Skip to main content

Insight into Arc Welding Power Source Terminologies

  • Chapter
  • First Online:
Interdisciplinary Treatment to Arc Welding Power Sources

Abstract

Welding arc is an electric current flowing between two electrodes through an ionized gas column. Arc stability is a critical problem which influences the metal transfer during welding. When the arc is stable, metal transfer is uniform with minimum spatter (Shklovski and Janson in Development of constant-power source for arc welding, pp. 255–258, 2012 [37]). The terminologies of major concerns during the joining process are presented below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Shklovski, K. Janson, Development of constant-power source for arc welding, in 13th Biennial Baltic Electronics Conference, pp. 255–258 (2012)

    Google Scholar 

  2. H. Latifi, R. Suoranta, J. Martikainen, M. Pirinen, P. Kah, Usability of arc types in industrial welding. Int. J. Mat. Eng. 9(1), 1–12 (2014)

    Google Scholar 

  3. T.W. Eagar, The Physics of Arc Welding Processes (1990), pp. 17–19

    Chapter  Google Scholar 

  4. J.N. DuPont, A.R. Marder, Thermal efficiency of arc welding processes. Weld. Res. Suppl. 406–416(1995)

    Google Scholar 

  5. M. Schiedermayer, Improving reliability of inverter based welding machines. Weld. J. 76(2) (1997)

    Google Scholar 

  6. M. Suban, J. Tušek, Methods for determination of arc stability. J. Mat. Process. Technol. 143–144, 430–437 (2003)

    Google Scholar 

  7. A.F. Knyaz’kov, S.A. Knyaz’kov, K.I. Dementsev, An inverter power source for welding with modulated current. Weld. Int. 23(12), 957–962 (2009)

    Article  Google Scholar 

  8. V. Agelidis, O. Anaya-Lara, T. Miller, E. Acha, Power Electronic Control in Electrical Systems (Elsevier, India, 2002)

    Google Scholar 

  9. Arc Welding Power Sources:NPTEL online course (2017). Available: http://nptel.ac.in/courses/112107090/module3/lecture1/lecture1.pdf

  10. T.E. GROUP, Basics of Arc Welding. Available: http://www.esabna.com/euweb/awtclesson1_21.htm. Accessed 2017

  11. Pintu, Arc Welding Polarity—Types, Effects, Selection and Pros & Cons. Available: http://www.minaprem.com/physics-of-welding/arc-welding-polarity-types-effects-selection-pros-and-cons/. Accessed 2017

  12. T.L.E. Company, Weld Penetration Variables: Lincon Electric (1999). Accessed 2017

    Google Scholar 

  13. W.S. Service, Maritime Welding Handbook (2010)

    Google Scholar 

  14. M. Electric, Guidelines to GTAW process (2003). Available: http://manuals.chudov.com/Miller/Miller-TIG-Handbook.pdf. Accessed 2017

  15. M.H. Rashid, Power Electronics Handbook (Elsevier)

    Chapter  Google Scholar 

  16. A.F. Manz, Inductance vs. Slope Control for Gas Metal Arc Power, vol. 9 (1969), pp. 707–7012

    Google Scholar 

  17. E.H. Dagget, A power supply for pulsed power welding. IEEE Spectr. 1, 67–70 (1968)

    Article  Google Scholar 

  18. J.D. Van Wyk, J.A. Ferreira, Transistor invertor design optimization in frequency range above 5KHz up to 50 KVA. IEEE Trans. Ind. Appl. 2, 296–302 (1983)

    Google Scholar 

  19. A. Kolasa. A. Matsunawa, Y. Arata, Experimental study on dynamic properties of power sources for MIG/MAG Welding. Trans. JWRI, 2, 255–265 (1985)

    Google Scholar 

  20. J.F. Lancaster, The physics of fusion welding Part-1: the electric arc welding. IEEE Proc.—Electric Power Appl. 134(5), 233–254 (1987)

