Skip to main content

Fragment-Based Drug Discovery for Developing Inhibitors of Protein-Protein Interactions

  • Chapter
  • First Online:
  • 1103 Accesses

Abstract

Protein-protein interactions (PPIs) are important to every cellular process, from signaling pathways to protein post-translational modifications, as well as many cellular machines for complex biological functions. These interactions make up the so-called interactomics of the organism, and aberrant PPIs are the cause of multiple diseases, including aggregation-related Alzheimer’s disease and many types of cancers. Therefore, modulating the protein-protein interactions was considered as the precise way for pharmacological interventions. In this chapter, we first briefly introduced the fragment-based drug discovery and summarized the current consideration for constructing the fragment library and commonly adopted fragment screening methods. In the second part, we first classified the PPIs into four categories based on the interaction pattern and size of interfaces. Then we reviewed recent progress of utilizing the fragment-based drug discovery approach to develop antagonists of various interesting PPIs and organized these case studies into a biological function-oriented way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yamada T, Bork P (2009) Evolution of biomolecular networks: lessons from metabolic and protein interactions. Nat Rev Mol Cell Biol 10(11):791–803. https://doi.org/10.1038/nrm2787

    Article  PubMed  CAS  Google Scholar 

  2. Ryan CJ, Cimermancic P, Szpiech ZA, Sali A, Hernandez RD, Krogan NJ (2013) High-resolution network biology: connecting sequence with function. Nat Rev Genet 14(12):865–879. https://doi.org/10.1038/nrg3574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chakraborty C, Doss CG, Chen L, Zhu H (2014) Evaluating protein-protein interaction (PPI) networks for diseases pathway, target discovery, and drug-design using ‘in silico pharmacology’. Curr Protein Pept Sci 15(6):561–571

    Article  CAS  PubMed  Google Scholar 

  4. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452. https://doi.org/10.1093/nar/gku1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Higueruelo AP, Jubb H, Blundell TL (2013) TIMBAL v2: update of a database holding small molecules modulating protein-protein interactions. Database: J Biol Databases Curation 2013:bat039. https://doi.org/10.1093/database/bat039

  6. Basse MJ, Betzi S, Morelli X, Roche P (2016) 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein-protein interactions. Database: J Biol Databases Curation 2016. https://doi.org/10.1093/database/baw007

  7. Bickerton GR, Higueruelo AP, Blundell TL (2011) Comprehensive, atomic-level characterization of structurally characterized protein-protein interactions: the PICCOLO database. BMC Bioinform 12:313. https://doi.org/10.1186/1471-2105-12-313

    Article  Google Scholar 

  8. Coelho ED, Arrais JP, Oliveira JL (2013) From protein-protein interactions to rational drug design: are computational methods up to the challenge? Curr Top Med Chem 13(5):602–618

    Article  CAS  PubMed  Google Scholar 

  9. Kar G, Kuzu G, Keskin O, Gursoy A (2012) Protein-protein interfaces integrated into interaction networks: implications on drug design. Curr Pharm Des 18(30):4697–4705

    Article  CAS  PubMed  Google Scholar 

  10. DeLano WL (2002) Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol 12(1):14–20

    Article  CAS  PubMed  Google Scholar 

  11. Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spots–a review of the protein-protein interface determinant amino-acid residues. Proteins 68(4):803–812. https://doi.org/10.1002/prot.21396

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Ma X, Yuan Y, Pei J, Lai L (2014) Protein-protein interface analysis and hot spots identification for chemical ligand design. Curr Pharm Des 20(8):1192–1200

    Article  CAS  PubMed  Google Scholar 

  13. Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, Blundell TL (2012) Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery. Q Rev Biophys 45(4):383–426. https://doi.org/10.1017/s0033583512000108

    Article  CAS  PubMed  Google Scholar 

  14. Scott DE, Coyne AG, Hudson SA, Abell C (2012) Fragment-based approaches in drug discovery and chemical biology. Biochemistry 51(25):4990–5003. https://doi.org/10.1021/bi3005126

    Article  PubMed  CAS  Google Scholar 

  15. Joseph-McCarthy D, Campbell AJ, Kern G, Moustakas D (2014) Fragment-based lead discovery and design. J Chem Inf Model 54(3):693–704. https://doi.org/10.1021/ci400731w

    Article  PubMed  CAS  Google Scholar 

  16. Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discovery 15(9):605–619. https://doi.org/10.1038/nrd.2016.109

