Skip to main content

Small Molecule Inhibitors Targeting New Targets of Protein-Protein Interactions

  • Chapter
  • First Online:

Abstract

Targeting protein-protein interactions by small molecule compounds is challenging; however, exciting achievements have been made over the past decade. New targets of PPIs were identified, and lots of small molecule modulators were developed. In this chapter, we make a brief review of the research into PPIs and their small molecule inhibitors. We focus on the progress in some new targets of PPIs involving in biological processes such as epigenetic modification, ubiquitin-mediated protein degradation, immune response, RTK signaling pathway, and copper transport. These case studies may provide researchers with a basic overview of this area. Several other promising targets are also discussed herein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 15(8):533–550. https://doi.org/10.1038/nrd.2016.29

    Article  CAS  PubMed  Google Scholar 

  2. Kong X, Chen L, Jiao L, Jiang X, Lian F, Lu J, Zhu K, Du D, Liu J, Ding H, Zhang N, Shen J, Zheng M, Chen K, Liu X, Jiang H, Luo C (2014) Astemizole arrests the proliferation of cancer cells by disrupting the EZH2-EED interaction of polycomb repressive complex 2. J Med Chem 57(22):9512–9521. https://doi.org/10.1021/jm501230c

    Article  PubMed  CAS  Google Scholar 

  3. He Y, Selvaraju S, Curtin ML, Jakob CG, Zhu H, Comess KM, Shaw B, The J, Lima-Fernandes E, Szewczyk MM, Cheng D, Klinge KL, Li HQ, Pliushchev M, Algire MA, Maag D, Guo J, Dietrich J, Panchal SC, Petros AM, Sweis RF, Torrent M, Bigelow LJ, Senisterra G, Li F, Kennedy S, Wu Q, Osterling DJ, Lindley DJ, Gao W, Galasinski S, Barsyte-Lovejoy D, Vedadi M, Buchanan FG, Arrowsmith CH, Chiang GG, Sun C, Pappano WN (2017) The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat Chem Biol 13(4):389–395. https://doi.org/10.1038/nchembio.2306

    Article  PubMed  CAS  Google Scholar 

  4. Qi W, Zhao K, Gu J, Huang Y, Wang Y, Zhang H, Zhang M, Zhang J, Yu Z, Li L, Teng L, Chuai S, Zhang C, Zhao M, Chan H, Chen Z, Fang D, Fei Q, Feng L, Feng L, Gao Y, Ge H, Ge X, Li G, Lingel A, Lin Y, Liu Y, Luo F, Shi M, Wang L, Wang Z, Yu Y, Zeng J, Zeng C, Zhang L, Zhang Q, Zhou S, Oyang C, Atadja P, Li E (2017) An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat Chem Biol 13(4):381–388. https://doi.org/10.1038/nchembio.2304

    Article  PubMed  CAS  Google Scholar 

  5. Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ, Showalter HD, Murai MJ, Belcher AM, Hartley T, Hess JL, Cierpicki T (2012) Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 8(3):277–284. https://doi.org/10.1038/nchembio.773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Huang J, Gurung B, Wan B, Matkar S, Veniaminova NA, Wan K, Merchant JL, Hua X, Lei M (2012) The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature 482(7386):542–546. https://doi.org/10.1038/nature10806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. He S, Senter TJ, Pollock J, Han C, Upadhyay SK, Purohit T, Gogliotti RD, Lindsley CW, Cierpicki T, Stauffer SR, Grembecka J (2014) High-affinity small-molecule inhibitors of the menin-mixed lineage leukemia (MLL) interaction closely mimic a natural protein-protein interaction. J Med Chem 57(4):1543–1556. https://doi.org/10.1021/jm401868d

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Li L, Zhou R, Geng H, Yue L, Ye F, Xie Y, Liu J, Kong X, Jiang H, Huang J, Luo C (2014) Discovery of two aminoglycoside antibiotics as inhibitors targeting the menin-mixed lineage leukaemia interface. Bioorg Med Chem Lett 24(9):2090–2093. https://doi.org/10.1016/j.bmcl.2014.03.055

    Article  PubMed  CAS  Google Scholar 

  9. Borkin D, Pollock J, Kempinska K, Purohit T, Li X, Wen B, Zhao T, Miao H, Shukla S, He M, Sun D, Cierpicki T, Grembecka J (2016) Property focused structure-based optimization of small molecule inhibitors of the protein-protein interaction between menin and mixed lineage leukemia (MLL). J Med Chem 59(3):892–913. https://doi.org/10.1021/acs.jmedchem.5b01305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Getlik M, Smil D, Zepeda-Velazquez C, Bolshan Y, Poda G, Wu H, Dong A, Kuznetsova E, Marcellus R, Senisterra G, Dombrovski L, Hajian T, Kiyota T, Schapira M, Arrowsmith CH, Brown PJ, Vedadi M, Al-Awar R (2016) Structure-based optimization of a small molecule antagonist of the interaction between WD repeat-containing protein 5 (WDR5) and mixed-lineage leukemia 1 (MLL1). J Med Chem 59(6):2478–2496. https://doi.org/10.1021/acs.jmedchem.5b01630

    Article  PubMed  CAS  Google Scholar 

  11. Ren J, Xu W, Tang L, Su M, Chen D, Chen YL, Zang Y, Li J, Shen J, Zhou Y, Xiong B (2016) Design and synthesis of benzylpiperidine inhibitors targeting the menin-MLL1 interface. Bioorg Med Chem Lett 26(18):4472–4476. https://doi.org/10.1016/j.bmcl.2016.07.074

    Article  PubMed  CAS  Google Scholar 

  12. Xu Y, Yue L, Wang Y, Xing J, Chen Z, Shi Z, Liu R, Liu YC, Luo X, Jiang H, Chen K, Luo C, Zheng M (2016) Discovery of novel inhibitors targeting the menin-mixed lineage leukemia interface using pharmacophore- and docking-based virtual screening. J Chem Inf Model 56(9):1847–1855. https://doi.org/10.1021/acs.jcim.6b00185

    Article  PubMed  CAS  Google Scholar 

  13. Bolshan Y, Getlik M, Kuznetsova E, Wasney GA, Hajian T, Poda G, Nguyen KT, Wu H, Dombrovski L, Dong A, Senisterra G, Schapira M, Arrowsmith CH, Brown PJ, Al-Awar R, Vedadi M, Smil D (2013) Synthesis, Optimization, and Evaluation of Novel Small Molecules as Antagonists of WDR5-MLL Interaction. ACS Med Chem Lett 4(3):353–357. https://doi.org/10.1021/ml300467n

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Senisterra G, Wu H, Allali-Hassani A, Wasney GA, Barsyte-Lovejoy D, Dombrovski L, Dong A, Nguyen KT, Smil D, Bolshan Y, Hajian T, He H, Seitova A, Chau I, Li F, Poda G, Couture JF, Brown PJ, Al-Awar R, Schapira M, Arrowsmith CH, Vedadi M (2013) Small-molecule inhibition of MLL activity by disruption of its interaction with WDR5. Biochem J 449(1):151–159. https://doi.org/10.1042/BJ20121280

    Article  PubMed  CAS  Google Scholar 

  15. Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R, Skucha A, Vittori S, Kuznetsova E, Smil D, Barsyte-Lovejoy D, Li F, Poda G, Schapira M, Wu H, Dong A, Senisterra G, Stukalov A, Huber KV, Schonegger A, Marcellus R, Bilban M, Bock C, Brown PJ, Zuber J, Bennett KL, Al-Awar R, Delwel R, Nerlov C, Arrowsmith CH, Superti-Furga G (2015) Pharmacological targeting of the Wdr5-MLL interaction in C/EBPalpha N-terminal leukemia. Nat Chem Biol 11(8):571–578. https://doi.org/10.1038/nchembio.1859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li DD, Chen WL, Wang ZH, Xie YY, Xu XL, Jiang ZY, Zhang XJ, You QD, Guo XK (2016) High-affinity small molecular blockers of mixed lineage leukemia 1 (MLL1)-WDR5 interaction inhibit MLL1 complex H3K4 methyltransferase activity. Eur J Med Chem 124:480–489. https://doi.org/10.1016/j.ejmech.2016.08.036