    Article  Google Scholar 

  21. W. Lucas, M.G. Murch, Arc reignition characteristics when welding with sine-wave and square-wave power supplies. IEEE Proc.—Electr. Power Appl. 134(86), 348–354 (1987)

    Article  Google Scholar 

  22. T. Mita. A. Sakabe, T. Yokoo, Quantitative estimates of arc stability for CO2 gas shielded arc welding. Weld. Int. 2(2), 152–159 (1988)

    Article  Google Scholar 

  23. I.V. Pentegov, S.V. Rymar, V.P. Latanskij, Optimisation of welding parameters in power sources with condenser voltage multipliers. Weld. Int. 12(2), 89–91 (1988)

    Article  Google Scholar 

  24. M.J.M. Hermans, G. Den Ouden, Modelling of heat transfer in short circuiting gas metal arc welding. Sci. Technol. Weld. Joining 3(3), 135–138 (1998)

    Article  Google Scholar 

  25. M.J. Kang, S. Rhee, The statistical models for estimating the amount of spatter in the short circuit transfer mode of GMAW. Weld. J. (USA). 80(1) (2001)

    Google Scholar 

  26. Z. Jinhong, L. Wenlin, S. Yaowu, Study on the dynamic process of arc welding inverter. in Proceedings of the Power Electronics and Motion Control Conference, 2000. IPEMC 2000, vol. 1, pp. 308–322 (2000)

    Google Scholar 

  27. A.V. Agunov, M.V. Agunov, G.M. Korotkova, V.I. Stolbov, A.A. Shevtsov, Energy characteristics of the power source‐welding arc system. Weld. Int. 16(12), 966–969 (2002)

    Article  Google Scholar 

  28. Y.N. Konovalov, Comparison of the properties of the MAGMA-350 universal inverter power source for the welding arc with traditional rectifiers for mechanized welding. Weld. Int. 28(4), 317–319 (2014)

    Article  Google Scholar 

  29. J. Ji, X. Hu, Z. Hua, G. Zeng, L. Guo, Research of soft switching arc welding inverter power supply with high-frequency and high-power. Int. Power Electron. Appl. Conf. Exposition, 924 (2014)

    Google Scholar 

  30. V.A. Lebedev, V.S. Romanyuk, Single-phase welding current power sources for mechanised carbon dioxide welding. Weld. Int. 18(6), 489–493 (2004)

    Article  Google Scholar 

  31. G.R. Zhu, Z. Liu, X. Li, B.Y. Liu, S.X. Duan, Y. Kang, Research on digital soft-switch welding/cutting inverter power source, in IEEE International Conference on Power Electronics and Drive Systems, vol. 7 (2007), pp. 325–329

    Google Scholar 

  32. Z. Guo-rong, L. Zhao, Z. Ai-yun, Y. Mi, S.X. Duan, Y. Kang, Sliding mode control and PI control for arc welding/cutting inverter, in IEEE International Conference In Industrial Technology (2008), pp. 1–4

    Google Scholar 

  33. V.A. Lebedev, A.V. Motrii, A.D. Glushchenko, N.I. Postolatii, Experimental examination of welding current sources for semiautomatic welding equipment poared from 220 V single-phase mains. Weld. Int. 21(6), 454–457 (2007)

    Article  Google Scholar 

  34. B.J. Baliga, Power Mosfets—In Fundamentals of Power Semiconductor Devices (2008)

    Chapter  Google Scholar 

  35. J.S. Glaser, J.J. Nasadoski, P.A. Losee, A.S. Kashyap, K.S. Matocha, J.L. Garrett, L.D. Stevanovic, Direct comparison of silicon and silicon carbide power transistors in high-frequency hard-switched applications, in Applied Power Electronics Conference and Exposition (APEC), pp. 1049–1056 (2011)

    Google Scholar 

  36. R.C.S. Machado, J.C. Braz Filho, Next generation arc welding machines based on Silicon Carbide MOSFETS and high frequency planar magnetics, in IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (2015)