    Article  PubMed  CAS  Google Scholar 

  17. Jencks WP (1981) On the attribution and additivity of binding energies. Proc Natl Acad Sci USA 78(7):4046–4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verlinde CL, Rudenko G, Hol WG (1992) In search of new lead compounds for trypanosomiasis drug design: a protein structure-based linked-fragment approach. J Comput Aided Mol Des 6(2):131–147

    Article  CAS  PubMed  Google Scholar 

  19. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science (New York, NY) 274(5292):1531–1534

    Article  CAS  Google Scholar 

  20. Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3(8):660–672. https://doi.org/10.1038/nrd1467

    Article  PubMed  CAS  Google Scholar 

  21. Carr R, Jhoti H (2002) Structure-based screening of low-affinity compounds. Drug Discov Today 7(9):522–527

    Article  CAS  PubMed  Google Scholar 

  22. van Deursen R, Reymond JL (2007) Chemical space travel. ChemMedChem 2(5):636–640. https://doi.org/10.1002/cmdc.200700021

    Article  PubMed  CAS  Google Scholar 

  23. Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41(3):856–864

    Article  CAS  PubMed  Google Scholar 

  24. Wilde F, Link A (2013) Advances in the design of a multipurpose fragment screening library. Expert Opin Drug Discov 8(5):597–606. https://doi.org/10.1517/17460441.2013.780022

    Article  PubMed  CAS  Google Scholar 

  25. Ray PC, Kiczun M, Huggett M, Lim A, Prati F, Gilbert IH, Wyatt PG (2017) Fragment library design, synthesis and expansion: nurturing a synthesis and training platform. Drug Discov Today 22(1):43–56. https://doi.org/10.1016/j.drudis.2016.10.005

    Article  PubMed  CAS  Google Scholar 

  26. Keseru GM, Erlanson DA, Ferenczy GG, Hann MM, Murray CW, Pickett SD (2016) Design principles for fragment libraries: maximizing the value of learnings from pharma fragment-based drug discovery (FBDD) programs for use in academia. J Med Chem 59(18):8189–8206. https://doi.org/10.1021/acs.jmedchem.6b00197

    Article  PubMed  CAS  Google Scholar 

  27. Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8(19):876–877

    Article  PubMed  Google Scholar 

  28. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740. https://doi.org/10.1021/jm901137j

    Article  PubMed  CAS  Google Scholar 

  29. Huth JR, Mendoza R, Olejniczak ET, Johnson RW, Cothron DA, Liu Y, Lerner CG, Chen J, Hajduk PJ (2005) ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. J Am Chem Soc 127(1):217–224. https://doi.org/10.1021/ja0455547

    Article  PubMed  CAS  Google Scholar 

  30. Morley AD, Pugliese A, Birchall K, Bower J, Brennan P, Brown N, Chapman T, Drysdale M, Gilbert IH, Hoelder S, Jordan A, Ley SV, Merritt A, Miller D, Swarbrick ME, Wyatt PG (2013) Fragment-based hit identification: thinking in 3D. Drug Discov Today 18(23–24):1221–1227. https://doi.org/10.1016/j.drudis.2013.07.011

    Article  PubMed  Google Scholar 

  31. Hennig M, Ruf A, Huber W (2012) Combining biophysical screening and X-ray crystallography for fragment-based drug discovery. Top Curr Chem 317:115–143. https://doi.org/10.1007/128_2011_225

    Article  PubMed  CAS  Google Scholar 

  32. Harner MJ, Frank AO, Fesik SW (2013) Fragment-based drug discovery using NMR spectroscopy. J Biomol NMR 56(2):65–75. https://doi.org/10.1007/s10858-013-9740-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Navratilova I, Hopkins AL (2011) Emerging role of surface plasmon resonance in fragment-based drug discovery. Future Med Chem 3(14):1809–1820. https://doi.org/10.4155/fmc.11.128

    Article  PubMed  CAS  Google Scholar 

  34. Zhang R, Monsma F (2010) Fluorescence-based thermal shift assays. Curr Opin Drug Discov Devel 13(4):389–402

    PubMed  CAS  Google Scholar 

  35. Pedro L, Quinn RJ (2016) Native mass spectrometry in fragment-based drug discovery. Molecules (Basel, Switzerland) 21(8). https://doi.org/10.3390/molecules21080984

    Article  CAS  PubMed Central  Google Scholar 

  36. Gossert AD, Jahnke W (2016) NMR in drug discovery: a practical guide to identification and validation of ligands interacting with biological macromolecules. Prog Nucl Magn Reson Spectrosc 97:82–125. https://doi.org/10.1016/j.pnmrs.2016.09.001