    Article  PubMed  CAS  Google Scholar 

  17. Li DD, Chen WL, Xu XL, Jiang F, Wang L, Xie YY, Zhang XJ, Guo XK, You QD, Sun HP (2016) Structure-based design and synthesis of small molecular inhibitors disturbing the interaction of MLL1-WDR5. Eur J Med Chem 118:1–8. https://doi.org/10.1016/j.ejmech.2016.04.032

    Article  PubMed  CAS  Google Scholar 

  18. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073. https://doi.org/10.1038/nature09504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Atkinson SJ, Soden PE, Angell DC, Bantscheff M, C-w Chung, Giblin KA, Smithers N, Furze RC, Gordon L, Drewes G, Rioja I, Witherington J, Parr NJ, Prinjha RK (2014) The structure based design of dual HDAC/BET inhibitors as novel epigenetic probes. MedChemComm 5(3):342. https://doi.org/10.1039/c3md00285c

    Article  CAS  Google Scholar 

  20. Ciceri P, Muller S, O’Mahony A, Fedorov O, Filippakopoulos P, Hunt JP, Lasater EA, Pallares G, Picaud S, Wells C, Martin S, Wodicka LM, Shah NP, Treiber DK, Knapp S (2014) Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat Chem Biol 10(4):305–312. https://doi.org/10.1038/nchembio.1471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice CM, Lora JM, Prinjha RK, Lee K, Tarakhovsky A (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468(7327):1119–1123. https://doi.org/10.1038/nature09589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tanaka M, Roberts JM, Seo HS, Souza A, Paulk J, Scott TG, DeAngelo SL, Dhe-Paganon S, Bradner JE (2016) Design and characterization of bivalent BET inhibitors. Nat Chem Biol 12(12):1089–1096. https://doi.org/10.1038/nchembio.2209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, Bradner JE (2017) Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348 (6241):1376–1391–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herold JM, Wigle TJ, Norris JL, Lam R, Korboukh VK, Gao C, Ingerman LA, Kireev DB, Senisterra G, Vedadi M, Tripathy A, Brown PJ, Arrowsmith CH, Jin J, Janzen WP, Frye SV (2011) Small-molecule ligands of methyl-lysine binding proteins. J Med Chem 54(7):2504–2511. https://doi.org/10.1021/jm200045v

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Herold JM, James LI, Korboukh VK, Gao C, Coil KE, Bua DJ, Norris JL, Kireev DB, Brown PJ, Jin J, Janzen WP, Gozani O, Frye SV (2012) Structure–activity relationships of methyl-lysine reader antagonists. MedChemComm 3(1):45–51. https://doi.org/10.1039/c1md00195g

    Article  CAS  Google Scholar 

  26. Camerino MA, Zhong N, Dong A, Dickson BM, James LI, Baughman BM, Norris JL, Kireev DB, Janzen WP, Arrowsmith CH, Frye SV (2013) The structure-activity relationships of L3MBTL3 inhibitors: flexibility of the dimer interface. MedChemComm 4(11):1501–1507. https://doi.org/10.1039/C3MD00197K

    Article  PubMed  CAS  Google Scholar 

  27. James LI, Korboukh VK, Krichevsky L, Baughman BM, Herold JM, Norris JL, Jin J, Kireev DB, Janzen WP, Arrowsmith CH, Frye SV (2013) Small-molecule ligands of methyl-lysine binding proteins: optimization of selectivity for L3MBTL3. J Med Chem 56(18):7358–7371. https://doi.org/10.1021/jm400919p

    Article  PubMed  CAS  Google Scholar 

  28. Sweis RF, Pliushchev M, Brown PJ, Guo J, Li F, Maag D, Petros AM, Soni NB, Tse C, Vedadi M, Michaelides MR, Chiang GG, Pappano WN (2014) Discovery and development of potent and selective inhibitors of histone methyltransferase g9a. ACS Med Chem Lett 5(2):205–209. https://doi.org/10.1021/ml400496h

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Perfetti MT, Baughman BM, Dickson BM, Mu Y, Cui G, Mader P, Dong A, Norris JL, Rothbart SB, Strahl BD, Brown PJ, Janzen WP, Arrowsmith CH, Mer G, McBride KM, James LI, Frye SV (2015) Identification of a fragment-like small molecule ligand for the methyl-lysine binding protein, 53BP1. ACS Chem Biol 10(4):1072–1081. https://doi.org/10.1021/cb500956g

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ren C, Morohashi K, Plotnikov AN, Jakoncic J, Smith SG, Li J, Zeng L, Rodriguez Y, Stojanoff V, Walsh M, Zhou MM (2015) Small-molecule modulators of methyl-lysine binding for the CBX7 chromodomain. Chem Biol 22(2):161–168. https://doi.org/10.1016/j.chembiol.2014.11.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ren C, Smith SG, Yap K, Li S, Li J, Mezei M, Rodriguez Y, Vincek A, Aguilo F, Walsh MJ, Zhou MM (2016) Structure-guided discovery of selective antagonists for the chromodomain of polycomb repressive protein CBX7. ACS Med Chem Lett 7(6):601–605. https://doi.org/10.1021/acsmedchemlett.6b00042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wagner EK, Nath N, Flemming R, Feltenberger JB, Denu JM (2012) Identification and characterization of small molecule inhibitors of a plant homeodomain finger. Biochemistry 51(41):8293–8306. https://doi.org/10.1021/bi3009278

    Article  PubMed  CAS  Google Scholar 

  33. Miller TC, Rutherford TJ, Birchall K, Chugh J, Fiedler M, Bienz M (2014) Competitive binding of a benzimidazole to the histone-binding pocket of the Pygo PHD finger. ACS Chem Biol 9(12):2864–2874. https://doi.org/10.1021/cb500585s

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tsukamoto S (2016) Search for inhibitors of the ubiquitin-proteasome system from natural sources for cancer therapy. Chem Pharm Bull 64(2):112–118. https://doi.org/10.1248/cpb.c15-00768

    Article  CAS  Google Scholar 

  35. Liu Y, Mallampalli RK (2016) Small molecule therapeutics targeting F-box proteins in cancer. Semin Cancer Biol 36:105–119. https://doi.org/10.1016/j.semcancer.2015.09.014

    Article  PubMed  CAS  Google Scholar 

  36. Scott DC, Hammill JT, Min J, Rhee DY, Connelly M, Sviderskiy VO, Bhasin D, Chen Y, Ong SS, Chai SC, Goktug AN, Huang G, Monda JK, Low J, Kim HS, Paulo JA, Cannon JR, Shelat AA, Chen T, Kelsall IR, Alpi AF, Pagala V, Wang X, Peng J, Singh B, Harper JW, Schulman BA, Guy RK (2017) Blocking an N-terminal acetylation-dependent protein interaction inhibits an E3 ligase. Nat Chem Biol. https://doi.org/10.1038/nchembio.2386

    Article  PubMed  PubMed Central  Google Scholar 

  37. Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, Noblin DJ, Jorgensen WL, Ciulli A, Crews CM (2012) Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction. J Am Chem Soc 134(10):4465–4468. https://doi.org/10.1021/ja209924v

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Buckley DL, Gustafson JL, Van Molle I, Roth AG, Tae HS, Gareiss PC, Jorgensen WL, Ciulli A, Crews CM (2012) Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1alpha. Angew Chem 51(46):11463–11467. https://doi.org/10.1002/anie.201206231

    Article  CAS  Google Scholar 

  39. Van Molle I, Thomann A, Buckley DL, So EC, Lang S, Crews CM, Ciulli A (2012) Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1alpha protein-protein interface. Chem Biol 19(10):1300–1312. https://doi.org/10.1016/j.chembiol.2012.08.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Galdeano C, Gadd MS, Soares P, Scaffidi S, Van Molle I, Birced I, Hewitt S, Dias DM, Ciulli A (2014) Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel-Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J Med Chem 57(20):8657–8663. https://doi.org/10.1021/jm5011258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nguyen D, Liao W, Zeng SX, Lu H (2017) Reviving the guardian of the genome: Small molecule activators of p53. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2017.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  42. Popowicz GM, Czarna A, Wolf S, Wang K, Wang W, Domling A, Holak TA (2010) Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 9(6):1104–1111. https://doi.org/10.4161/cc.9.6.10956