    Google Scholar 

  37. K. Devakumaran, P.K. Ghosh, Thermal characteristics of weld and HAZ during pulse current gas metal arc weld bead deposition on HSLA steel plate. Mat. Manuf. Process 25(7), 616–630 (2010)

    Article  Google Scholar 

  38. K. Dezelak, J. Pihler, G. Stumberger, B. Klopcic, D. Dolinar, Artificial neural network applied for detection of magnetization level in the magnetic core of a welding transformer. IEEE Trans Mag. 2, 46 (2010)

    Google Scholar 

  39. T. Parthipan, C. Ribton, P. Mudge, R. Nilavalan, W. Balachandran, Enhancement of high voltage electron beam welding power supply: Rapid recovery after flashover detection for void-free welding, in IEEE Proceedings (2013)

    Google Scholar 

  40. K. Oi, M. Murayama, Recent trend of welding technology development and applications. JFE Technical Report (2015)

    Google Scholar 

  41. V. Kumar, N. Chandrasekhar, S.K. Albert, J. Jayapandian, Performance analysis of arc welding parameters using self-organizing maps and probability density distributions, in IEEE Conference on Control Systems (2016)

    Google Scholar 

  42. D. Dong, H. Zandong, X. Ping, Z. Qian, Structure and control of an inverter type power source for robot arc welding, Tsinghua Sci. Technol. (1998) pp. 1026–1028

    Google Scholar 

  43. Y. Takasaki, T. Sonoda, Current controllability of the low-voltage 10 kA inverter power sources. IEEE Trans. Mag. 10, 4054–4056 (2005)

    Article  Google Scholar 

  44. T. Uezono, T. Hongjun, Application to MIG welding using welding power source equipped with digital filtering process. Weld. Int. 299–303 (2008)

    Article  Google Scholar 

  45. K. Skrzyniecki, P. Cegielski, A. Kolasa, A. Krajewski, Electromagnetic compatibility of power supplies for arc welding. Weld Int. 27, 623–628 (2013)

    Article  Google Scholar 

  46. B. Klopcic, D. Dolinar, G. Stumberger, Advanced control of a resistance spot welding system. IEEE Trans. Power Electron. 23(1), 144–152 (2008)

    Article  Google Scholar 

  47. Q. Pang, M. Zhang, Design of digital control system for pulsed MIG welding power source, in Intelligent Control and Automation (WCICA) 8th World Congress (2010), pp. 2492–2495

    Google Scholar 

  48. A. Navarro-Crespin, R. Casanueva, F.J. Azcondo, Alternating current welding using four quadrant switches, in IEEE Applied Power Electronics Conference and Exposition (APEC) (2015), pp. 3330–3334

    Google Scholar 

  49. P.K. Palani, N. Murugan, Selection of parameters of pulsed current gas metal arc welding, J. Mater. Process. Technol. 172, 1–10 (2006)

    Article  Google Scholar 

  50. A.K. Paul, Power electronics help reduce diversity of arc welding process for optimal performance, in 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India (2010), pp. 4–10

    Google Scholar 

  51. K. Skrzyniecki, P. Kołodziejczak, P. Cegielski, Experimental studies on stability of power source—ARC, in IEEE conference (2013) pp. 359–362

    Google Scholar 

  52. A. Kolasa, A. Matsunawa, Y. Arata, Dynamic characteristics of variable frequency pulsed TIG arc. Trans. JWRI (1986)

    Google Scholar 

  53. J. Bo, Study on the dynamic process of arc welding inverter, Polymer (Guildf) (1992) pp. 783–786

    Google Scholar 

  54. S. Yamane, S. Xiang, Y. Kaneko, K. Oshima, Effect of power source characteristic on CO2 short circuiting arc welding_TF. Sci. Technol. Weld. Join 10, 281–286 (2005)