    Article  PubMed  CAS  Google Scholar 

  37. Davies TG, Tickle IJ (2012) Fragment screening using X-ray crystallography. Top Curr Chem 317:33–59. https://doi.org/10.1007/128_2011_179

    Article  PubMed  CAS  Google Scholar 

  38. Murray CW, Berdini V, Buck IM, Carr ME, Cleasby A, Coyle JE, Curry JE, Day JE, Day PJ, Hearn K, Iqbal A, Lee LY, Martins V, Mortenson PN, Munck JM, Page LW, Patel S, Roomans S, Smith K, Tamanini E, Saxty G (2015) Fragment-based discovery of potent and selective DDR1/2 inhibitors. ACS Med Chem Lett 6(7):798–803. https://doi.org/10.1021/acsmedchemlett.5b00143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Larsson EA, Jansson A, Ng FM, Then SW, Panicker R, Liu B, Sangthongpitag K, Pendharkar V, Tai SJ, Hill J, Dan C, Ho SY, Cheong WW, Poulsen A, Blanchard S, Lin GR, Alam J, Keller TH, Nordlund P (2013) Fragment-based ligand design of novel potent inhibitors of tankyrases. J Med Chem 56(11):4497–4508. https://doi.org/10.1021/jm400211f

    Article  PubMed  CAS  Google Scholar 

  40. Chavanieu A, Pugniere M (2016) Developments in SPR Fragment Screening. Expert Opin Drug Discov 11(5):489–499. https://doi.org/10.1517/17460441.2016.1160888

    Article  PubMed  CAS  Google Scholar 

  41. Neumann T, Junker HD, Schmidt K, Sekul R (2007) SPR-based fragment screening: advantages and applications. Curr Top Med Chem 7(16):1630–1642

    Article  CAS  PubMed  Google Scholar 

  42. Crawford TD, Ndubaku CO, Chen H, Boggs JW, Bravo BJ, Delatorre K, Giannetti AM, Gould SE, Harris SF, Magnuson SR, McNamara E, Murray LJ, Nonomiya J, Sambrone A, Schmidt S, Smyczek T, Stanley M, Vitorino P, Wang L, West K, Wu P, Ye W (2014) Discovery of selective 4-Amino-pyridopyrimidine inhibitors of MAP4K4 using fragment-based lead identification and optimization. J Med Chem 57(8):3484–3493. https://doi.org/10.1021/jm500155b

    Article  PubMed  CAS  Google Scholar 

  43. Navratilova I, Aristotelous T, Picaud S, Chaikuad A, Knapp S, Filappakopoulos P, Hopkins AL (2016) Discovery of New Bromodomain Scaffolds by Biosensor Fragment Screening. ACS Med Chem Letters 7(12):1213–1218. https://doi.org/10.1021/acsmedchemlett.6b00154

    Article  CAS  Google Scholar 

  44. Riccardi Sirtori F, Caronni D, Colombo M, Dalvit C, Paolucci M, Regazzoni L, Visco C, Fogliatto G (2015) Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: Application to Hsp90. Eur J Pharm Sci: Off J Eur Fed Pharm Sci 76:83–94. https://doi.org/10.1016/j.ejps.2015.05.001

    Article  CAS  Google Scholar 

  45. Drinkwater N, Vu H, Lovell KM, Criscione KR, Collins BM, Prisinzano TE, Poulsen SA, McLeish MJ, Grunewald GL, Martin JL (2010) Fragment-based screening by X-ray crystallography, MS and isothermal titration calorimetry to identify PNMT (phenylethanolamine N-methyltransferase) inhibitors. Biochem J 431(1):51–61. https://doi.org/10.1042/bj20100651

    Article  PubMed  CAS  Google Scholar 

  46. Wang L, Pratt JK, Soltwedel T, Sheppard GS, Fidanze SD, Liu D, Hasvold LA, Mantei RA, Holms JH, McClellan WJ, Wendt MD, Wada C, Frey R, Hansen TM, Hubbard R, Park CH, Li L, Magoc TJ, Albert DH, Lin X, Warder SE, Kovar P, Huang X, Wilcox D, Wang R, Rajaraman G, Petros AM, Hutchins CW, Panchal SC, Sun C, Elmore SW, Shen Y, Kati WM, McDaniel KF (2017) Fragment-Based structure-enabled discovery of novel pyridones and pyridone macrocycles as potent bromodomain and extra-terminal domain (BET) family bromodomain inhibitors. J Med Chem 60(9):3828–3850. https://doi.org/10.1021/acs.jmedchem.7b00017

    Article  CAS  PubMed  Google Scholar 

  47. Fjellström O, Akkaya S, Beisel HG, Eriksson PO, Erixon K, Gustafsson D, Jurva U, Kang D, Karis D, Knecht W, Nerme V, Nilsson I, Olsson T, Redzic A, Roth R, Sandmark J, Tigerström A, Öster L (2015) Creating novel activated factor XI inhibitors through fragment based lead generation and structure aided drug design. PLoS One 10(1):e0113705. https://doi.org/10.1371/journal.pone.0113705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chilingaryan Z, Yin Z, Oakley AJ (2012) Fragment-based screening by protein crystallography: successes and pitfalls. Int J Mol Sci 13(10):12857–12879. https://doi.org/10.3390/ijms131012857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sharff A, Jhoti H (2003) High-throughput crystallography to enhance drug discovery. Curr Opin Chem Biol 7(3):340–345

    Article  CAS  PubMed  Google Scholar 

  50. Caliandro R, Belviso DB, Aresta BM, de Candia M, Altomare CD (2013) Protein crystallography and fragment-based drug design. Future Med Chem 5(10):1121–1140. https://doi.org/10.4155/fmc.13.84

    Article  CAS  PubMed  Google Scholar 

  51. Saalau-Bethell SM, Woodhead AJ, Chessari G, Carr MG, Coyle J, Graham B, Hiscock SD, Murray CW, Pathuri P, Rich SJ, Richardson CJ, Williams PA, Jhoti H (2012) Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function. Nat Chem Biol 8(11):920–925. https://doi.org/10.1038/nchembio.1081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gill A, Cleasby A, Jhoti H (2005) The discovery of novel protein kinase inhibitors by using fragment-based high-throughput x-ray crystallography. Chembiochem: Eur J Chem Biol 6(3):506–512. https://doi.org/10.1002/cbic.200400188

    Article  CAS  Google Scholar 

  53. Saalau-Bethell SM, Berdini V, Cleasby A, Congreve M, Coyle JE, Lock V, Murray CW, O’Brien MA, Rich SJ, Sambrook T, Vinkovic M, Yon JR, Jhoti H (2014) Crystal structure of human soluble adenylate cyclase reveals a distinct, highly flexible allosteric bicarbonate binding pocket. ChemMedChem 9(4):823–832. https://doi.org/10.1002/cmdc.201300480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ludlow RF, Verdonk ML, Saini HK, Tickle IJ, Jhoti H (2015) Detection of secondary binding sites in proteins using fragment screening. Proc Natl Acad Sci USA 112(52):15910–15915. https://doi.org/10.1073/pnas.1518946112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Nikiforov PO, Surade S, Blaszczyk M, Delorme V, Brodin P, Baulard AR, Blundell TL, Abell C (2016) A fragment merging approach towards the development of small molecule inhibitors of Mycobacterium tuberculosis EthR for use as ethionamide boosters. Org Biomol Chem 14(7):2318–2326. https://doi.org/10.1039/c5ob02630j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Borsi V, Calderone V, Fragai M, Luchinat C, Sarti N (2010) Entropic contribution to the linking coefficient in fragment based drug design: a case study. J Med Chem 53(10):4285–4289. https://doi.org/10.1021/jm901723z

    Article  PubMed  CAS  Google Scholar 

  57. Edink E, Rucktooa P, Retra K, Akdemir A, Nahar T, Zuiderveld O, van Elk R, Janssen E, van Nierop P, van Muijlwijk-Koezen J, Smit AB, Sixma TK, Leurs R, de Esch IJ (2011) Fragment growing induces conformational changes in acetylcholine-binding protein: a structural and thermodynamic analysis. J Am Chem Soc 133(14):5363–5371. https://doi.org/10.1021/ja110571r

    Article  PubMed  CAS  Google Scholar 

  58. Potter A, Oldfield V, Nunns C, Fromont C, Ray S, Northfield CJ, Bryant CJ, Scrace SF, Robinson D, Matossova N, Baker L, Dokurno P, Surgenor AE, Davis B, Richardson CM, Murray JB, Moore JD (2010) Discovery of cell-active phenyl-imidazole Pin1 inhibitors by structure-guided fragment evolution. Bioorg Med Chem Lett 20(22):6483–6488. https://doi.org/10.1016/j.bmcl.2010.09.063

    Article  PubMed  CAS  Google Scholar 

  59. Mattos C, Bellamacina CR, Peisach E, Pereira A, Vitkup D, Petsko GA, Ringe D (2006) Multiple solvent crystal structures: probing binding sites, plasticity and hydration. J Mol Biol 357(5):1471–1482. https://doi.org/10.1016/j.jmb.2006.01.039