    Article  PubMed  CAS  Google Scholar 

  43. Reed D, Shen Y, Shelat AA, Arnold LA, Ferreira AM, Zhu F, Mills N, Smithson DC, Regni CA, Bashford D, Cicero SA, Schulman BA, Jochemsen AG, Guy RK, Dyer MA (2010) Identification and characterization of the first small molecule inhibitor of MDMX. J Biol Chem 285(14):10786–10796. https://doi.org/10.1074/jbc.M109.056747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Twarda-Clapa A, Krzanik S, Kubica K, Guzik K, Labuzek B, Neochoritis CG, Khoury K, Kowalska K, Czub M, Dubin G, Domling A, Skalniak L, Holak TA (2017) 1,4,5-trisubstituted imidazole-based p53-MDM2/MDMX antagonists with aliphatic linkers for conjugation with biological carriers. J Med Chem 60(10):4234–4244. https://doi.org/10.1021/acs.jmedchem.7b00104

    Article  PubMed  CAS  Google Scholar 

  45. Wang H, Ma X, Ren S, Buolamwini JK, Yan C (2011) A small-molecule inhibitor of MDMX activates p53 and induces apoptosis. Mol Cancer Ther 10(1):69–79. https://doi.org/10.1158/1535-7163.MCT-10-0581

    Article  PubMed  CAS  Google Scholar 

  46. Pellegrino R, Calvisi DF, Neumann O, Kolluru V, Wesely J, Chen X, Wang C, Wuestefeld T, Ladu S, Elgohary N, Bermejo JL, Radlwimmer B, Zornig M, Zender L, Dombrowski F, Evert M, Schirmacher P, Longerich T (2014) EEF1A2 inactivates p53 by way of PI3 K/AKT/mTOR-dependent stabilization of MDM4 in hepatocellular carcinoma. Hepatology 59(5):1886–1899. https://doi.org/10.1002/hep.26954

    Article  PubMed  CAS  Google Scholar 

  47. Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11(2):109–124. https://doi.org/10.1038/nrd3627

    Article  PubMed  CAS  Google Scholar 

  48. Abulwerdi F, Liao C, Liu M, Azmi AS, Aboukameel A, Mady AS, Gulappa T, Cierpicki T, Owens S, Zhang T, Sun D, Stuckey JA, Mohammad RM, Nikolovska-Coleska Z (2014) A novel small-molecule inhibitor of mcl-1 blocks pancreatic cancer growth in vitro and in vivo. Mol Cancer Ther 13(3):565–575. https://doi.org/10.1158/1535-7163.MCT-12-0767

    Article  PubMed  CAS  Google Scholar 

  49. Pelz NF, Bian Z, Zhao B, Shaw S, Tarr JC, Belmar J, Gregg C, Camper DV, Goodwin CM, Arnold AL, Sensintaffar JL, Friberg A, Rossanese OW, Lee T, Olejniczak ET, Fesik SW (2016) Discovery of 2-Indole-acylsulfonamide Myeloid Cell Leukemia 1 (Mcl-1) Inhibitors Using Fragment-Based Methods. J Med Chem 59(5):2054–2066. https://doi.org/10.1021/acs.jmedchem.5b01660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Liu J, Tian Z, Zhou N, Liu X, Liao C, Lei B, Li J, Zhang S, Chen H (2017) Targeting the apoptotic Mcl-1-PUMA interface with a dual-acting compound. Oncotarget. https://doi.org/10.18632/oncotarget.17294

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yoshimura C, Miyafusa T, Tsumoto K (2013) Identification of small-molecule inhibitors of the human S100B–p53 interaction and evaluation of their activity in human melanoma cells. Bioorg Med Chem 21(5):1109–1115. https://doi.org/10.1016/j.bmc.2012.12.042

    Article  PubMed  CAS  Google Scholar 

  52. McKnight LE, Raman EP, Bezawada P, Kudrimoti S, Wilder PT, Hartman KG, Godoy-Ruiz R, Toth EA, Coop A, MacKerell AD, Weber DJ (2012) Structure-based discovery of a novel pentamidine-related inhibitor of the calcium-binding protein S100B. ACS Med Chem Lett 3(12):975–979. https://doi.org/10.1021/ml300166s

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wilder PT, Charpentier TH, Liriano MA, Gianni K, Varney KM, Pozharski E, Coop A, Toth EA, MacKerell AD (2010) Weber DJ (2010) In vitro screening and structural characterization of inhibitors of the S100B-p53 interaction. Int J High Throughput Screen 1:109–126. https://doi.org/10.2147/IJHTS.S8210

    Article  CAS  Google Scholar 

  54. Charpentier TH, Wilder PT, Liriano MA, Varney KM, Zhong S, Coop A, Pozharski E, MacKerell AD, Toth EA, Weber DJ (2009) Small molecules bound to unique sites in the target protein binding cleft of calcium-bound S100B as characterized by nuclear magnetic resonance and X-ray crystallography. Biochemistry 48(26):6202–6212. https://doi.org/10.1021/bi9005754

    Article  PubMed  CAS  Google Scholar 

  55. Markowitz J, Chen I, Gitti R, Baldisseri DM, Pan Y, Udan R, Carrier F, MacKerell AD, Weber DJ (2004) Identification and characterization of small molecule inhibitors of the calcium-dependent S100B–p53 tumor suppressor interaction. J Med Chem 47(21):5085–5093. https://doi.org/10.1021/jm0497038

    Article  PubMed  CAS  Google Scholar 

  56. Acharya P, Lusvarghi S, Bewley CA, Kwong PD (2015) HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opin Ther Targets 19(6):765–783. https://doi.org/10.1517/14728222.2015.1010513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Courter JR, Madani N, Sodroski J, Schon A, Freire E, Kwong PD, Hendrickson WA, Chaiken IM, LaLonde JM, Smith AB 3rd (2014) Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: conversion of a viral entry agonist to an antagonist. Acc Chem Res 47(4):1228–1237. https://doi.org/10.1021/ar4002735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sanchez TW, Debnath B, Christ F, Otake H, Debyser Z, Neamati N (2013) Discovery of novel inhibitors of LEDGF/p75-IN protein-protein interactions. Bioorg Med Chem 21(4):957–963. https://doi.org/10.1016/j.bmc.2012.12.012

    Article  PubMed  CAS  Google Scholar 

  59. Hu G, Li X, Zhang X, Li Y, Ma L, Yang LM, Liu G, Li W, Huang J, Shen X, Hu L, Zheng YT, Tang Y (2012) Discovery of inhibitors to block interactions of HIV-1 integrase with human LEDGF/p75 via structure-based virtual screening and bioassays. J Med Chem 55(22):10108–10117. https://doi.org/10.1021/jm301226a

    Article  PubMed  CAS  Google Scholar 

  60. Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV, De Maeyer M, Chaltin P, Debyser Z (2010) Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6(6):442–448. https://doi.org/10.1038/nchembio.370

    Article  PubMed  CAS  Google Scholar 

  61. Erbe DV, Wang S, Xing Y, Tobin JF (2002) Small molecule ligands define a binding site on the immune regulatory protein B7.1. J Biol Chem 277(9):7363–7368. https://doi.org/10.1074/jbc.M110162200

    Article  PubMed  CAS  Google Scholar 

  62. Pflugfelder SC, Stern M, Zhang S, Shojaei A (2017) LFA-1/ICAM-1 interaction as a therapeutic target in dry eye disease. J Ocular Pharm Ther: Off J Assoc Ocular Pharm Ther 33(1):5–12. https://doi.org/10.1089/jop.2016.0105

    Article  CAS  Google Scholar 

  63. Zimmerman T, Blanco FJ (2008) Inhibitors targeting the LFA-1/ICAM-1 cell-adhesion interaction: design and mechanism of action. Curr Pharm Des 14(22):2128–2139