    Google Scholar 

  55. K. Devakumaran, N. Rajasekaran, P.K. Ghosh, Process characteristics of inverter type GMAW power source under static and dynamic operating conditions. Mater. Manuf. Process 27, 1450–1456 (2012)

    Article  Google Scholar 

  56. A. Kolasa, P. Cegielski , K. Skrzyniecki, Study of static and dynamic characteristics of welding power source-arc systems. Weld. Int. 29, 865–867 (2015)

    Google Scholar 

  57. E.J. Oshaben, DC-DC Power Converter Design For Application In Welding Power Source For The Retail Market (2005)

    Google Scholar 

  58. Y.M. Chae, J.S. Gho, H.S. Mok, G.H. Choe, W.S. Shin, A new instantaneous output current control method for inverter arc welding machine, in Power Electronics Specialists Conference (1999), pp. 521–526

    Google Scholar 

  59. Y. Takasaki, T. Sonoda, Current controllability of the low-voltage 10 kA inverter power sources. IEEE Trans. Mag. 4054–4056 (2005)

    Article  Google Scholar 

  60. B. Klopcic, D. Dolinar, G. Stumberger, Advanced control of a resistance spot welding system. IEEE Trans. Power Electron. 144–152 (2008)

    Article  Google Scholar 

  61. H. Pollock, O. Flower, Series-parallel load-resonant converter for controlled-current arc welding power supply. IEEE Proc. 3 (1996)

    Google Scholar 

  62. K. Janson, J. Jarvik, Load adapting mains frequency resonant converters for supplying electrical arc—a new way in power electronics. EEE Annu. Power Electron. Spec. Conf. 2, 2090–2096 (1998)

    Google Scholar 

  63. J. Shklovski, K. Janson, Development of constant-power source for arc welding. Proc. Bienn. Balt. Electron. Conf. BEC, 225–258 (2012)

    Google Scholar 

  64. B. Singh, G. Bhuvaneswari, S. Narula, PFC bridgeless converter for welding power supply with improved power quality, in IEEE International Conference on Power Electronic Drives Energy System PEDES (2014)

    Google Scholar 

  65. B. Singh, G. Bhuvaneswari, S. Narula, Power factor corrected welding power supply using modified zeta converter. in IEEE Conference (2016) pp. 617–625

    Google Scholar 

  66. W. Fischer, F. Werther, H. Mecke, Soft switching inverter power source for arc welding, in EPE’79, Trondheim, vol. 1 (1998) pp. 333–337

    Google Scholar 

  67. Y.M. Chae, J.S. Gho, H.S. Mok, G.H. Choe, W.S. Shin, A New Instantaneous Output Current Control Method for Inverter Arc Welding Machine (1999), pp. 0–5

    Google Scholar 

  68. C. Shu-Jun, Y. Shu-Yan, W. Dong-Ping, Z. Hua, H. Ji-qiang, Novel three-phase welding inverter power supply with high power factor, pp. 1113–1118 (2003)

    Google Scholar 

  69. J. Zhu, H. Shi, K. Lu, K.Y. Lee, Study on IGBT inverter power supply for CO2 arc welding and embedded arm based waveform control, in International Conference on Mechatronics and Automation, 2007. ICMA 2007, pp. 2634–2638

    Google Scholar 

  70. S.Z. Wei, W. Qiong, X. Peng, J. De Li, A Switching-inverter power controller based on fuzzy adaptive PID, in Proceedings of the 6th International Forum on Strategic Technology, IFOST 2011 (2011), vol. 2, pp. 695–699

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arungalai Vendan .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vendan, S.A., Gao, L., Garg, A., Kavitha, P., Dhivyasri, G., SG, R. (2019). Insight into Arc Welding Power Source Terminologies. In: Interdisciplinary Treatment to Arc Welding Power Sources. Springer, Singapore. https://doi.org/10.1007/978-981-13-0806-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0806-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0805-5

  • Online ISBN: 978-981-13-0806-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics