Skip to main content

Hot Spot-Based Design of Small-Molecule Inhibitors for Protein-Protein Interactions

  • Chapter
  • First Online:
Targeting Protein-Protein Interactions by Small Molecules

Abstract

Protein-protein interactions (PPIs) are important targets for the development of chemical probes and therapeutic agents. From the initial discovery of the existence of hot spots at PPI interfaces, it has been proposed that hot spots might provide the key for developing small-molecule PPI inhibitors. However, there has been no review on the ways in which the knowledge of hot spots can be used to achieve inhibitor design, nor critical examination of successful examples. This chapter discusses the characteristics of hot spots and the identification of druggable hot spot pockets. An analysis of four examples of hot spot-based design reveals the importance of this strategy in discovering potent and selective PPI inhibitors. A general procedure for hot spot-based design of PPI inhibitors is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein–protein recognition sites. J Mol Biol 285(5):2177–2198

    Article  CAS  PubMed  Google Scholar 

  2. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 3(4):301–317

    Article  CAS  PubMed  Google Scholar 

  3. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450(7172):1001–1009

    Article  CAS  PubMed  Google Scholar 

  4. Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108(4):1225–1244

    Article  CAS  PubMed  Google Scholar 

  5. Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267(5196):383–386

    Article  CAS  PubMed  Google Scholar 

  6. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280(1):1–9. doi:

    Google Scholar 

  7. Hu Z, Ma B, Wolfson H, Nussinov R (2000) Conservation of polar residues as hot spots at protein interfaces. Proteins 39(4):331–342

    Article  CAS  PubMed  Google Scholar 

  8. Ma B, Elkayam T, Wolfson H, Nussinov R (2003) Protein–protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci USA 100(10):5772–5777

    Article  CAS  PubMed  Google Scholar 

  9. Carbonell P, Nussinov R, del Sol A (2009) Energetic determinants of protein binding specificity: insights into protein interaction networks. Proteomics 9(7):1744–1753

    Article  CAS  PubMed  Google Scholar 

  10. Keskin O, Ma B, Nussinov R (2005) Hot regions in protein–protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol 345(5):1281–1294

    Article  CAS  PubMed  Google Scholar 

  11. Guo W, Wisniewski JA, Ji H (2014) Hot spot-based design of small-molecule inhibitors for protein–protein interactions. Bioorg Med Chem Lett 24(11):2546–2554

    Article  CAS  PubMed  Google Scholar 

  12. Reichmann D, Rahat O, Albeck S, Meged R, Dym O, Schreiber G (2005) The modular architecture of protein–protein binding interfaces. Proc Natl Acad Sci USA 102(1):57–62

    Article  CAS  PubMed  Google Scholar 

  13. Moza B, Buonpane RA, Zhu P, Herfst CA, Rahman AKMN-u, McCormick JK, Kranz, DM, Sundberg EJ (2006) Long-range cooperative binding effects in a T cell receptor variable domain. Proc Natl Acad Sci USA 103(26):9867–9872

    Article  CAS  Google Scholar 

  14. Golden MS, Cote SM, Sayeg M, Zerbe BS, Villar EA, Beglov D, Sazinsky SL, Georgiadis RM, Vajda S, Kozakov D, Whitty A (2013) Comprehensive experimental and computational analysis of binding energy hot spots at the NF-κB essential modulator/IKKβ protein–protein interface. J Am Chem Soc 135(16):6242–6256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rajamani D, Thiel S, Vajda S, Camacho CJ (2004) Anchor residues in protein–protein interactions. Proc Natl Acad Sci USA 101(31):11287–11292

    Article  CAS  PubMed  Google Scholar 

  16. Meireles LMC, Dömling AS, Camacho CJ (2010) ANCHOR: a web server and database for analysis of protein–protein interaction binding pockets for drug discovery. Nucleic Acids Res 38:W407–W411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X, Keskin O, Ma B, Nussinov R, Liang J (2004) Protein–protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre-organized in the unbound states: implications for docking. J Mol Biol 344(3):781–795

    Article  CAS  PubMed  Google Scholar 

  18. Morrow JK, Zhang S (2012) Computational prediction of protein hot spot residues. Curr Pharm Des 18(9):1255–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein–protein complexes. Proc Natl Acad Sci USA 99(22):14116–14121

    Article  CAS  PubMed  Google Scholar 

  20. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320(2):369–387

    Article  CAS  PubMed  Google Scholar 

  21. Massova I, Kollman PA (1999) Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121(36):8133–8143

    Article  CAS  Google Scholar 

  22. Moreira IS, Fernandes PA, Ramos MJ (2007) Computational alanine scanning mutagenesis–an improved methodological approach. J Comput Chem 28(3):644–654

    Article  CAS  PubMed  Google Scholar 

  23. Darnell SJ, LeGault L, Mitchell JC (2008) KFC Server: interactive forecasting of protein interaction hot spots. Nucleic Acids Res 36:W265–W269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tuncbag N, Gursoy A, Keskin O (2009) Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25(12):1513–1520