    Article  CAS  PubMed  Google Scholar 

  64. Wilson CGM, Arkin MR (2011) Small-molecule inhibitors of IL-2/IL-2R: lessons learned and applied. In: Vassilev L, Fry D (eds) Small-molecule inhibitors of protein-protein interactions. Springer, Berlin, Heidelberg

    Google Scholar 

  65. Campa M, Ryan C, Menter A (2015) An overview of developing TNF-α targeted therapy for the treatment of psoriasis. Expert Opin Investig Drugs 24(10):1343–1354. https://doi.org/10.1517/13543784.2015.1076793

    Article  PubMed  CAS  Google Scholar 

  66. Chen S, Feng Z, Wang Y, Ma S, Hu Z, Yang P, Chai Y, Xie X (2017) Discovery of novel ligands for TNF-α and TNF Receptor-1 through structure-based virtual screening and biological assay. J Chem Inf Model 57(5):1101–1111. https://doi.org/10.1021/acs.jcim.6b00672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. He MM, Smith AS, Oslob JD, Flanagan WM, Braisted AC, Whitty A, Cancilla MT, Wang J, Lugovskoy AA, Yoburn JC, Fung AD, Farrington G, Eldredge JK, Day ES, Cruz LA, Cachero TG, Miller SK, Friedman JE, Choong IC, Cunningham BC (2005) Small-molecule inhibition of TNF-α. Science 310(5750):1022

    Article  CAS  PubMed  Google Scholar 

  68. Ma L, Gong H, Zhu H, Ji Q, Su P, Liu P, Cao S, Yao J, Jiang L, Han M, Ma X, Xiong D, Luo HR, Wang F, Zhou J, Xu Y (2014) A novel small-molecule tumor necrosis factor α inhibitor attenuates inflammation in a hepatitis mouse model. J Biol Chem 289(18):12457–12466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Richmond V, Michelini FM, Bueno CA, Alche LE, Ramirez JA (2015) Small molecules as anti-TNF drugs. Curr Med Chem 22(25):2920–2942

    Article  CAS  PubMed  Google Scholar 

  70. Zarganes-Tzitzikas T, Konstantinidou M, Gao Y, Krzemien D, Zak K, Dubin G, Holak TA, Domling A (2016) Inhibitors of programmed cell death 1 (PD-1): a patent review (2010–2015). Expert Opin Ther Pat 26(9):973–977. https://doi.org/10.1080/13543776.2016.1206527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zak KM, Grudnik P, Guzik K, Zieba BJ, Musielak B, Domling A, Dubin G, Holak TA (2016) Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget 7(21):30323–30335. https://doi.org/10.18632/oncotarget.8730

    Article  PubMed  PubMed Central  Google Scholar 

  72. Winter JJ, Anderson M, Blades K, Brassington C, Breeze AL, Chresta C, Embrey K, Fairley G, Faulder P, Finlay MR, Kettle JG, Nowak T, Overman R, Patel SJ, Perkins P, Spadola L, Tart J, Tucker JA, Wrigley G (2015) Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation. J Med Chem 58(5):2265–2274. https://doi.org/10.1021/jm501660t

    Article  PubMed  CAS  Google Scholar 

  73. Evelyn CR, Duan X, Biesiada J, Seibel WL, Meller J, Zheng Y (2014) Rational design of small molecule inhibitors targeting the Ras GEF, SOS1. Chem Biol 21(12):1618–1628. https://doi.org/10.1016/j.chembiol.2014.09.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, Fauber BP, Pan B, Malek S, Stokoe D, Ludlam MJC, Bowman KK, Wu J, Giannetti AM, Starovasnik MA, Mellman I, Jackson PK, Rudolph J, Wang W, Fang G (2012) Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA 109(14):5299–5304. https://doi.org/10.1073/pnas.1116510109

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW (2012) Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem 51(25):6140–6143. https://doi.org/10.1002/anie.201201358

    Article  CAS  Google Scholar 

  76. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503(7477):548–551. https://doi.org/10.1038/nature12796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hunter JC, Gurbani D, Ficarro SB, Carrasco MA, Lim SM, Choi HG, Xie T, Marto JA, Chen Z, Gray NS, Westover KD (2014) In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc Natl Acad Sci USA 111(24):8895–8900. https://doi.org/10.1073/pnas.1404639111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kato-Stankiewicz J, Hakimi I, Zhi G, Zhang J, Serebriiskii I, Guo L, Edamatsu H, Koide H, Menon S, Eckl R, Sakamuri S, Lu Y, Chen QZ, Agarwal S, Baumbach WR, Golemis EA, Tamanoi F, Khazak V (2002) Inhibitors of Ras/Raf-1 interaction identified by two-hybrid screening revert Ras-dependent transformation phenotypes in human cancer cells. Proc Natl Acad Sci 99(22):14398–14403. https://doi.org/10.1073/pnas.222222699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, Baker SJ, Cosenza SC, Basu I, Gupta YK, Reddy MV, Ueno L, Hart JR, Vogt PK, Mulholland D, Guha C, Aggarwal AK, Reddy EP (2016) A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell 165(3):643–655. https://doi.org/10.1016/j.cell.2016.03.045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Murarka S, Martin-Gago P, Schultz-Fademrecht C, Al Saabi A, Baumann M, Fansa EK, Ismail S, Nussbaumer P, Wittinghofer A, Waldmann H (2017) Development of pyridazinone chemotypes targeting the PDEdelta prenyl binding site. Chemistry 23(25):6083–6093. https://doi.org/10.1002/chem.201603222

    Article  PubMed  CAS  Google Scholar 

  81. Martin-Gago P, Fansa EK, Wittinghofer A, Waldmann H (2017) Structure-based development of PDEdelta inhibitors. Biol Chem 398(5–6):535–545. https://doi.org/10.1515/hsz-2016-0272

    Article  PubMed  CAS  Google Scholar 

  82. Kim J, Kwon J, Kim M, Do J, Lee D, Han H (2016) Low-dielectric-constant polyimide aerogel composite films with low water uptake. Polym J 48(7):829–834. https://doi.org/10.1038/pj.2016.37

    Article  CAS  Google Scholar 

  83. Zimmermann G, Schultz-Fademrecht C, Kuchler P, Murarka S, Ismail S, Triola G, Nussbaumer P, Wittinghofer A, Waldmann H (2014) Structure guided design and kinetic analysis of highly potent benzimidazole inhibitors targeting the PDEdelta prenyl binding site. J Med Chem 57(12):5435–5448. https://doi.org/10.1021/jm500632s

    Article  CAS  PubMed  Google Scholar 

  84. Zimmermann G, Papke B, Ismail S, Vartak N, Chandra A, Hoffmann M, Hahn SA, Triola G, Wittinghofer A, Bastiaens PIH, Waldmann H (2013) Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling. Nature 497(7451):638–642. https://doi.org/10.1038/nature12205

    Article  CAS  PubMed  Google Scholar 

  85. Shutes A, Onesto C, Picard V, Leblond B, Schweighoffer F, Der CJ (2007) Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. J Biol Chem 282(49):35666–35678. https://doi.org/10.1074/jbc.M703571200

    Article  PubMed  CAS  Google Scholar 

  86. Ferri N, Corsini A, Bottino P, Clerici F, Contini A (2009) Virtual screening approach for the identification of new Rac1 inhibitors. J Med Chem 52(14):4087–4090. https://doi.org/10.1021/jm8015987

    Article  PubMed  CAS  Google Scholar 

  87. Shang X, Marchioni F, Sipes N, Evelyn CR, Jerabek-Willemsen M, Duhr S, Seibel W, Wortman M, Zheng Y (2012) Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases. Chem Biol 19(6):699–710. https://doi.org/10.1016/j.chembiol.2012.05.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Shang X, Marchioni F, Evelyn CR, Sipes N, Zhou X, Seibel W, Wortman M, Zheng Y (2013) Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors. Proc Natl Acad Sci 110(8):3155–3160. https://doi.org/10.1073/pnas.1212324110

    Article  PubMed  PubMed Central  Google Scholar 

  89. Diviani D, Raimondi F, Del Vescovo CD, Dreyer E, Reggi E, Osman H, Ruggieri L, Gonano C, Cavin S, Box CL, Lenoir M, Overduin M, Bellucci L, Seeber M, Fanelli F (2016) Small-molecule protein-protein interaction inhibitor of oncogenic Rho signaling. Cell Chem Biol 23(9):1135–1146. https://doi.org/10.1016/j.chembiol.2016.07.015

