Skip to main content

Experimental Methods Used for Identifying Small-Molecule Inhibitors of Protein-Protein Interaction

  • Chapter
  • First Online:
Targeting Protein-Protein Interactions by Small Molecules

Abstract

Protein-protein interactions (PPIs) are implicated innumerous biological processes under physiological and pathophysiological conditions. They thus offer new opportunities for therapeutic intervention. Various experimental methods have been applied to the identification of small-molecule inhibitors targeting PPIs, which can be classified as biophysical, biochemical, and genetic methods. This chapter gives an overview of some widely applied experimental methods in each category, highlighting their principles, advantages, and disadvantages, as well as their recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berggard T, Linse S, James P (2007) Methods for the detection and analysis of protein-protein interactions. Proteomics 7:2833–2842

    Article  PubMed  CAS  Google Scholar 

  2. Braun P, Gingras AC (2012) History of protein-protein interactions: from egg-white to complex networks. Proteomics 12:1478–1498

    Article  PubMed  CAS  Google Scholar 

  3. Choi S, Choi KY (2017) Screening-based approaches to identify small molecules that inhibit protein-protein interactions. Expert Opin Drug Discov 12:293–303

    Article  CAS  PubMed  Google Scholar 

  4. Thangudu RR, Bryant SH, Panchenko AR, Madej T (2012) Modulating protein-protein interactions with small molecules: the importance of binding hotspots. J Mol Biol 415:443–453

    Article  PubMed  CAS  Google Scholar 

  5. Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21:1102–1114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P, Roberts L, Tahir SK, Xiao Y, Yang X, Zhang H, Fesik S, Rosenberg SH, Elmore SW (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421–3428

    Article  CAS  PubMed  Google Scholar 

  7. Vu BT, Vassilev L (2011) Small-molecule inhibitors of the p53-MDM2 interaction. Curr Top Microbiol Immunol 348:151–172

    PubMed  CAS  Google Scholar 

  8. Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, Macartney M, Mori J, Rickett G, Smith-Burchnell C, Napier C, Webster R, Armour D, Price D, Stammen B, Wood A, Perros M (2005) Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 49:4721–4732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Peerlinck K, De Lepeleire I, Goldberg M, Farrell D, Barrett J, Hand E, Panebianco D, Deckmyn H, Vermylen J, Arnout J (1993) MK-383 (L-700,462), a selective nonpeptide platelet glycoprotein IIb/IIIa antagonist, is active in man. Circulation 88:1512–1517

    Article  PubMed  CAS  Google Scholar 

  10. Uvebrant K, da Graca Thrige D, Rosen A, Akesson M, Berg H, Walse B, Bjork P (2007) Discovery of selective small-molecule CD80 inhibitors. J Biomol Screen 12:464–472

    Article  PubMed  CAS  Google Scholar 

  11. Fischer G, Rossmann M, Hyvonen M (2015) Alternative modulation of protein-protein interactions by small molecules. Curr Opin Biotechnol 35:78–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DC, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park CM, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19:202–208

    Article  CAS  PubMed  Google Scholar 

  13. Perrin F (1926) Polarization of light of fluorescence, average life of molecules. J Phys Radium 7:390–401

    Article  CAS  Google Scholar 

  14. Du Y (2015) Fluorescence polarization assay to quantify protein-protein interactions in an HTS format. Methods Mol Biol 1278:529–544

    Article  PubMed  CAS  Google Scholar 

  15. Matthew DH, Adam Y, Tyler P, John CB, Ajit J, Anton S, Nathan PC (2016) Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods and Applications in Fluorescence 4:022001

    Article  CAS  Google Scholar 

  16. Weiel J, Hershey JW (1982) The binding of fluorescein-labeled protein synthesis initiation factor 2 to Escherichia coli 30 S ribosomal subunits determined by fluorescence polarization. J Biol Chem 257:1215–1220

    PubMed  CAS  Google Scholar 

  17. Kim YT, Tabor S, Churchich JE, Richardson CC (1992) Interactions of gene 2.5 protein and DNA polymerase of bacteriophage T7. J Biol Chem 267:15032–15040

    PubMed  CAS  Google Scholar 

  18. Wang Z, Bhattacharya A, Ivanov DN (2015) Identification of small-molecule inhibitors of the HuR/RNA interaction using a fluorescence polarization screening assay followed by NMR validation. PLoS ONE 10:e0138780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nikolovska-Coleska Z, Wang R, Fang X, Pan H, Tomita Y, Li P, Roller PP, Krajewski K, Saito NG, Stuckey JA, Wang S (2004) Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal Biochem 332:261–273

    Article  PubMed  CAS  Google Scholar 

  20. Hassig CA, Zeng FY, Kung P, Kiankarimi M, Kim S, Diaz PW, Zhai D, Welsh K, Morshedian S, Su Y, O’Keefe B, Newman DJ, Rusman Y, Kaur H, Salomon CE, Brown SG, Baire B, Michel AR, Hoye TR, Francis S, Georg GI, Walters MA, Divlianska DB, Roth GP, Wright AE, Reed JC (2014) Ultra-high-throughput screening of natural product extracts to identify proapoptotic inhibitors of Bcl-2 family proteins. J Biomol Screen 19:1201–1211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhai D, Godoi P, Sergienko E, Dahl R, Chan X, Brown B, Rascon J, Hurder A, Su Y, Chung TDY, Jin C, Diaz P, Reed JC (2012) High-throughput fluorescence polarization assay for chemical library screening against anti-apoptotic Bcl-2 family member Bfl-1. J Biomol Screen 17:350–360

    Article  PubMed  CAS  Google Scholar 

  22. Knight SM, Umezawa N, Lee HS, Gellman SH, Kay BK (2002) A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein-protein interaction. Anal Biochem 300:230–236