    Article  PubMed  CAS  Google Scholar 

  60. Brenke R, Kozakov D, Chuang GY, Beglov D, Hall D, Landon MR, Mattos C, Vajda S (2009) Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics (Oxford, England) 25(5):621–627. https://doi.org/10.1093/bioinformatics/btp036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kozakov D, Grove LE, Hall DR, Bohnuud T, Mottarella SE, Luo L, Xia B, Beglov D, Vajda S (2015) The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc 10(5):733–755. https://doi.org/10.1038/nprot.2015.043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Randjelovic J, Eric S, Savic V (2014) In silico design of small molecule inhibitors of CDK9/cyclin T1 interaction. J Mol Graph Model 50:100–112. https://doi.org/10.1016/j.jmgm.2014.04.002

    Article  PubMed  CAS  Google Scholar 

  63. Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21(9):1102–1114. https://doi.org/10.1016/j.chembiol.2014.09.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discovery 7(12):1013–1030. https://doi.org/10.1038/nrd2755

    Article  PubMed  CAS  Google Scholar 

  65. Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G (2011) Cell death assays for drug discovery. Nat Rev Drug Discov 10(3):221–237. https://doi.org/10.1038/nrd3373

    Article  PubMed  CAS  Google Scholar 

  66. Lessene G, Czabotar PE, Colman PM (2008) BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov 7(12):989–1000. https://doi.org/10.1038/nrd2658

    Article  PubMed  CAS  Google Scholar 

  67. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16(4):273–284. https://doi.org/10.1038/nrd.2016.253

    Article  CAS  PubMed  Google Scholar 

  68. Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11(2):109–124. https://doi.org/10.1038/nrd3627

    Article  CAS  PubMed  Google Scholar 

  69. Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7(12):979–987. https://doi.org/10.1038/nrd2656

    Article  CAS  PubMed  Google Scholar 

  70. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681. https://doi.org/10.1038/nature03579

    Article  CAS  PubMed  Google Scholar 

  71. Friberg A, Vigil D, Zhao B, Daniels RN, Burke JP, Garcia-Barrantes PM, Camper D, Chauder BA, Lee T, Olejniczak ET, Fesik SW (2013) Discovery of potent myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods and structure-based design. J Med Chem 56(1):15–30. https://doi.org/10.1021/jm301448p

    Article  PubMed  CAS  Google Scholar 

  72. Petros AM, Swann SL, Song D, Swinger K, Park C, Zhang H, Wendt MD, Kunzer AR, Souers AJ, Sun C (2014) Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein. Bioorg Med Chem Lett 24(6):1484–1488. https://doi.org/10.1016/j.bmcl.2014.02.010

    Article  PubMed  CAS  Google Scholar 

  73. Huang JW, Zhang Z, Wu B, Cellitti JF, Zhang X, Dahl R, Shiau CW, Welsh K, Emdadi A, Stebbins JL, Reed JC, Pellecchia M (2008) Fragment-based design of small molecule X-linked inhibitor of apoptosis protein inhibitors. J Med Chem 51(22):7111–7118. https://doi.org/10.1021/jm8006992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chessari G, Buck IM, Day JE, Day PJ, Iqbal A, Johnson CN, Lewis EJ, Martins V, Miller D, Reader M, Rees DC, Rich SJ, Tamanini E, Vitorino M, Ward GA, Williams PA, Williams G, Wilsher NE, Woolford AJ (2015) Fragment-based drug discovery targeting inhibitor of apoptosis proteins: discovery of a non-alanine lead series with dual activity against cIAP1 and XIAP. J Med Chem 58(16):6574–6588. https://doi.org/10.1021/acs.jmedchem.5b00706

    Article  PubMed  CAS  Google Scholar 

  75. Estrada-Ortiz N, Neochoritis CG, Domling A (2016) How to design a successful p53-MDM2/X interaction inhibitor: a thorough overview based on crystal structures. ChemMedChem 11(8):757–772. https://doi.org/10.1002/cmdc.201500487

    Article  PubMed  CAS  Google Scholar 

  76. Fry DC, Wartchow C, Graves B, Janson C, Lukacs C, Kammlott U, Belunis C, Palme S, Klein C, Vu B (2013) Deconstruction of a nutlin: dissecting the binding determinants of a potent protein-protein interaction inhibitor. ACS Med Chem Lett 4(7):660–665. https://doi.org/10.1021/ml400062c