    Article  PubMed  CAS  Google Scholar 

  90. Borriello L, Montes M, Lepelletier Y, Leforban B, Liu WQ, Demange L, Delhomme B, Pavoni S, Jarray R, Boucher JL, Dufour S, Hermine O, Garbay C, Hadj-Slimane R, Raynaud F (2014) Structure-based discovery of a small non-peptidic Neuropilins antagonist exerting in vitro and in vivo anti-tumor activity on breast cancer model. Cancer Lett 349(2):120–127. https://doi.org/10.1016/j.canlet.2014.04.004

    Article  PubMed  CAS  Google Scholar 

  91. Starzec A, Miteva MA, Ladam P, Villoutreix BO, Perret GY (2014) Discovery of novel inhibitors of vascular endothelial growth factor-A-Neuropilin-1 interaction by structure-based virtual screening. Bioorg Med Chem 22(15):4042–4048. https://doi.org/10.1016/j.bmc.2014.05.068

    Article  PubMed  CAS  Google Scholar 

  92. Gautier B, Miteva Maria A, Goncalves V, Huguenot F, Coric P, Bouaziz S, Seijo B, Gaucher J-F, Broutin I, Garbay C, Lesnard A, Rault S, Inguimbert N, Villoutreix Bruno O, Vidal M (2011) Targeting the proangiogenic VEGF-VEGFR protein-protein interface with drug-like compounds by in silico and in vitro screening. Chem Biol 18(12):1631–1639. https://doi.org/10.1016/j.chembiol.2011.10.016

    Article  PubMed  CAS  Google Scholar 

  93. Kurenova EV, Hunt DL, He D, Magis AT, Ostrov DA, Cance WG (2009) Small molecule chloropyramine hydrochloride (C4) targets the binding site of focal adhesion kinase and vascular endothelial growth factor receptor 3 and suppresses breast cancer growth in vivo. J Med Chem 52(15):4716–4724. https://doi.org/10.1021/jm900159g

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Gogate PN, Ethirajan M, Kurenova EV, Magis AT, Pandey RK, Cance WG (2014) Design, synthesis, and biological evaluation of novel FAK scaffold inhibitors targeting the FAK-VEGFR3 protein-protein interaction. Eur J Med Chem 80:154–166. https://doi.org/10.1016/j.ejmech.2014.04.041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Jennings LD, Foreman KW, Rush TS, Tsao DHH, Mosyak L, Li Y, Sukhdeo MN, Ding W, Dushin EG, Kenny CH, Moghazeh SL, Petersen PJ, Ruzin AV, Tuckman M, Sutherland AG (2004) Design and synthesis of indolo[2,3-a]quinolizin-7-one inhibitors of the ZipA–FtsZ interaction. Bioorg Med Chem Lett 14(6):1427–1431. https://doi.org/10.1016/j.bmcl.2004.01.028

    Article  PubMed  CAS  Google Scholar 

  96. Hurley KA, Santos TMA, Nepomuceno GM, Huynh V, Shaw JT, Weibel DB (2016) Targeting the bacterial division protein FtsZ. J Med Chem 59(15):6975–6998. https://doi.org/10.1021/acs.jmedchem.5b01098

    Article  PubMed  CAS  Google Scholar 

  97. Tsao DHH, Sutherland AG, Jennings LD, Li Y, Rush TS, Alvarez JC, Ding W, Dushin EG, Dushin RG, Haney SA, Kenny CH, Karl Malakian A, Nilakantan R, Mosyak L (2006) Discovery of novel inhibitors of the ZipA/FtsZ complex by NMR fragment screening coupled with structure-based design. Bioorg Med Chem 14(23):7953–7961. https://doi.org/10.1016/j.bmc.2006.07.050

    Article  PubMed  CAS  Google Scholar 

  98. Kenny CH, Ding W, Kelleher K, Benard S, Dushin EG, Sutherland AG, Mosyak L, Kriz R, Ellestad G (2003) Development of a fluorescence polarization assay to screen for inhibitors of the FtsZ/ZipA interaction. Anal Biochem 323(2):224–233. https://doi.org/10.1016/j.ab.2003.08.033

    Article  CAS  PubMed  Google Scholar 

  99. Sutherland AG, Alvarez J, Ding W, Foreman KW, Kenny CH, Labthavikul P, Mosyak L, Petersen PJ, Rush Iii TS, Ruzin A, Tsao DHH, Wheless KL (2003) Structure-based design of carboxybiphenylindole inhibitors of the ZipA-FtsZ interaction. Org Biomol Chem 1(23):4138–4140. https://doi.org/10.1039/B312016C

    Article  PubMed  CAS  Google Scholar 

  100. Zhuang C, Wu Z, Xing C, Miao Z (2017) Small molecules inhibiting Keap1-Nrf2 protein-protein interactions: a novel approach to activate Nrf2 function. MedChemComm 8(2):286–294. https://doi.org/10.1039/C6MD00500D

    Article  CAS  PubMed  Google Scholar 

  101. Lu M, Ji J, Jiang Y, Chen Z, Yuan Z, You Q, Jiang Z (2016) An inhibitor of the Keap1-Nrf2 protein-protein interaction protects NCM460 colonic cells and alleviates experimental colitis. Sci Rep 6:26585. https://doi.org/10.1038/srep26585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Abed DA, Goldstein M, Albanyan H, Jin H, Hu L (2015) Discovery of direct inhibitors of Keap1–Nrf2 protein–protein interaction as potential therapeutic and preventive agents. Acta Pharmaceutica Sinica B 5(4):285–299. https://doi.org/10.1016/j.apsb.2015.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  103. Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 15(8):533–550. https://doi.org/10.1038/nrd.2016.29

    Article  CAS  PubMed  Google Scholar 

  104. Marcotte D, Zeng W, Hus J-C, McKenzie A, Hession C, Jin P, Bergeron C, Lugovskoy A, Enyedy I, Cuervo H, Wang D, Atmanene C, Roecklin D, Vecchi M, Vivat V, Kraemer J, Winkler D, Hong V, Chao J, Lukashev M, Silvian L (2013) Small molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain through a non-covalent mechanism. Bioorg Med Chem 21(14):4011–4019. https://doi.org/10.1016/j.bmc.2013.04.019

    Article  CAS  PubMed  Google Scholar 

  105. Jiang Z, Lu M, Xu L, Yang T, Xi M, Xu X, Guo X, Zhang X, You Q, Sun H (2014) Discovery of potent Keap1–Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis. J Med Chem 57(6):2736–2745. https://doi.org/10.1021/jm5000529

    Article  PubMed  CAS  Google Scholar 

  106. Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis WI, von Kries JP, Birchmeier W (2016) A small-molecule antagonist of the β-Catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res 76(4):891

    Article  CAS  PubMed  Google Scholar 

  107. Yan M, Li G, An J (2017) Discovery of small molecule inhibitors of the Wnt/β-catenin signaling pathway by targeting β-catenin/Tcf4 interactions. Exp Biol Med 242(11):1185–1197. https://doi.org/10.1177/1535370217708198

    Article  CAS  Google Scholar 

  108. Lepourcelet M, Chen Y-NP, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW, Shivdasani RA (2004) Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. Cancer Cell 5(1):91–102. https://doi.org/10.1016/S1535-6108(03)00334-9

    Article  PubMed  CAS  Google Scholar 

  109. Nam JM, Jeon KH, Kwon H, Lee E, Jun KY, Jin YB, Lee YS, Na Y, Kwon Y (2013) Dithiiranylmethyloxy azaxanthone shows potent anti-tumor activity via suppression of HER2 expression and HER2-mediated signals in HER2-overexpressing breast cancer cells. Eur J Pharm Sci 50(2):181–190. https://doi.org/10.1016/j.ejps.2013.06.014