    Article  PubMed  CAS  Google Scholar 

  23. Inoyama D, Chen Y, Huang X, Beamer LJ, Kong AN, Hu L (2012) Optimization of fluorescently labeled Nrf2 peptide probes and the development of a fluorescence polarization assay for the discovery of inhibitors of Keap1-Nrf2 interaction. J Biomol Screen 17:435–447

    Article  PubMed  CAS  Google Scholar 

  24. Owicki JC (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen 5:297–306

    Article  CAS  PubMed  Google Scholar 

  25. Turek-Etienne TC, Small EC, Soh SC, Xin TA, Gaitonde PV, Barrabee EB, Hart RF, Bryant RW (2003) Evaluation of fluorescent compound interference in 4 fluorescence polarization assays: 2 kinases, 1 protease, and 1 phosphatase. J Biomol Screen 8:176–184

    Article  PubMed  CAS  Google Scholar 

  26. Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel) 15:10481–10510

    Article  CAS  Google Scholar 

  27. Abdulhalim I, Zourob M, Lakhtakia A (2008) Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28:214–242

    Article  Google Scholar 

  28. McDonnell JM (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr Opin Chem Biol 5:572–577

    Article  PubMed  CAS  Google Scholar 

  29. Rich RL, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol 11:54–61

    Article  PubMed  CAS  Google Scholar 

  30. Fry DC, Wartchow C, Graves B, Janson C, Lukacs C, Kammlott U, Belunis C, Palme S, Klein C, Vu B (2013) Deconstruction of a nutlin: dissecting the binding determinants of a potent protein-protein interaction inhibitor. ACS Med Chem Lett 4:660–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wartchow CA, Podlaski F, Li S, Rowan K, Zhang X, Mark D, Huang KS (2011) Biosensor-based small molecule fragment screening with biolayer interferometry. J Comput Aided Mol Des 25:669–676

    Article  PubMed  CAS  Google Scholar 

  32. Hain AU, Bartee D, Sanders NG, Miller AS, Sullivan DJ, Levitskaya J, Meyers CF, Bosch J (2014) Identification of an Atg8-Atg3 protein-protein interaction inhibitor from the medicines for Malaria Venture Malaria Box active in blood and liver stage Plasmodium falciparum parasites. J Med Chem 57:4521–4531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Iozzi S, Remelli R, Lelli B, Diamanti D, Pileri S, Bracci L, Roncarati R, Caricasole A, Bernocco S (2012) Functional characterization of a small-molecule inhibitor of the DKK1-LRP6 interaction. ISRN Mol Biol 2012:823875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  PubMed  CAS  Google Scholar 

  35. Jung SO, Ro HS, Kho BH, Shin YB, Kim MG, Chung BH (2005) Surface plasmon resonance imaging-based protein arrays for high-throughput screening of protein-protein interaction inhibitors. Proteomics 5:4427–4431

    Article  PubMed  CAS  Google Scholar 

  36. Concepcion J, Witte K, Wartchow C, Choo S, Yao D, Persson H, Wei J, Li P, Heidecker B, Ma W, Varma R, Zhao LS, Perillat D, Carricato G, Recknor M, Du K, Ho H, Ellis T, Gamez J, Howes M, Phi-Wilson J, Lockard S, Zuk R, Tan H (2009) Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization. Comb Chem High Throughput Screening 12:791–800

    Article  CAS  Google Scholar 

  37. Sultana A, Lee JE (2015) Measuring protein-protein and protein-nucleic acid interactions by biolayer interferometry. Curr Protoc Protein Sci 79:19 25 11–19 25 26

    Google Scholar 

  38. Gogate PN, Ethirajan M, Kurenova EV, Magis AT, Pandey RK, Cance WG (2014) Design, synthesis, and biological evaluation of novel FAK scaffold inhibitors targeting the FAK-VEGFR3 protein-protein interaction. Eur J Med Chem 80:154–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Jiang ZY, Lu MC, Xu LL, Yang TT, Xi MY, Xu XL, Guo XK, Zhang XJ, You QD, Sun HP (2014) Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis. J Med Chem 57:2736–2745

    Article  PubMed  CAS  Google Scholar 

  40. Falconer RJ (2016) Applications of isothermal titration calorimetry—the research and technical developments from 2011 to 2015. J Mol Recogn: JMR 29:504–515

    Article  CAS  Google Scholar 

  41. Falconer RJ, Penkova A, Jelesarov I, Collins BM (2010) Survey of the year 2008: applications of isothermal titration calorimetry. J Mol Recogn: JMR 23:395–413

    Article  CAS  Google Scholar 

  42. Roselin LS, Lin MS, Lin PH, Chang Y, Chen WY (2010) Recent trends and some applications of isothermal titration calorimetry in biotechnology. Biotechnol J 5:85–98

    Article  PubMed  CAS  Google Scholar 

  43. Ababou A, Ladbury JE (2007) Survey of the year 2005: literature on applications of isothermal titration calorimetry. J Mol Recogn: JMR 20:4–14

    Article  CAS  Google Scholar 

  44. Pierce MM, Raman CS, Nall BT (1999) Isothermal titration calorimetry of protein-protein interactions. Methods 19:213–221

    Article  PubMed  CAS  Google Scholar 

  45. Voter AF, Manthei KA, Keck JL (2016) A high-throughput screening strategy to identify protein-protein interaction inhibitors that block the Fanconi anemia DNA repair pathway. J Biomol Screen 21:626–633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Betzi S, Restouin A, Opi S, Arold ST, Parrot I, Guerlesquin F, Morelli X, Collette Y (2007) Protein protein interaction inhibition (2P2I) combining high throughput and virtual screening: application to the HIV-1 Nef protein. Proc Natl Acad Sci USA 104:19256–19261