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Boltjes A, Huang Y, van de Velde R, Rijkee L, Wolf S, Gaugler J, Lesniak K, Guzik K, Holak TA, Domling A (2014) Fragment-based library generation for the discovery of a peptidomimetic p53-Mdm4 inhibitor. ACS Comb Sci 16(8):393–396. https://doi.org/10.1021/co500026b

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wilson CY, Tolias P (2016) Recent advances in cancer drug discovery targeting RAS. Drug Discov Today 21(12):1915–1919. https://doi.org/10.1016/j.drudis.2016.08.002

    Article  PubMed  CAS  Google Scholar 

  79. Papke B, Der CJ (2017) Drugging RAS: know the enemy. Science 355(6330):1158–1163. https://doi.org/10.1126/science.aam7622

    Article  CAS  PubMed  Google Scholar 

  80. Spiegel J, Cromm PM, Zimmermann G, Grossmann TN, Waldmann H (2014) Small-molecule modulation of Ras signaling. Nat Chem Biol 10(8):613–622. https://doi.org/10.1038/nchembio.1560

    Article  PubMed  CAS  Google Scholar 

  81. Keeton AB, Salter EA, Piazza GA (2017) The RAS-Effector Interaction as a Drug Target. Science (New York, NY) 77 (2):221-226. https://doi.org/10.1126/science.aam7622. https://doi.org/10.1158/0008-5472.can-16-0938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martin-Gago P, Fansa EK, Wittinghofer A, Waldmann H (2017) Structure-based development of PDEdelta inhibitors. Biol Chem 398(5–6):535–545. https://doi.org/10.1515/hsz-2016-0272

    Article  CAS  PubMed  Google Scholar 

  83. Maurer T, Wang W (2013) NMR study to identify a ligand-binding pocket in Ras. The Enzymes 33 Pt A:15–39. https://doi.org/10.1016/b978-0-12-416749-0.00002-6

  84. Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, Fauber BP, Pan B, Malek S, Stokoe D, Ludlam MJ, Bowman KK, Wu J, Giannetti AM, Starovasnik MA, Mellman I, Jackson PK, Rudolph J, Wang W, Fang G (2012) Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA 109(14):5299–5304. https://doi.org/10.1073/pnas.1116510109

    Article  PubMed  PubMed Central  Google Scholar 

  85. Winter JJ, Anderson M, Blades K, Brassington C, Breeze AL, Chresta C, Embrey K, Fairley G, Faulder P, Finlay MR, Kettle JG, Nowak T, Overman R, Patel SJ, Perkins P, Spadola L, Tart J, Tucker JA, Wrigley G (2015) Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation. J Med Chem 58(5):2265–2274. https://doi.org/10.1021/jm501660t

    Article  CAS  PubMed  Google Scholar 

  86. Wittinghofer A, Waldmann H, Bastiaens PI, Zimmermann G, Papke B, Ismail S, Vartak N, Chandra A, Hoffmann M, Hahn SA, Triola G, Wittinghofer A, Bastiaens PI, Waldmann H (2013) Small molecule inhibition of the KRAS-PDEdelta interaction impairs oncogenic KRAS signalling. Nat Commun 497(7451):638–642. https://doi.org/10.1038/ncomms11360. https://doi.org/10.1038/nature12205

  87. Papke B, Murarka S, Vogel HA, Martin-Gago P, Kovacevic M, Truxius DC, Fansa EK, Ismail S, Zimmermann G, Heinelt K, Schultz-Fademrecht C, Al Saabi A, Baumann M, Nussbaumer P (2016) Identification of pyrazolopyridazinones as PDEdelta inhibitors. Identification of pyrazolopyridazinones as PDEdelta inhibitors 7:11360. https://doi.org/10.1038/ncomms11360

    Article  CAS  Google Scholar 

  88. Martin-Gago P, Fansa EK, Klein CH, Murarka S, Janning P, Schurmann M, Metz M, Ismail S, Schultz-Fademrecht C, Baumann M, Bastiaens PI, Wittinghofer A, Waldmann H (2017) A PDE6delta-KRas inhibitor chemotype with up to seven H-bonds and picomolar affinity that prevents efficient inhibitor release by Arl2. Angew Chem Int Ed Engl 56(9):2423–2428. https://doi.org/10.1002/anie.201610957

    Article  PubMed  CAS  Google Scholar 

  89. Tough DF, Tak PP, Tarakhovsky A, Prinjha RK (2016) Epigenetic drug discovery: breaking through the immune barrier. Nat Rev Drug Discov 15(12):835–853. https://doi.org/10.1038/nrd.2016.185

    Article  PubMed  CAS  Google Scholar 

  90. Shortt J, Ott CJ, Johnstone RW, Bradner JE (2017) A chemical probe toolbox for dissecting the cancer epigenome. Nat Rev Cancer 17(3):160–183. https://doi.org/10.1038/nrc.2016.148