    Article  PubMed  CAS  Google Scholar 

  110. Kim H-L, Jeon K-H, Jun K-Y, Choi Y, Kim D-K, Na Y, Kwon Y (2012) A-62176, a potent topoisomerase inhibitor, inhibits the expression of human epidermal growth factor receptor 2. Cancer Lett 325(1):72–79. https://doi.org/10.1016/j.canlet.2012.06.004

    Article  PubMed  CAS  Google Scholar 

  111. Lee LW, Taylor CEC, Desaulniers J-P, Zhang M, Højfeldt JW, Pan Q, Mapp AK (2009) Inhibition of ErbB2(Her2) expression with small molecule transcription factor mimics. Bioorg Med Chem Lett 19(21):6233–6236. https://doi.org/10.1016/j.bmcl.2009.08.090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Shimogawa H, Kwon Y, Mao Q, Kawazoe Y, Choi Y, Asada S, Kigoshi H, Uesugi M (2004) A wrench-shaped synthetic molecule that modulates a transcription factor–coactivator interaction. J Am Chem Soc 126(11):3461–3471. https://doi.org/10.1021/ja038855+

    Article  PubMed  CAS  Google Scholar 

  113. Asada S, Choi Y, Uesugi M (2003) A gene-expression inhibitor that targets an α-Helix-Mediated protein interaction. J Am Chem Soc 125(17):4992–4993. https://doi.org/10.1021/ja0292703

    Article  PubMed  CAS  Google Scholar 

  114. Wang J, Luo C, Shan C, You Q, Lu J, Elf S, Zhou Y, Wen Y, Vinkenborg JL, Fan J, Kang H, Lin R, Han D, Xie Y, Karpus J, Chen S, Ouyang S, Luan C, Zhang N, Ding H, Merkx M, Liu H, Chen J, Jiang H, He C (2015) Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat Chem 7(12):968–979. https://doi.org/10.1038/nchem.2381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Park D, Park CW, Choi Y, Lin J, Seo DH, Kim HS, Lee SY, Kang IC (2016) A novel small-molecule PPI inhibitor targeting integrin alphavbeta3-osteopontin interface blocks bone resorption in vitro and prevents bone loss in mice. Biomaterials 98:131–142. https://doi.org/10.1016/j.biomaterials.2016.05.007

    Article  PubMed  CAS  Google Scholar 

  116. Kummer C, Petrich BG, Rose DM, Ginsberg MH (2010) A small molecule that inhibits the interaction of paxillin and alpha 4 integrin inhibits accumulation of mononuclear leukocytes at a site of inflammation. J Biol Chem 285(13):9462–9469. https://doi.org/10.1074/jbc.M109.066993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Cox D, Brennan M, Moran N (2010) Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 9(10):804–820. https://doi.org/10.1038/nrd3266

    Article  PubMed  CAS  Google Scholar 

  118. Tilley JW (2008) Very late antigen-4 integrin antagonists. Expert Opin Ther Pat 18(8):841–859. https://doi.org/10.1517/13543776.18.8.841

    Article  CAS  Google Scholar 

  119. Stragies R, Osterkamp F, Zischinsky G, Vossmeyer D, Kalkhof H, Reimer U, Zahn G (2007) Design and synthesis of a new class of selective integrin α5β1 antagonists. J Med Chem 50(16):3786–3794. https://doi.org/10.1021/jm070002v

    Article  PubMed  CAS  Google Scholar 

  120. Potin D, Launay M, Monatlik F, Malabre P, Fabreguettes M, Fouquet A, Maillet M, Nicolai E, Dorgeret L, Chevallier F, Besse D, Dufort M, Caussade F, Ahmad SZ, Stetsko DK, Skala S, Davis PM, Balimane P, Patel K, Yang Z, Marathe P, Postelneck J, Townsend RM, Goldfarb V, Sheriff S, Einspahr H, Kish K, Malley MF, DiMarco JD, Gougoutas JZ, Kadiyala P, Cheney DL, Tejwani RW, Murphy DK, McIntyre KW, Yang X, Chao S, Leith L, Xiao Z, Mathur A, Chen B-C, Wu D-R, Traeger SC, McKinnon M, Barrish JC, Robl JA, Iwanowicz EJ, Suchard SJ, Dhar TGM (2006) Discovery and development of 5-[(5S,9R)-9- (4-Cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro[4.4]non-7-yl-methyl]-3-thiophenecarboxylic Acid (BMS-587101). A small molecule antagonist of leukocyte function associated Antigen-1. J Med Chem 49(24):6946–6949. https://doi.org/10.1021/jm0610806

    Article  CAS  PubMed  Google Scholar 

  121. Kelly TA, Jeanfavre DD, McNeil DW, Woska JR, Reilly PL, Mainolfi EA, Kishimoto KM, Nabozny GH, Zinter R, Bormann B-J, Rothlein R (1999) Cutting edge: a small molecule antagonist of LFA-1-mediated cell adhesion. J Immunol 163(10):5173–5177

    PubMed  CAS  Google Scholar 

  122. Scott DE, Coyne AG, Venkitaraman A, Blundell TL, Abell C, Hyvonen M (2015) Small-molecule inhibitors that target protein-protein interactions in the RAD51 family of recombinases. ChemMedChem 10(2):296–303. https://doi.org/10.1002/cmdc.201402428

    Article  PubMed  CAS  Google Scholar 

  123. Roman DL, Talbot JN, Roof RA, Sunahara RK, Traynor JR, Neubig RR (2006) Identification of small-molecule inhibitors of RGS4 using a high-throughput flow cytometry protein interaction assay. Mol Pharmacol 71(1):169–175. https://doi.org/10.1124/mol.106.028670

    Article  PubMed  CAS  Google Scholar 

  124. Yun SM, Moulaei T, Lim D, Bang JK, Park JE, Shenoy SR, Liu F, Kang YH, Liao C, Soung NK, Lee S, Yoon DY, Lim Y, Lee DH, Otaka A, Appella E, McMahon JB, Nicklaus MC, Burke TR Jr, Yaffe MB, Wlodawer A, Lee KS (2009) Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nat Struct Mol Biol 16(8):876–882. https://doi.org/10.1038/nsmb.1628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Watanabe N, Sekine T, Takagi M, Iwasaki J, Imamoto N, Kawasaki H, Osada H (2009) Deficiency in chromosome congression by the inhibition of Plk1 polo box domain-dependent recognition. J Biol Chem 284(4):2344–2353. https://doi.org/10.1074/jbc.M805308200

    Article  PubMed  CAS  Google Scholar 

  126. Reindl W, Yuan J, Kramer A, Strebhardt K, Berg T (2009) A pan-specific inhibitor of the polo-box domains of polo-like kinases arrests cancer cells in mitosis. Chembiochem 10(7):1145–1148. https://doi.org/10.1002/cbic.200900059

    Article  PubMed  CAS  Google Scholar 

  127. Reindl W, Yuan J, Kramer A, Strebhardt K, Berg T (2008) Inhibition of polo-like kinase 1 by blocking polo-box domain-dependent protein-protein interactions. Chem Biol 15(5):459–466. https://doi.org/10.1016/j.chembiol.2008.03.013

    Article  PubMed  CAS  Google Scholar 

  128. White PW, Faucher A-M, Goudreau N (2011) Small molecule inhibitors of the human papillomavirus E1-E2 interaction. In: Vassilev L, Fry D (eds) Small-molecule inhibitors of protein-protein interactions. Springer, Berlin, Heidelberg, pp 61–88. https://doi.org/10.1007/82_2010_92

    Google Scholar 

  129. A study to assess the safety, tolerability, pharmacokinetics and efficacy of twice daily topical applications of AP611074 5% gel for up to 16 weeks in condyloma patients. https://clinicaltrials.gov/ct2/show/NCT02724254

  130. Andrieu G, Belkina AC, Denis GV (2016) Clinical trials for BET inhibitors run ahead of the science. Drug Discov Today Technol 19:45–50. https://doi.org/10.1016/j.ddtec.2016.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  131. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917. https://doi.org/10.1016/j.cell.2011.08.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Romero FA, Taylor AM, Crawford TD, Tsui V, Cote A, Magnuson S (2016) Disrupting acetyl-lysine recognition: progress in the development of bromodomain inhibitors. J Med Chem 59(4):1271–1298. https://doi.org/10.1021/acs.jmedchem.5b01514