    Article  PubMed  PubMed Central  Google Scholar 

  47. Winkel AF, Engel CK, Margerie D, Kannt A, Szillat H, Glombik H, Kallus C, Ruf S, Gussregen S, Riedel J, Herling AW, von Knethen A, Weigert A, Brune B, Schmoll D (2015) Characterization of RA839, a noncovalent small molecule binder to Keap1 and selective activator of Nrf2 signaling. J Biol Chem 290:28446–28455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gal M, Bloch I, Shechter N, Romanenko O, Shir OM (2016) Efficient isothermal titration calorimetry technique identifies direct interaction of small molecule inhibitors with the target protein. Comb Chem High Throughput Screen 19:4–13

    Article  PubMed  CAS  Google Scholar 

  49. Krainer G, Keller S (2015) Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry. Methods 76:116–123

    Article  PubMed  CAS  Google Scholar 

  50. Cummings MD, Farnum MA, Nelen MI (2006) Universal screening methods and applications of ThermoFluor. J Biomol Screen 11:854–863

    Article  PubMed  CAS  Google Scholar 

  51. Simeonov A (2013) Recent developments in the use of differential scanning fluorometry in protein and small molecule discovery and characterization. Expert Opin Drug Discov 8:1071–1082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    Article  PubMed  CAS  Google Scholar 

  53. Vivoli M, Novak HR, Littlechild JA, Harmer NJ (2014) Determination of protein-ligand interactions using differential scanning fluorimetry. J Vis Exp: JoVE:51809

    Google Scholar 

  54. Grasberger BL, Lu T, Schubert C, Parks DJ, Carver TE, Koblish HK, Cummings MD, LaFrance LV, Milkiewicz KL, Calvo RR, Maguire D, Lattanze J, Franks CF, Zhao S, Ramachandren K, Bylebyl GR, Zhang M, Manthey CL, Petrella EC, Pantoliano MW, Deckman IC, Spurlino JC, Maroney AC, Tomczuk BE, Molloy CJ, Bone RF (2005) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 48:909–912

    Article  CAS  PubMed  Google Scholar 

  55. Scott DE, Ehebauer MT, Pukala T, Marsh M, Blundell TL, Venkitaraman AR, Abell C, Hyvönen M (2013) Using a fragment-based approach to target protein-protein interactions. ChemBioChem 14:332–342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Cossu F, Milani M, Mastrangelo E, Vachette P, Servida F, Lecis D, Canevari G, Delia D, Drago C, Rizzo V, Manzoni L, Seneci P, Scolastico C, Bolognesi M (2009) Structural basis for bivalent Smac-mimetics recognition in the IAP protein family. J Mol Biol 392:630–644

    Article  PubMed  CAS  Google Scholar 

  57. Kohlstaedt M, von der Hocht I, Hilbers F, Thielmann Y, Michel H (2015) Development of a Thermofluor assay for stability determination of membrane proteins using the Na(+)/H(+) antiporter NhaA and cytochrome c oxidase. Acta Crystallogr D Biol Crystallogr 71:1112–1122

    Article  PubMed  CAS  Google Scholar 

  58. Marion D (2013) An introduction to biological NMR spectroscopy. Mol Cell Proteomics 12:3006–3025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. O’Connell MR, Gamsjaeger R, Mackay JP (2009) The structural analysis of protein-protein interactions by NMR spectroscopy. Proteomics 9:5224–5232

    Article  PubMed  CAS  Google Scholar 

  60. Wu B, Barile E, De SK, Wei J, Purves A, Pellecchia M (2015) High-Throughput Screening by Nuclear Magnetic Resonance (HTS by NMR) for the identification of PPIs antagonists. Curr Top Med Chem 15:2032–2042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Barile E, Pellecchia M (2014) NMR-based approaches for the identification and optimization of inhibitors of protein-protein interactions. Chem Rev 114:4749–4763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wu B, Zhang Z, Noberini R, Barile E, Giulianotti M, Pinilla C, Houghten RA, Pasquale EB, Pellecchia M (2013) HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery. Chem Biol 20:19–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. D’Silva L, Ozdowy P, Krajewski M, Rothweiler U, Singh M, Holak TA (2005) Monitoring the effects of antagonists on protein-protein interactions with NMR spectroscopy. J Am Chem Soc 127:13220–13226

    Article  PubMed  CAS  Google Scholar 

  64. Ludwig C, Guenther UL (2009) Ligand based NMR methods for drug discovery. Front Biosci (Landmark Ed) 14:4565–4574

    Article  CAS  Google Scholar 

  65. Cala O, Guilliere F, Krimm I (2014) NMR-based analysis of protein-ligand interactions. Anal Bioanal Chem 406:943–956

    Article  PubMed  CAS  Google Scholar 

  66. Mani T, Wang F, Knabe WE, Sinn AL, Khanna M, Jo I, Sandusky GE, Sledge GW Jr, Jones DR, Khanna R, Pollok KE, Meroueh SO (2013) Small-molecule inhibition of the uPAR.uPA interaction: synthesis, biochemical, cellular, in vivo pharmacokinetics and efficacy studies in breast cancer metastasis. Bioorg Med Chem 21:2145–2155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Charpentier TH, Wilder PT, Liriano MA, Varney KM, Zhong S, Coop A, Pozharski E, MacKerell AD Jr, Toth EA, Weber DJ (2009) Small molecules bound to unique sites in the target protein binding cleft of calcium-bound S100B as characterized by nuclear magnetic resonance and X-ray crystallography. Biochemistry 48:6202–6212

    Article  PubMed  CAS  Google Scholar 

  68. Angulo J, Goffin SA, Gandhi D, Searcey M, Howell LA (2016) Unveiling the “Three-Finger Pharmacophore” required for p53-MDM2 inhibition by Saturation-Transfer Difference (STD) NMR initial growth-rates approach. Chemistry 22:5858–5862

