Numata K et al (2014b) Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803. Plant Physiol 164:1831–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Osanai T, Oikawa A, Shirai T et al (2014c) Capillary electrophoresis-mass spectrometry reveals the distribution of carbon metabolites during nitrogen starvation in Synechocystis sp. PCC 6803. Environ Microbiol 16:512–524

    Article  CAS  PubMed  Google Scholar 

  64. Osanai T, Shirai T, Iijima H et al (2015) Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium. Front Microbiol 6:1064

    Article  PubMed  PubMed Central  Google Scholar 

  65. Panda B, Jain P, Sharma L, Mallick N (2005) Poly-beta-hydroxybutyrate accumulation in Nostoc muscorum and Spirulina platensis under phosphate limitation. J Plant Physiol 162:1376–1379

    Article  CAS  PubMed  Google Scholar 

  66. Qian X, Kumaraswamy GK, Zhang S, Gates C, Ananyev GM, Bryant DA, Dismukes GC (2016) Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnol Bioeng 113:979–988

    Article  CAS  PubMed  Google Scholar 

  67. Raza ZA, Riaz S, Banat IM (2017) Polyhydroxyalkanoates: properties and chemical modification approaches for their functionalization. Biotechnol Prog. https://doi.org/10.1002/btpr.2565

  68. Sarsekeyeva F, Zayadan BK, Usserbaeva A, Bedbenov VS, Sinetova MA, Los DA (2015) Cyanofuels: biofuels from cyanobacteria. Reality and perspectives. Photosynth Res 124:329–340

    Article  CAS  Google Scholar 

  69. Schlebusch M, Forchhammer K (2010) Requirement of the nitrogen starvation-induced protein Sll0783 for polyhydroxybutyrate accumulation in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 76:6101–6107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharma L, Mallick N (2005) Enhancement of poly-beta-hydroxybutyrate accumulation in Nostoc muscorum under mixotrophy, chemoheterotrophy and limitations of gas-exchange. Biotechnol Lett 27:59–62

    Article  CAS  PubMed  Google Scholar 

  71. Smith AJ, London J, Stainer RY (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol 94:972–983

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:179–211

    Article  CAS  Google Scholar 

  73. Sudesh K, Taguchi K, Doi Y (2002) Effect of increased PHA synthase activity on polyhydroxyalkanoates biosynthesis in Synechocystis sp. PCC6803. Int J Biol Macromol 30:97–104

    Article  CAS  PubMed  Google Scholar 

  74. Tabei Y, Okada K, Tsuzuki M (2007) Sll1330 controls the expression of glycolytic genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 355:1045–1050

    Article  CAS  PubMed  Google Scholar 

  75. Takeya M, Hirai MY, Osanai T (2017) Allosteric inhibition of phosphoenolpyruvate carboxylases is determined by a single amino acid residue in cyanobacteria. Sci Rep 7:41080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Taepucharoen K, Tarawat S, Puangcharoen M, Incharoensakdi A, Monshupanee T (2017) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) under photoautotrophy and heterotrophy by non-heterocystous N2-fixing cyanobacterium. Bioresour Technol 239:523–527

    Article  CAS  PubMed  Google Scholar 

  77. Tanigawa R, Shirokane M, Maeda Si S, Omata T, Tanaka K, Takahashi H (2002) Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro. Proc Natl Acad Sci U S A 99:4251–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Taroncher-Oldenburg G, Nishina K, Stephanopoulos G (2000) Identification and analysis of the polyhydroxyalkanoate-specific beta-ketothiolase and acetoacetyl coenzyme A reductase genes in the cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 66:4440–4448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tyo KE, Jin YS, Espinoza FA, Stephanopoulos G (2009) Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803. Biotechnol Prog 25:1236–1243

    Article  CAS  PubMed  Google Scholar 

  80. Ueda S, Kawamura Y, Iijima H et al (2016) Anionic metabolite biosynthesis enhanced by potassium under dark, anaerobic conditions in cyanobacteria. Sci Rep 6:32354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Urtuvia V, Villegas P, González M, Seeger M (2014) Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol 70:208–213

    Article  CAS  PubMed  Google Scholar 

  82. van der Woude AD, Angermayr SA, Puthan Veetil V, Osnato A, Hellingwerf KJ (2014) Carbon sink removal: increased photosynthetic production of lactic acid by Synechocystis sp. PCC6803 in a glycogen storage mutant. J Biotechnol 184:100–102

    Article  CAS  PubMed  Google Scholar 

  83. Verman AM, Yu Y, You L, Tang YJ (2013) Photoautotrophic production of d-lactic acid in an engineered cyanobacterium. Microbial Cell Fact 12:117

    Article  CAS  Google Scholar 

  84. Wang J, Lin M, Xu M, Yang ST (2016) Anaerobic fermentation for production of carboxylic acids as bulk chemicals from renewable biomass. Adv Biochem Eng Biotechnol 156:323–361

    PubMed  CAS  Google Scholar 

  85. Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume 1—results of screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy, Oak Ridge, pp 1–76

    Google Scholar 

  86. Xiong W, Brune D, Vermaas WF (2014) The γ-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol Microbiol 93:786–796

    Article  CAS  PubMed  Google Scholar 

  87. You L, Berla B, He L, Pakrasi HB, Tang YJ (2014) 13C-MFA delineates the photomixotrophic metabolism of Synechocystis sp. PCC 6803 under light- and carbon-sufficient conditions. Biotechnol J 9:684–692

    Article  CAS  PubMed  Google Scholar 

  88. Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334:1551–1553

    Article  CAS  PubMed  Google Scholar 

  89. Zhang S, Qian X, Chang S, Dismukes GC, Bryant DA (2014) Natural and synthetic variants of the tricarboxylic acid cycle in cyanobacteria: introduction of the GABA shunt into Synechococcus sp. PCC 7002. Front Microbiol 7:1972

    Google Scholar 

  90. Zhu LW, Tang YJ (2017) Current advances of succinate biosynthesis in metabolically engineered Escherichia coli. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2017.09.007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Osanai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katayama, N., Iijima, H., Osanai, T. (2018). Production of Bioplastic Compounds by Genetically Manipulated and Metabolic Engineered Cyanobacteria. In: Zhang, W., Song, X. (eds) Synthetic Biology of Cyanobacteria. Advances in Experimental Medicine and Biology, vol 1080. Springer, Singapore. https://doi.org/10.1007/978-981-13-0854-3_7

Download citation

Publish with us

Policies and ethics