    Article  PubMed  CAS  Google Scholar 

  133. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349. https://doi.org/10.1038/nature09784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Xu B, Konze KD, Jin J, Wang GG (2015) Targeting EZH2 and PRC2 dependence as novel anticancer therapy. Exp Hematol 43(8):698–712. https://doi.org/10.1016/j.exphem.2015.05.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, Sacks JD, Raimondi A, Majer CR, Song J, Scott MP, Jin L, Smith JJ, Olhava EJ, Chesworth R, Moyer MP, Richon VM, Copeland RA, Keilhack H, Pollock RM, Kuntz KW (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8(11):890–896. https://doi.org/10.1038/nchembio.1084

    Article  PubMed  CAS  Google Scholar 

  136. Comet I, Riising EM, Leblanc B, Helin K (2016) Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat Rev Cancer 16(12):803–810. https://doi.org/10.1038/nrc.2016.83

    Article  PubMed  CAS  Google Scholar 

  137. Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD, Orkin SH (2013) Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol 9(10):643–650. https://doi.org/10.1038/nchembio.1331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Brooun A, Gajiwala KS, Deng YL, Liu W, Bolanos B, Bingham P, He YA, Diehl W, Grable N, Kung PP, Sutton S, Maegley KA, Yu X, Stewart AE (2016) Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance. Nat Commun 7:11384. https://doi.org/10.1038/ncomms11384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Jiao L, Liu X (2015) Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science 350 (6258):aac4383. https://doi.org/10.1126/science.aac4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jiao L, Liu X (2016) Structural analysis of an active fungal PRC2. Nucleus 7(3):284–291. https://doi.org/10.1080/19491034.2016.1183849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Teske KA, Hadden MK (2017) Methyllysine binding domains: structural insight and small molecule probe development. Eur J Med Chem 136:14–35. https://doi.org/10.1016/j.ejmech.2017.04.047

    Article  PubMed  CAS  Google Scholar 

  142. Hershko A, Ciechanover A (1998) The ubiquitin system. Ann Rev Biochem 67(1):425–479. https://doi.org/10.1146/annurev.biochem.67.1.425

    Article  PubMed  CAS  Google Scholar 

  143. Pickart CM (2001) Mechanisms underlying ubiquitination. Ann Rev Biochem 70(1):503–533. https://doi.org/10.1146/annurev.biochem.70.1.503

    Article  PubMed  CAS  Google Scholar 

  144. Rubin DM, Finley D (1995) Proteolysis: The proteasome: a protein-degrading organelle? Curr Biol 5(8):854–858. https://doi.org/10.1016/S0960-9822(95)00172-2

    Article  PubMed  CAS  Google Scholar 

  145. Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9(9):679–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373(6509):81–83. https://doi.org/10.1038/373081a0

    Article  PubMed  CAS  Google Scholar 

  147. Xolalpa W, Perez-Galan P, Rodriguez MS, Roue G (2013) Targeting the ubiquitin proteasome system: beyond proteasome inhibition. Curr Pharm Des 19(22):4053–4093

    Article  CAS  PubMed  Google Scholar 

  148. Zhang W, Sidhu SS (2014) Development of inhibitors in the ubiquitination cascade. FEBS Lett 588(2):356–367. https://doi.org/10.1016/j.febslet.2013.11.003

    Article  PubMed  CAS  Google Scholar 

  149. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CAP (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 3(1):e1487. https://doi.org/10.1371/journal.pone.0001487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Kaelin WG Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2(9):673–682. https://doi.org/10.1038/nrc885

    Article  PubMed  CAS  Google Scholar 

  151. Salama R, Masson N, Simpson P, Sciesielski LK, Sun M, Tian YM, Ratcliffe PJ, Mole DR (2015) Heterogeneous effects of direct hypoxia pathway activation in kidney cancer. PLoS ONE 10(8):e0134645. https://doi.org/10.1371/journal.pone.0134645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Muchnik E, Kaplan J (2011) HIF prolyl hydroxylase inhibitors for anemia. Expert Opin Investig Drugs 20(5):645–656. https://doi.org/10.1517/13543784.2011.566861

    Article  PubMed  CAS  Google Scholar 

  153. Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, Miller DJ, Walden H, Duda DM, Seyedin SN, Hoggard T, Harper JW, White KP, Schulman BA (2009) Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell 36(1):39–50. https://doi.org/10.1016/j.molcel.2009.09.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Kwon JE, La M, Oh KH, Oh YM, Kim GR, Seol JH, Baek SH, Chiba T, Tanaka K, Bang OS, Joe CO, Chung CH (2006) BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of DAXX for ubiquitination by Cul3-based ubiquitin ligase. J Biol Chem 281(18):12664–12672. https://doi.org/10.1074/jbc.M600204200

    Article  PubMed  CAS  Google Scholar 

  155. The Cancer Genome Atlas Research N (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456):43–49. https://doi.org/10.1038/nature12222

    Article  CAS  Google Scholar 

  156. Li G, Ci W, Karmakar S, Chen K, Dhar R, Fan Z, Guo Z, Zhang J, Ke Y, Wang L, Zhuang M, Hu S, Li X, Zhou L, Li X, Calabrese Matthew F, Watson Edmond R, Prasad Sandip M, Rinker-Schaeffer C, Eggener Scott E, Stricker T, Tian Y, Schulman Brenda A, Liu J, White Kevin P (2014) SPOP promotes tumorigenesis by acting as a key regulatory hub in kidney cancer. Cancer Cell 25(4):455–468. https://doi.org/10.1016/j.ccr.2014.02.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Guo ZQ, Zheng T, Chen B, Luo C, Ouyang S, Gong S, Li J, Mao LL, Lian F, Yang Y, Huang Y, Li L, Lu J, Zhang B, Zhou L, Ding H, Gao Z, Zhou L, Li G, Zhou R, Chen K, Liu J, Wen Y, Gong L, Ke Y, Yang SD, Qiu XB, Zhang N, Ren J, Zhong D, Yang CG, Liu J, Jiang H (2016) Small-molecule targeting of E3 ligase adaptor SPOP in kidney cancer. Cancer Cell 30(3):474–484. https://doi.org/10.1016/j.ccell.2016.08.003

    Article  PubMed  CAS  Google Scholar 

  158. Srinivasan M, Dunker AK (2012) Proline rich motifs as drug targets in immune mediated disorders. Int J Peptides 2012:634769. https://doi.org/10.1155/2012/634769

    Article  CAS  Google Scholar 

  159. Teijeira A, Hunter MC, Russo E, Proulx ST, Frei T, Debes GF, Coles M, Melero I, Detmar M, Rouzaut A, Halin C (2017) T Cell migration from inflamed skin to draining lymph nodes requires intralymphatic crawling supported by ICAM-1/LFA-1 interactions. Cell Rep 18(4):857–865. https://doi.org/10.1016/j.celrep.2016.12.078

    Article  PubMed  CAS  Google Scholar 

  160. Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21(9):1102–1114. https://doi.org/10.1016/j.chembiol.2014.09.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Tintori C, Brai A, Fallacara AL, Fazi R, Schenone S, Botta M (2014) Protein-protein interactions and human cellular cofactors as new targets for HIV therapy. Curr Opin Pharmacol 18:1–8. https://doi.org/10.1016/j.coph.2014.06.005

    Article  PubMed  CAS  Google Scholar 

  162. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393(6686):648–659. https://doi.org/10.1038/31405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat Rev Drug Discov 15(8):533–550. https://doi.org/10.1038/nrd.2016.29

    Article  CAS  PubMed  Google Scholar 

  164. Zhao Q, Ma L, Jiang S, Lu H, Liu S, He Y, Strick N, Neamati N, Debnath AK (2005) Identification of N-phenyl-N’-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology 339(2):213–225. https://doi.org/10.1016/j.virol.2005.06.008