    Article  PubMed  CAS  Google Scholar 

  69. Chu S, Gochin M (2013) Identification of fragments targeting an alternative pocket on HIV-1 gp41 by NMR screening and similarity searching. Bioorg Med Chem Lett 23:5114–5118

    Article  PubMed  CAS  Google Scholar 

  70. Arendt Y, Bhaumik A, Del Conte R, Luchinat C, Mori M, Porcu M (2007) Fragment docking to S100 proteins reveals a wide diversity of weak interaction sites. ChemMedChem 2:1648–1654

    Article  PubMed  CAS  Google Scholar 

  71. Rega MF, Wu B, Wei J, Zhang Z, Cellitti JF, Pellecchia M (2011) SAR by inter ligand nuclear overhauser effects (ILOEs) based discovery of acylsulfonamide compounds active against Bcl-x(L) and Mcl-1. J Med Chem 54:6000–6013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Smyth MS, Martin JH (2000) X-ray crystallography. Mol Pathol 53:8–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Caliandro R, Belviso DB, Aresta BM, de Candia M, Altomare CD (2013) Protein crystallography and fragment-based drug design. Future Med Chem 5:1121–1140

    Article  PubMed  CAS  Google Scholar 

  74. Deschamps JR (2010) X-ray crystallography of chemical compounds. Life Sci 86:585–589

    Article  PubMed  CAS  Google Scholar 

  75. Blundell TL, Patel S (2004) High-throughput X-ray crystallography for drug discovery. Curr Opin Pharmacol 4:490–496

    Article  PubMed  CAS  Google Scholar 

  76. Adams PD, Afonine PV, Grosse-Kunstleve RW, Read RJ, Richardson JS, Richardson DC, Terwilliger TC (2009) Recent developments in phasing and structure refinement for macromolecular crystallography. Curr Opin Struct Biol 19:566–572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lee EF, Czabotar PE, Smith BJ, Deshayes K, Zobel K, Colman PM, Fairlie WD (2007) Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ 14:1711–1713

    Article  PubMed  CAS  Google Scholar 

  78. Cheng L, Pettersen D, Ohlsson B, Schell P, Karle M, Evertsson E, Pahlen S, Jonforsen M, Plowright AT, Bostrom J, Fex T, Thelin A, Hilgendorf C, Xue Y, Wahlund G, Lindberg W, Larsson LO, Gustafsson D (2014) Discovery of the fibrinolysis inhibitor AZD6564, acting via interference of a protein-protein interaction. ACS Med Chem Lett 5:538–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Agamennone M, Cesari L, Lalli D, Turlizzi E, Del Conte R, Turano P, Mangani S, Padova A (2010) Fragmenting the S100B-p53 interaction: combined virtual/biophysical screening approaches to identify ligands. ChemMedChem 5:428–435

    Article  PubMed  CAS  Google Scholar 

  80. Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1:100

    Article  PubMed  CAS  Google Scholar 

  81. Mao Y, Yu L, Yang R, Qu LB, Harrington Pde B (2015) A novel method for the study of molecular interaction by using microscale thermophoresis. Talanta 132:894–901

    Article  PubMed  CAS  Google Scholar 

  82. Seidel SA, Dijkman PM, Lea WA, van den Bogaart G, Jerabek-Willemsen M, Lazic A, Joseph JS, Srinivasan P, Baaske P, Simeonov A, Katritch I, Melo FA, Ladbury JE, Schreiber G, Watts A, Braun D, Duhr S (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59:301–315

    Article  PubMed  CAS  Google Scholar 

  83. Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9:342–353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, Zhang Y, Sanchez-Martin M, Badgley MA, Huang CS, Tran TH, Akkiraju H, Brown LM, Nandakumar R, Cremers S, Yang WS, Tong L, Olive KP, Ferrando A, Stockwell BR (2017) Multivalent small-molecule Pan-RAS inhibitors. Cell 168(878–889):e829

    Google Scholar 

  85. Wang X, Wu X, Zhang A, Wang S, Hu C, Chen W, Shen Y, Tan R, Sun Y, Xu Q (2016) Targeting the PDGF-B/PDGFR-beta interface with Destruxin A5 to selectively block PDGF-BB/PDGFR-betabeta signaling and attenuate liver fibrosis. EBioMedicine 7:146–156

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fan X, Wei J, Xiong H, Liu X, Benichou S, Gao X, Liu L (2015) A homogeneous time-resolved fluorescence-based high-throughput screening for discovery of inhibitors of Nef-sdAb19 interaction. Int J Oncol 47:1485–1493

    Article  PubMed  CAS  Google Scholar 

  87. Seidel SAI, Wienken CJ, Geissler S, Jerabek-Willemsen M, Duhr S, Reiter A, Trauner D, Braun D, Baaske P (2012) Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding. Angew Chem 51:10656–10659

    Article  CAS  Google Scholar 

  88. Espada A, Molina-Martin M (2012) Capillary electrophoresis and small molecule drug discovery: a perfect match? Drug Discov Today 17:396–404

    Article  PubMed  CAS  Google Scholar 

  89. Busch MH, Carels LB, Boelens HF, Kraak JC, Poppe H (1997) Comparison of five methods for the study of drug-protein binding in affinity capillary electrophoresis. J Chromatogr A 777:311–328

    Article  PubMed  CAS  Google Scholar 

  90. He X, Ding Y, Li D, Lin B (2004) Recent advances in the study of biomolecular interactions by capillary electrophoresis. Electrophoresis 25:697–711

    Article  PubMed  CAS  Google Scholar 

  91. Houston DR, Yen LH, Pettit S, Walkinshaw MD (2015) Structure- and ligand-based virtual screening identifies new scaffolds for inhibitors of the oncoprotein MDM2. PLoS ONE 10:e0121424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rauch JN, Nie J, Buchholz TJ, Gestwicki JE, Kennedy RT (2013) Development of a capillary electrophoresis platform for identifying inhibitors of protein-protein interactions. Anal Chem 85:9824–9831