    Article  PubMed  CAS  Google Scholar 

  91. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discovery 11(5):384–400. https://doi.org/10.1038/nrd3674

    Article  PubMed  CAS  Google Scholar 

  92. Kaniskan HU, Jin J (2015) Chemical probes of histone lysine methyltransferases. ACS Chem Biol 10(1):40–50. https://doi.org/10.1021/cb500785t

    Article  PubMed  CAS  Google Scholar 

  93. He Y, Korboukh I, Jin J, Huang J (2012) Targeting protein lysine methylation and demethylation in cancers. Acta Biochim Biophys Sin 44(1):70–79. https://doi.org/10.1093/abbs/gmr109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Scheufler C, Mobitz H, Gaul C, Ragot C, Be C, Fernandez C, Beyer KS, Tiedt R, Stauffer F (2016) Optimization of a fragment-based screening hit toward potent DOT1L inhibitors interacting in an induced binding pocket. ACS Med Chem Lett 7(8):730–734. https://doi.org/10.1021/acsmedchemlett.6b00168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Ferreira de Freitas R, Eram MS, Szewczyk MM, Steuber H, Smil D, Wu H, Li F, Senisterra G, Dong A, Brown PJ, Hitchcock M, Moosmayer D, Stegmann CM, Egner U, Arrowsmith C, Barsyte-Lovejoy D, Vedadi M, Schapira M (2016) Discovery of a potent Class I protein arginine methyltransferase fragment inhibitor. J Med Chem 59(3):1176–1183. https://doi.org/10.1021/acs.jmedchem.5b01772

    Article  PubMed  CAS  Google Scholar 

  96. Jiao L, Liu X (2015) Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science (New York, NY) 350 (6258):aac4383. https://doi.org/10.1126/science.aac4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lingel A, Sendzik M, Huang Y (2017) Structure-guided design of EED binders allosterically inhibiting the epigenetic polycomb repressive complex 2 (PRC2) methyltransferase. 60(1):415–427. https://doi.org/10.1021/acs.jmedchem.6b01473

  98. Fujisawa T, Filippakopoulos P (2017) Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol 18(4):246–262. https://doi.org/10.1038/nrm.2016.143

    Article  PubMed  CAS  Google Scholar 

  99. Filippakopoulos P, Knapp S (2014) Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discovery 13(5):337–356. https://doi.org/10.1038/nrd4286

    Article  PubMed  CAS  Google Scholar 

  100. Zeng L, Li J, Muller M, Yan S, Mujtaba S, Pan C, Wang Z, Zhou MM (2005) Selective small molecules blocking HIV-1 Tat and coactivator PCAF association. J Am Chem Soc 127(8):2376–2377. https://doi.org/10.1021/ja044885g

    Article  PubMed  CAS  Google Scholar 

  101. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073. https://doi.org/10.1038/nature09504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Mirguet O, Gosmini R, Toum J, Clement CA, Barnathan M, Brusq JM, Mordaunt JE, Grimes RM, Crowe M, Pineau O, Ajakane M, Daugan A, Jeffrey P, Cutler L, Haynes AC, Smithers NN, Chung CW, Bamborough P, Uings IJ, Lewis A, Witherington J, Parr N, Prinjha RK, Nicodeme E (2013) Discovery of epigenetic regulator I-BET762: lead optimization to afford a clinical candidate inhibitor of the BET bromodomains. J Med Chem 56(19):7501–7515. https://doi.org/10.1021/jm401088k

    Article  PubMed  CAS  Google Scholar 

  103. Chung CW, Dean AW, Woolven JM, Bamborough P (2012) Fragment-based discovery of bromodomain inhibitors part 1: inhibitor binding modes and implications for lead discovery. J Med Chem 55(2):576–586. https://doi.org/10.1021/jm201320w

    Article  PubMed  CAS  Google Scholar 

  104. Zhao L, Cao D, Chen T, Wang Y, Miao Z, Xu Y, Chen W, Wang X, Li Y, Du Z, Xiong B, Li J, Xu C, Zhang N, He J, Shen J (2013) Fragment-based drug discovery of 2-thiazolidinones as inhibitors of the histone reader BRD4 bromodomain. J Med Chem 56(10):3833–3851. https://doi.org/10.1021/jm301793a

    Article  PubMed  CAS  Google Scholar 

  105. Spiliotopoulos D, Caflisch A (2016) Fragment-based in silico screening of bromodomain ligands. Drug Discov Today Technol 19:81–90. https://doi.org/10.1016/j.ddtec.2016.06.003