    Article  PubMed  CAS  Google Scholar 

  165. Kwon YD, LaLonde JM, Yang Y, Elban MA, Sugawara A, Courter JR, Jones DM, Smith AB 3rd, Debnath AK, Kwong PD (2014) Crystal structures of HIV-1 gp120 envelope glycoprotein in complex with NBD analogues that target the CD4-binding site. PLoS ONE 9(1):e85940. https://doi.org/10.1371/journal.pone.0085940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Kwon YD, Finzi A, Wu X, Dogo-Isonagie C, Lee LK, Moore LR, Schmidt SD, Stuckey J, Yang Y, Zhou T, Zhu J, Vicic DA, Debnath AK, Shapiro L, Bewley CA, Mascola JR, Sodroski JG, Kwong PD (2012) Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proc Natl Acad Sci USA 109(15):5663–5668. https://doi.org/10.1073/pnas.1112391109

    Article  PubMed  PubMed Central  Google Scholar 

  167. Curreli F, Choudhury S, Pyatkin I, Zagorodnikov VP, Bulay AK, Altieri A, Kwon YD, Kwong PD, Debnath AK (2012) Design, synthesis, and antiviral activity of entry inhibitors that target the CD4-binding site of HIV-1. J Med Chem 55(10):4764–4775. https://doi.org/10.1021/jm3002247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. LaLonde JM, Kwon YD, Jones DM, Sun AW, Courter JR, Soeta T, Kobayashi T, Princiotto AM, Wu X, Schon A, Freire E, Kwong PD, Mascola JR, Sodroski J, Madani N, Smith AB 3rd (2012) Structure-based design, synthesis, and characterization of dual hotspot small-molecule HIV-1 entry inhibitors. J Med Chem 55(9):4382–4396. https://doi.org/10.1021/jm300265j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Domling A, Holak TA (2014) Programmed death-1: therapeutic success after more than 100 years of cancer immunotherapy. Angewandte Chemie 53(9):2286–2288. https://doi.org/10.1002/anie.201307906

    Article  PubMed  CAS  Google Scholar 

  170. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194. https://doi.org/10.1084/jem.20100643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Wolchok JD (2015) PD-1 blockers. Cell 162(5):937. https://doi.org/10.1016/j.cell.2015.07.045

    Article  PubMed  CAS  Google Scholar 

  172. Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B, Domling A, Dubin G, Holak TA (2015) Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 23(12):2341–2348. https://doi.org/10.1016/j.str.2015.09.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Chupak LS, Zheng X (2015) Compounds useful as immunomodulators. WO2015034820

    Google Scholar 

  174. Chupak LS, Ding M, Martin SW, Zheng X, Hewawasam P, Connolly TP, Xu N, Yeung K-S, Zhu J, Langley DR, Tenney DJ, Scola PM (2015) Compounds useful as immunomodulators. WO2015160641A2

    Google Scholar 

  175. Yeung K-S, Connolly TP, Frennesson DB, at. e (2017) Compounds useful as immunomodulators. WO2017066227

    Google Scholar 

  176. Li J, Wu L, Yao W (2017) Heterocyclic compound as immunomodulators. WO2017087777

    Google Scholar 

  177. Wu L, Shen B, Li j, Li Z, Liu K, Zhang F, Yao W (2017) Heterocyclic compounds as immunomodulators. WO2017070089

    Google Scholar 

  178. Sasikumar PGN, Ramachandra M, Naremaddepalli SSS (2014) 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives as immunomodulators. WO2015033301

    Google Scholar 

  179. Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, Shibuya M (2001) Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97(3):785

    Article  CAS  PubMed  Google Scholar 

  180. Kanno S, Oda N, Abe M, Terai Y, Ito M, Shitara K, Tabayashi K, Shibuya M, Sato Y (2000) Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene 19(17):2138–2146. https://doi.org/10.1038/sj.onc.1203533

    Article  PubMed  CAS  Google Scholar 

  181. Su JL, Yang PC, Shih JY, Yang CY, Wei LH, Hsieh CY, Chou CH, Jeng YM, Wang MY, Chang KJ, Hung MC, Kuo ML (2006) The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 9(3):209–223. https://doi.org/10.1016/j.ccr.2006.02.018

    Article  PubMed  CAS  Google Scholar 

  182. Pellet-Many C, Frankel P, Jia H, Zachary I (2008) Neuropilins: structure, function and role in disease. Biochem J 411(2):211–226. https://doi.org/10.1042/bj20071639

    Article  PubMed  CAS  Google Scholar 

  183. Rahimi N (2006) VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Front Biosci: J Virtual Library 11:818–829

    Article  CAS  Google Scholar 

  184. Sia Daniela, Alsinet Clara, Newell Pippa, Villanueva A (2014) VEGF signaling in cancer treatment. Current Pharm Des 20(17):2834–2842. https://doi.org/10.2174/13816128113199990590

    Article  CAS  Google Scholar 

  185. Miao HQ, Lee P, Lin H, Soker S, Klagsbrun M (2000) Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB J: Off Publ Fed Am Soc Exp Biol 14(15):2532–2539. https://doi.org/10.1096/fj.00-0250com

    Article  CAS  Google Scholar 

  186. Gogate PN, Kurenova EV, Ethirajan M, Liao J, Yemma M, Sen A, Pandey RK, Cance WG (2014) Targeting the C-terminal focal adhesion kinase scaffold in pancreatic cancer. Cancer Lett 353(2):281–289. https://doi.org/10.1016/j.canlet.2014.07.032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Garces CA, Kurenova EV, Golubovskaya VM, Cance WG (2006) Vascular endothelial growth factor receptor-3 and focal adhesion kinase bind and suppress apoptosis in breast cancer cells. Cancer Res 66(3):1446

    Article  CAS  PubMed  Google Scholar 

  188. <wang2015.pdf>. https://doi.org/10.1038/nchem.2381

  189. Cai H, Peng F (2013) Knockdown of copper chaperone antioxidant-1 by RNA interference inhibits copper-stimulated proliferation of non-small cell lung carcinoma cells. Oncol Rep 30(1):269–275. https://doi.org/10.3892/or.2013.2436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Waring MJ, Chen H, Rabow AA, Walker G, Bobby R, Boiko S, Bradbury RH, Callis R, Clark E, Dale I, Daniels DL, Dulak A, Flavell L, Holdgate G, Jowitt TA, Kikhney A, McAlister M, Mendez J, Ogg D, Patel J, Petteruti P, Robb GR, Robers MB, Saif S, Stratton N, Svergun DI, Wang W, Whittaker D, Wilson DM, Yao Y (2016) Potent and selective bivalent inhibitors of BET bromodomains. Nat Chem Biol 12(12):1097–1104. https://doi.org/10.1038/nchembio.2210

    Article  PubMed  CAS  Google Scholar 

  191. Neklesa TK, Winkler JD, Crews CM (2017) Targeted protein degradation by PROTACs. Pharmacol Ther 174:138–144. https://doi.org/10.1016/j.pharmthera.2017.02.027

    Article  PubMed  CAS  Google Scholar 

  192. Ottis P, Crews CM (2017) Proteolysis-targeting chimeras: induced protein degradation as a therapeutic strategy. ACS Chem Biol 12(4):892–898. https://doi.org/10.1021/acschembio.6b01068

    Article  PubMed  CAS  Google Scholar 

  193. Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, Fauber BP, Pan B, Malek S, Stokoe D, Ludlam MJ, Bowman KK, Wu J, Giannetti AM, Starovasnik MA, Mellman I, Jackson PK, Rudolph J, Wang W, Fang G (2012) Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA 109(14):5299–5304. https://doi.org/10.1073/pnas.1116510109

    Article  PubMed  PubMed Central  Google Scholar 

  194. Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, Subashi TA, Varghese AH, Ammirati MJ, Culp JS, Hoth LR, Mansour MN, McGrath KM, Seddon AP, Shenolikar S, Stutzman-Engwall KJ, Warren LC, Xia D, Qiu X (2007) Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 14(5):413–419. https://doi.org/10.1038/nsmb1235

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yue, L. et al. (2018). Small Molecule Inhibitors Targeting New Targets of Protein-Protein Interactions. In: Sheng, C., Georg, G. (eds) Targeting Protein-Protein Interactions by Small Molecules. Springer, Singapore. https://doi.org/10.1007/978-981-13-0773-7_7

Download citation

Publish with us

Policies and ethics