    Article  PubMed  CAS  Google Scholar 

  93. Xu M, Liu C, Zhou M, Li Q, Wang R, Kang J (2016) Screening of Small-molecule inhibitors of protein-protein interaction with capillary electrophoresis frontal analysis. Anal Chem 88:8050–8057

    Article  PubMed  CAS  Google Scholar 

  94. Ostergaard J, Heegaard NH (2003) Capillary electrophoresis frontal analysis: principles and applications for the study of drug-plasma protein binding. Electrophoresis 24:2903–2913

    Article  PubMed  CAS  Google Scholar 

  95. Ostergaard J, Hansen SH, Jensen H, Thomsen AE (2005) Pre-equilibrium capillary zone electrophoresis or frontal analysis: advantages of plateau peak conditions in affinity capillary electrophoresis. Electrophoresis 26:4050–4054

    Article  PubMed  CAS  Google Scholar 

  96. Forster T (1948) Intermolecular energy migration and fluorescence. Ann Physik (Leipzig) 2:55–75

    Article  CAS  Google Scholar 

  97. Rogers MS, Cryan LM, Habeshian KA, Bazinet L, Caldwell TP, Ackroyd PC, Christensen KA (2012) A FRET-based high throughput screening assay to identify inhibitors of anthrax protective antigen binding to capillary morphogenesis gene 2 protein. PLoS ONE 7:e39911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Schaap M, Hancock R, Wilderspin A, Wells G (2013) Development of a steady-state FRET-based assay to identify inhibitors of the Keap1-Nrf2 protein-protein interaction. Protein Sci: A Publ Protein Soc 22:1812–1819

    Article  CAS  Google Scholar 

  99. Soderholm JF, Bird SL, Kalab P, Sampathkumar Y, Hasegawa K, Uehara-Bingen M, Weis K, Heald R (2011) Importazole, a small molecule inhibitor of the transport receptor importin-beta. ACS Chem Biol 6:700–708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Song Y, Liao J (2012) An in vitro Forster resonance energy transfer-based high-throughput screening assay for inhibitors of protein-protein interactions in SUMOylation pathway. Assay Drug Dev Technol 10:336–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Roszik J, Toth G, Szollosi J, Vereb G (2013) Validating pharmacological disruption of protein-protein interactions by acceptor photobleaching FRET imaging. Methods Mol Biol 986:165–178

    Article  PubMed  CAS  Google Scholar 

  102. Song Y, Madahar V, Liao J (2011) Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions. Ann Biomed Eng 39:1224–1234

    Article  PubMed  Google Scholar 

  103. Adjobo-Hermans MJ, Goedhart J, Gadella TW Jr (2006) Plant G protein heterotrimers require dual lipidation motifs of Galpha and Ggamma and do not dissociate upon activation. J Cell Sci 119:5087–5097

    Article  PubMed  CAS  Google Scholar 

  104. Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32:407–414

    Article  PubMed  CAS  Google Scholar 

  105. Benicchi T, Iozzi S, Svahn A, Axelsson H, Mori E, Bernocco S, Cappelli F, Caramelli C, Fanti P, Genesio E, Maccari L, Markova N, Micco I, Porcari V, Schultz J, Fecke W (2012) A homogeneous HTRF assay for the identification of inhibitors of the TWEAK-Fn14 protein interaction. J Biomol Screen 17:933–945

    Article  PubMed  Google Scholar 

  106. Gonzalez AZ, Li Z, Beck HP, Canon J, Chen A, Chow D, Duquette J, Eksterowicz J, Fox BM, Fu J, Huang X, Houze J, Jin L, Li Y, Ling Y, Lo MC, Long AM, McGee LR, McIntosh J, Oliner JD, Osgood T, Rew Y, Saiki AY, Shaffer P, Wortman S, Yakowec P, Yan X, Ye Q, Yu D, Zhao X, Zhou J, Olson SH, Sun D, Medina JC (2014) Novel inhibitors of the MDM2-p53 interaction featuring hydrogen bond acceptors as carboxylic acid isosteres. J Med Chem 57:2963–2988

    Article  PubMed  CAS  Google Scholar 

  107. Gonzalez AZ, Eksterowicz J, Bartberger MD, Beck HP, Canon J, Chen A, Chow D, Duquette J, Fox BM, Fu J, Huang X, Houze JB, Jin L, Li Y, Li Z, Ling Y, Lo MC, Long AM, McGee LR, McIntosh J, McMinn DL, Oliner JD, Osgood T, Rew Y, Saiki AY, Shaffer P, Wortman S, Yakowec P, Yan X, Ye Q, Yu D, Zhao X, Zhou J, Olson SH, Medina JC, Sun D (2014) Selective and potent morpholinone inhibitors of the MDM2-p53 protein-protein interaction. J Med Chem 57:2472–2488

    Article  PubMed  CAS  Google Scholar 

  108. Degorce F (2006) HTRF((R)): pioneering technology for high-throughput screening. Expert Opin Drug Discov 1:753–764

    Article  PubMed  CAS  Google Scholar 

  109. Degorce F, Card A, Soh S, Trinquet E, Knapik GP, Xie B (2009) HTRF: a technology tailored for drug discovery—a review of theoretical aspects and recent applications. Curr Chem Genomics 3:22–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bacart J, Corbel C, Jockers R, Bach S, Couturier C (2008) The BRET technology and its application to screening assays. Biotechnol J 3:311–324

    Article  PubMed  CAS  Google Scholar 

  111. Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci USA 96:151–156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Ramsay D, Kellett E, McVey M, Rees S, Milligan G (2002) Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem J 365:429–440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Arai R, Nakagawa H, Kitayama A, Ueda H, Nagamune T (2002) Detection of protein-protein interaction by bioluminescence resonance energy transfer from firefly luciferase to red fluorescent protein. J Biosci Bioeng 94:362–364