    Article  PubMed  Google Scholar 

  106. Vidler LR, Brown N, Knapp S, Hoelder S (2012) Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. J Med Chem 55(17):7346–7359. https://doi.org/10.1021/jm300346w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Harner MJ, Chauder BA, Phan J, Fesik SW (2014) Fragment-based screening of the bromodomain of ATAD2. J Med Chem 57(22):9687–9692. https://doi.org/10.1021/jm501035j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Miller TC, Rutherford TJ, Birchall K, Chugh J, Fiedler M, Bienz M (2014) Competitive binding of a benzimidazole to the histone-binding pocket of the Pygo PHD finger. ACS Chem Biol 9(12):2864–2874. https://doi.org/10.1021/cb500585s

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Tsao DH, Sutherland AG, Jennings LD, Li Y, Rush TS 3rd, Alvarez JC, Ding W, Dushin EG, Dushin RG, Haney SA, Kenny CH, Malakian AK, Nilakantan R, Mosyak L (2006) Discovery of novel inhibitors of the ZipA/FtsZ complex by NMR fragment screening coupled with structure-based design. Bioorg Med Chem 14(23):7953–7961. https://doi.org/10.1016/j.bmc.2006.07.050

    Article  CAS  PubMed  Google Scholar 

  110. Yin Z, Whittell LR, Wang Y, Jergic S, Liu M, Harry EJ, Dixon NE, Beck JL, Kelso MJ, Oakley AJ (2014) Discovery of lead compounds targeting the bacterial sliding clamp using a fragment-based approach. J Med Chem 57(6):2799–2806. https://doi.org/10.1021/jm500122r

    Article  PubMed  CAS  Google Scholar 

  111. Latham CF, La J, Tinetti RN, Chalmers DK, Tachedjian G (2016) Fragment based strategies for discovery of novel HIV-1 reverse transcriptase and integrase inhibitors. Curr Top Med Chem 16(10):1135–1153

    Article  CAS  PubMed  Google Scholar 

  112. Serrao E, Debnath B, Otake H, Kuang Y, Christ F, Debyser Z, Neamati N (2013) Fragment-based discovery of 8-hydroxyquinoline inhibitors of the HIV-1 integrase-lens epithelium-derived growth factor/p75 (IN-LEDGF/p75) interaction. J Med Chem 56(6):2311–2322. https://doi.org/10.1021/jm301632e

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Ziarek JJ, Liu Y, Smith E, Zhang G, Peterson FC, Chen J, Yu Y, Chen Y, Volkman BF, Li R (2012) Fragment-based optimization of small molecule CXCL12 inhibitors for antagonizing the CXCL12/CXCR4 interaction. Curr Top Med Chem 12(24):2727–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Van Molle I, Thomann A, Buckley DL, So EC, Lang S, Crews CM, Ciulli A (2012) Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1alpha protein-protein interface. Chem Biol 19(10):1300–1312. https://doi.org/10.1016/j.chembiol.2012.08.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Davies TG, Wixted WE, Coyle JE, Griffiths-Jones C, Hearn K, McMenamin R, Norton D, Rich SJ, Richardson C, Saxty G, Willems HM, Woolford AJ, Cottom JE, Kou JP, Yonchuk JG, Feldser HG, Sanchez Y, Foley JP, Bolognese BJ, Logan G, Podolin PL, Yan H, Callahan JF, Heightman TD, Kerns JK (2016) Monoacidic inhibitors of the Kelch-like ECH-associated protein 1: nuclear factor erythroid 2-related factor 2 (KEAP1:NRF2) protein-protein interaction with high cell potency identified by fragment-based discovery. J Med Chem 59(8):3991–4006. https://doi.org/10.1021/acs.jmedchem.6b00228

    Article  PubMed  CAS  Google Scholar 

  116. Scott DE, Ehebauer MT, Pukala T, Marsh M, Blundell TL, Venkitaraman AR, Abell C, Hyvonen M (2013) Using a fragment-based approach to target protein-protein interactions. Chembiochem: Eur J Chem Biol 14(3):332–342. https://doi.org/10.1002/cbic.201200521

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiong, B., Wang, Q., Shen, J. (2018). Fragment-Based Drug Discovery for Developing Inhibitors of Protein-Protein Interactions. In: Sheng, C., Georg, G. (eds) Targeting Protein-Protein Interactions by Small Molecules. Springer, Singapore. https://doi.org/10.1007/978-981-13-0773-7_6

Download citation

Publish with us

Policies and ethics