    Article  PubMed  CAS  Google Scholar 

  114. Boute N, Jockers R, Issad T (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 23:351–354

    Article  PubMed  CAS  Google Scholar 

  115. Corbel C, Wang Q, Bousserouel H, Hamdi A, Zhang B, Lozach O, Ferandin Y, Tan VB, Gueritte F, Colas P, Couturier C, Bach S (2011) First BRET-based screening assay performed in budding yeast leads to the discovery of CDK5/p25 interaction inhibitors. Biotechnol J 6:860–870

    Article  PubMed  CAS  Google Scholar 

  116. Corbel C, Sartini S, Levati E, Colas P, Maillet L, Couturier C, Montanini B, Bach S (2017) Screening for protein-protein interaction inhibitors using a bioluminescence resonance energy transfer (BRET)-based assay in yeast. SLAS Discov:2472555216689530

    Google Scholar 

  117. Normandin K, Lavallee JF, Futter M, Beautrait A, Duchaine J, Guiral S, Marinier A, Archambault V (2016) Identification of Polo-like kinase 1 interaction inhibitors using a novel cell-based assay. Sci Rep 5:37581

    Article  PubMed  CAS  Google Scholar 

  118. Mazars A, Fahraeus R (2010) Using BRET to study chemical compound-induced disruptions of the p53-HDM2 interactions in live cells. Biotechnol J 5:377–384

    Article  CAS  PubMed  Google Scholar 

  119. Sun S, Yang X, Wang Y, Shen X (2016) In vivo analysis of protein-protein interactions with bioluminescence resonance energy transfer (BRET): progress and prospects. Int J Mol Sci 17

    Google Scholar 

  120. Ullman EF, Kirakossian H, Singh S, Wu ZP, Irvin BR, Pease JS, Switchenko AC, Irvine JD, Dafforn A, Skold CN et al (1994) Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. Proc Natl Acad Sci USA 91:5426–5430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Eglen RM, Reisine T, Roby P, Rouleau N, Illy C, Bosse R, Bielefeld M (2008) The use of AlphaScreen technology in HTS: current status. Curr Chem Genomics 1:2–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Yasgar A, Jadhav A, Simeonov A, Coussens NP (2016) AlphaScreen-based assays: ultra-high-throughput screening for small-molecule inhibitors of challenging enzymes and protein-protein interactions. Methods Mol Biol 1439:77–98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Cochran JN, Diggs PV, Nebane NM, Rasmussen L, White EL, Bostwick R, Maddry JA, Suto MJ, Roberson ED (2014) AlphaScreen HTS and live-cell bioluminescence resonance energy transfer (BRET) assays for identification of Tau-Fyn SH3 interaction inhibitors for Alzheimer disease. J Biomol Screen 19:1338–1349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Zhang M, Wisniewski JA, Ji H (2015) AlphaScreen selectivity assay for beta-catenin/B-cell lymphoma 9 inhibitors. Anal Biochem 469:43–53

    Article  PubMed  CAS  Google Scholar 

  125. Catrow JL, Zhang Y, Zhang M, Ji H (2015) Discovery of selective small-molecule inhibitors for the beta-Catenin/T-Cell factor protein-protein interaction through the optimization of the acyl hydrazone moiety. J Med Chem 58:4678–4692

    Article  PubMed  CAS  Google Scholar 

  126. Ungermannova D, Lee J, Zhang G, Dallmann HG, McHenry CS, Liu X (2013) High-throughput screening AlphaScreen assay for identification of small-molecule inhibitors of ubiquitin E3 ligase SCFSkp2-Cks1. J Biomol Screen 18:910–920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Harrison AT, Kriel FH, Papathanasopoulos MA, Mosebi S, Abrahams S, Hewer R (2015) The evaluation of statins as potential inhibitors of the LEDGF/p75-HIV-1 integrase interaction. Chem Biol Drug Des 85:290–295

    Article  PubMed  CAS  Google Scholar 

  128. Glickman JF, Wu X, Mercuri R, Illy C, Bowen BR, He Y, Sills M (2002) A comparison of ALPHAScreen, TR-FRET, and TRF as assay methods for FXR nuclear receptors. J Biomol Screen 7:3–10

    Article  CAS  PubMed  Google Scholar 

  129. Morell M, Ventura S, Aviles FX (2009) Protein complementation assays: approaches for the in vivo analysis of protein interactions. FEBS Lett 583:1684–1691

    Article  PubMed  CAS  Google Scholar 

  130. Wehr MC, Rossner MJ (2016) Split protein biosensor assays in molecular pharmacological studies. Drug Discov Today 21:415–429

    Article  PubMed  CAS  Google Scholar 

  131. Remy I, Michnick SW (1999) Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc Natl Acad Sci U S A 96:5394–5399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. 132. Mai D, Jones J, Rodgers JW, Hartman JLt, Kutsch O, Steyn AJ (2011) A screen to identify small molecule inhibitors of protein-protein interactions in mycobacteria. Assay Drug Dev Technol 9:299–310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Remy I, Ghaddar G, Michnick SW (2007) Using the beta-lactamase protein-fragment complementation assay to probe dynamic protein-protein interactions. Nat Protoc 2:2302–2306

    Article  PubMed  CAS  Google Scholar 

  134. Lee HK, Brown SJ, Rosen H, Tobias PS (2007) Application of beta-lactamase enzyme complementation to the high-throughput screening of toll-like receptor signaling inhibitors. Mol Pharmacol 72:868–875

    Article  PubMed  CAS  Google Scholar 

  135. Hashimoto J, Watanabe T, Seki T, Karasawa S, Izumikawa M, Iemura S, Natsume T, Nomura N, Goshima N, Miyawaki A, Takagi M, Shin-Ya K (2009) Novel in vitro protein fragment complementation assay applicable to high-throughput screening in a 1536-well format. J Biomol Screen 14:970–979

    Article  PubMed  CAS  Google Scholar 

  136. Chen M, Li W, Zhang Z, Liu S, Zhang X, Zhang XE, Cui Z (2015) Novel near-infrared BiFC systems from a bacterial phytochrome for imaging protein interactions and drug evaluation under physiological conditions. Biomaterials 48:97–107

    Article  PubMed  CAS  Google Scholar 

  137. Yang RY, Yang KS, Pike LJ, Marshall GR (2010) Targeting the dimerization of epidermal growth factor receptors with small-molecule inhibitors. Chem Biol Drug Des 76:1–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Kaelin WG Jr, Pallas DC, DeCaprio JA, Kaye FJ, Livingston DM (1991) Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. Cell 64:521–532

    Article  PubMed  CAS  Google Scholar 

  139. Shao H, Xu X, Jing N, Tweardy DJ (2006) Unique structural determinants for Stat3 recruitment and activation by the granulocyte colony-stimulating factor receptor at phosphotyrosine ligands 704 and 744. J Immunol 176:2933–2941

    Article  PubMed  CAS  Google Scholar 

  140. Krol E, van Kessel SP, van Bezouwen LS, Kumar N, Boekema EJ, Scheffers DJ (2012) Bacillus subtilis SepF binds to the C-terminus of FtsZ. PLoS ONE 7:e43293

    Article  CAS  Google Scholar 

  141. Mochizuki Y, Kohno F, Nishigaki K, Nemoto N (2013) A pull-down method with a biotinylated bait protein prepared by cell-free translation using a puromycin linker. Anal Biochem 434:93–95

    Article  PubMed  CAS  Google Scholar 

  142. Olesen SH, Ingles DJ, Zhu JY, Martin MP, Betzi S, Georg GI, Tash JS, Schonbrunn E (2015) Stability of the human Hsp90-p 50Cdc37 chaperone complex against nucleotides and Hsp90 inhibitors, and the influence of phosphorylation by casein kinase 2. Molecules (Basel, Switzerland) 20:1643–1660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Yang C, Wang W, Li GD, Zhong HJ, Dong ZZ, Wong CY, Kwong DW, Ma DL, Leung CH (2017) Anticancer osmium complex inhibitors of the HIF-1alpha and p300 protein-protein interaction. Sci Rep 7:42860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Xiang J, Wang Z, Liu Q, Li X, Sun J, Fung KP, Liu F (2017) DMFC (3,5-dimethyl-7H-furo[3,2-g]chromen-7-one) regulates Bim to trigger Bax and Bak activation to suppress drug-resistant human hepatoma. Apoptosis Int J Program Cell Death 22:381–392

    Article  CAS  Google Scholar 

  145. Uesato S, Matsuura Y, Matsue S, Sumiyoshi T, Hirata Y, Takemoto S, Kawaratani Y, Yamai Y, Ishida K, Sasaki T, Enari M (2016) Discovery of new low-molecular-weight p53-Mdmx disruptors and their anti-cancer activities. Bioorg Med Chem 24:1919–1926

    Article  PubMed  CAS  Google Scholar 

  146. Muratore G, Goracci L, Mercorelli B, Foeglein A, Digard P, Cruciani G, Palu G, Loregian A (2012) Small molecule inhibitors of influenza A and B viruses that act by disrupting subunit interactions of the viral polymerase. Proc Natl Acad Sci USA 109:6247–6252

    Article  PubMed  PubMed Central  Google Scholar 

  147. Biesiadecki BJ, Jin JP (2011) A high throughput solid phase microplate protein binding assay to investigate interactions between myofilament proteins. J Biomed Biotechnol 2011:1–8

    Article  CAS  Google Scholar 

  148. Meng Y, High K, Antonello J, Washabaugh MW, Zhao Q (2005) Enhanced sensitivity and precision in an enzyme-linked immunosorbent assay with fluorogenic substrates compared with commonly used chromogenic substrates. Anal Biochem 345:227–236

    Article  PubMed  CAS  Google Scholar 

  149. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477

    Article  PubMed  CAS  Google Scholar 

  150. Bellucci A, Fiorentini C, Zaltieri M, Missale C, Spano P (2014) The “in situ” proximity ligation assay to probe protein-protein interactions in intact tissues. Methods Mol Biol 1174:397–405

    Article  PubMed  CAS  Google Scholar 

  151. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000

    Article  PubMed  CAS  Google Scholar 

  152. Leuchowius KJ, Weibrecht I, Landegren U, Gedda L, Soderberg O (2009) Flow cytometric in situ proximity ligation analyses of protein interactions and post-translational modification of the epidermal growth factor receptor family. Cytometry A 75:833–839

    Article  PubMed  CAS  Google Scholar 

  153. Kanthala S, Gauthier T, Satyanarayanajois S (2014) Structure-activity relationships of peptidomimetics that inhibit PPI of HER2-HER3. Biopolymers 101:693–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Kanthala S, Banappagari S, Gokhale A, Liu YY, Xin G, Zhao Y, Jois S (2015) Novel peptidomimetics for inhibition of HER2:HER3 heterodimerization in HER2-positive breast cancer. Chem Biol Drug Des 85:702–714

    Article  PubMed  CAS  Google Scholar 

  155. Kang MA, Kim MS, Kim JY, Shin YJ, Song JY, Jeong JH (2015) A novel pyrido-thieno-pyrimidine derivative activates p53 through induction of phosphorylation and acetylation in colorectal cancer cells. Int J Oncol 46:342–350

    Article  PubMed  CAS  Google Scholar 

  156. Muller I, Larsson K, Frenzel A, Oliynyk G, Zirath H, Prochownik EV, Westwood NJ, Henriksson MA (2014) Targeting of the MYCN protein with small molecule c-MYC inhibitors. PLoS ONE 9:e97285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Soderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45:227–232

    Article  PubMed  CAS  Google Scholar 

  158. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  PubMed  CAS  Google Scholar 

  159. Paschke M (2006) Phage display systems and their applications. Appl Microbiol Biotechnol 70:2–11

    Article  PubMed  CAS  Google Scholar 

  160. Kuzmicheva GA, Belyavskaya VA (2016) Peptide phage display in biotechnology and biomedicine. Biomeditsinskaia khimiia 62:481–495

    Article  PubMed  CAS  Google Scholar 

  161. Bazan J, Calkosinski I, Gamian A (2012) Phage display–a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccines Immunotherapeutics 8:1817–1828

    Article  CAS  Google Scholar 

  162. Tan Y, Tian T, Liu W, Zhu Z, J Yang C (2016) Advance in phage display technology for bioanalysis. Biotechnol J 11:732–745

    Article  PubMed  CAS  Google Scholar 

  163. Ishi K, Sugawara F (2008) A facile method to screen inhibitors of protein-protein interactions including MDM2-p53 displayed on T7 phage. Biochem Pharmacol 75:1743–1750

    Article  PubMed  CAS  Google Scholar 

  164. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  PubMed  CAS  Google Scholar 

  165. Keegan L, Gill G, Ptashne M (1986) Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231:699–704

    Article  PubMed  CAS  Google Scholar 

  166. Stynen B, Tournu H, Tavernier J, Van Dijck P (2012) Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 76:331–382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Khazak V, Eyrisch S, Kato J, Tamanoi F, Golemis EA (2013) A two-hybrid approach to identify inhibitors of the RAS-RAF interaction. The Enzymes 33 Pt A:213–248

    Google Scholar 

  168. Kato-Stankiewicz J, Hakimi I, Zhi G, Zhang J, Serebriiskii I, Guo L, Edamatsu H, Koide H, Menon S, Eckl R, Sakamuri S, Lu Y, Chen QZ, Agarwal S, Baumbach WR, Golemis EA, Tamanoi F, Khazak V (2002) Inhibitors of Ras/Raf-1 interaction identified by two-hybrid screening revert Ras-dependent transformation phenotypes in human cancer cells. Proc Natl Acad Sci USA 99:14398–14403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Yin X, Giap C, Lazo JS, Prochownik EV (2003) Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 22:6151–6159

    Article  PubMed  CAS  Google Scholar 

  170. Lin Y, Li Y, Zhu N, Han Y, Jiang W, Wang Y, Si S, Jiang J (2014) The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10. Antimicrob Agents Chemother 58:2038–2044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Hamdi A, Colas P (2012) Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci 33:109–118

    Article  PubMed  CAS  Google Scholar 

  172. Zhou M, Li Q, Wang R (2016) Current experimental methods for characterizing protein-protein interactions. ChemMedChem 11:738–756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Joshi PB, Hirst M, Malcolm T, Parent J, Mitchell D, Lund K, Sadowski I (2007) Identification of protein interaction antagonists using the repressed transactivator two-hybrid system. Biotechniques 42:635–644

    Article  PubMed  CAS  Google Scholar 

  174. Huang J, Schreiber SL (1997) A yeast genetic system for selecting small molecule inhibitors of protein-protein interactions in nanodroplets. Proc Natl Acad Sci USA 94:13396–13401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Young K, Lin S, Sun L, Lee E, Modi M, Hellings S, Husbands M, Ozenberger B, Franco R (1998) Identification of a calcium channel modulator using a high throughput yeast two-hybrid screen. Nat Biotechnol 16:946–950

    Article  PubMed  CAS  Google Scholar 

  176. Gunde T, Tanner S, Auf der Maur A, Petrascheck M, Barberis A (2004) Quenching accumulation of toxic galactose-1-phosphate as a system to select disruption of protein-protein interactions in vivo. Biotechniques 37:844–852

    Article  PubMed  CAS  Google Scholar 

  177. Eyckerman S, Verhee A, der Heyden JV, Lemmens I, Ostade XV, Vandekerckhove J, Tavernier J (2001) Design and application of a cytokine-receptor-based interaction trap. Nat Cell Biol 3:1114–1119

    Article  PubMed  CAS  Google Scholar 

  178. Lievens S, Caligiuri M, Kley N, Tavernier J (2012) The use of mammalian two-hybrid technologies for high-throughput drug screening. Methods 58:335–342

    Article  PubMed  CAS  Google Scholar 

  179. Eyckerman S, Lemmens I, Catteeuw D, Verhee A, Vandekerckhove J, Lievens S, Tavernier J (2005) Reverse MAPPIT: screening for protein-protein interaction modifiers in mammalian cells. Nat Methods 2:427–433

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from the National Natural Science Foundation of China (Grant No. 81430083, 21472227, 21673276 to Prof. R. Wang), the Ministry of Science and Technology of China (National Key R&D Program of China Grant No. 2016YFA0502302 to Prof. R. Wang), Chinese Academy of Sciences (Strategic Priority Research Program, Grant No. XDB20000000, No. XDB20020200), and the Science and Technology Development Foundation of Macao SAR (Grant No. 055/2013/A2 to Prof. R. Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renxiao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, M., Li, Q., Kong, W., Wang, R. (2018). Experimental Methods Used for Identifying Small-Molecule Inhibitors of Protein-Protein Interaction. In: Sheng, C., Georg, G. (eds) Targeting Protein-Protein Interactions by Small Molecules. Springer, Singapore. https://doi.org/10.1007/978-981-13-0773-7_5

Download citation

Publish with us

Policies and ethics