    Article  CAS  PubMed  Google Scholar 

  25. Cho K-I, Kim D, Lee D (2009) A feature-based approach to modeling protein-protein interaction hot spots. Nucleic Acids Res 37(8):2672–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xia J-F, Zhao X-M, Song J, Huang D-S (2010) APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinform 11:174

    Article  CAS  Google Scholar 

  27. Zhu X, Mitchell JC (2011) KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features. Proteins 79(9):2671–2683

    Article  CAS  PubMed  Google Scholar 

  28. Masso M, Vaisman II (2008) Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Bioinformatics 24(18):2002–2009

    Article  CAS  PubMed  Google Scholar 

  29. Lise S, Archambeau C, Pontil M, Jones DT (2009) Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods. BMC Bioinform 10:365

    Article  CAS  Google Scholar 

  30. Li J, Liu Q (2009) ‘Double water exclusion’: a hypothesis refining the O-ring theory for the hot spots at protein interfaces. Bioinformatics 25(6):743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Q, Li J (2010) Protein binding hot spots and the residue-residue pairing preference: a water exclusion perspective. BMC Bioinform 11:244

    Article  CAS  Google Scholar 

  32. Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spot occlusion from bulk water: a comprehensive study of the complex between the lysozyme HEL and the antibody FVD1.3. J Phys Chem B 111(10):2697–2706

    Article  CAS  PubMed  Google Scholar 

  33. Moreira IS, Ramos RM, Martins JM, Fernandes PA, Ramos MJ (2014) Are hot-spots occluded from water? J Biomol Struct Dyn 32(2):186–197

    Article  CAS  PubMed  Google Scholar 

  34. Li Z, Li J (2010) Geometrically centered region: a “wet” model of protein binding hot spots not excluding water molecules. Proteins 78(16):3304–3316

    Article  CAS  PubMed  Google Scholar 

  35. Fuller JC, Burgoyne NJ, Jackson RM (2009) Predicting druggable binding sites at the protein–protein interface. Drug Discov Today 14(3–4):155–161

    Article  CAS  PubMed  Google Scholar 

  36. Mattos C, Ringe D (1996) Locating and characterizing binding sites on proteins. Nat Biotechnol 14(5):595–599

    Article  CAS  PubMed  Google Scholar 

  37. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534

    Article  CAS  PubMed  Google Scholar 

  38. Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment base discovery. Drug Discov Today 8(19):876–877

    Article  PubMed  Google Scholar 

  39. DeLano WL, Ultsch MH, de Vos AM, Wells JA (2000) Convergent solutions to binding at a protein–protein interface. Science 287(5456):1279–1283

    Article  CAS  PubMed  Google Scholar 

  40. Zerbe BS, Hall DR, Vajda S, Whitty A, Kozakov D (2012) Relationship between hot spot residues and ligand binding hot spots in protein–protein interfaces. J Chem Inf Model 52(8):2236–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brenke R, Kozakov D, Chuang G-Y, Beglov D, Hall D, Landon MR, Mattos C, Vajda S (2009) Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics 25(5):621–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buhrman G, O’Connor C, Zerbe B, Kearney BM, Napoleon R, Kovrigina EA, Vajda S, Kozakov D, Kovrigin EL, Mattos C (2011) Analysis of binding site hot spots on the surface of Ras GTPase. J Mol Biol 413(4):773–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hall DH, Grove LE, Yueh C, Ngan CH, Kozakov D, Vajda S (2011) Robust identification of binding hot spots using continuum electrostatics: application to hen egg-white lysozyme. J Am Chem Soc 133(51):20668–20671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, Blundell TL (2012) Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery. Q Rev Biophys 45(4):383–426

    Article  CAS  PubMed  Google Scholar 

  45. Erlanson DA, Braisted AC, Raphael DR, Randal M, Stroud RM, Gordon EM, Wells JA (2000) Site-directed ligand discovery. Proc Natl Acad Sci USA 97(17):9367–9372

    Article  CAS  PubMed  Google Scholar 

  46. Braisted AC, Oslob JD, Delano WL, Hyde J, McDowell RS, Waal N, Yu C, Arkin MR, Raimundo BC (2003) Discovery of a potent small molecule IL-2 inhibitor through fragment assembly. J Am Chem Soc 125(13):3714–3715

    Article  CAS  PubMed  Google Scholar 

  47. Scott DE, Ehebauer MT, Pukala T, Marsh M, Blundell TL, Venkitaraman AR, Abell C, Hyvönen M (2013) Using a fragment-based approach to target protein–protein interactions. ChemBioChem 14(3):332–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mikuni J, Kato M, Taruya S, Tsuganezawa K, Mori M, Ogawa N, Honma T, Yokoyama S, Kojima H, Okabe T, Nagano T, Tanaka A (2010) A fluorescence correlation spectroscopy-based assay for fragment screening of slowly inhibiting protein-peptide interaction inhibitors. Anal Biochem 402(1):26–31

    Article  CAS  PubMed  Google Scholar 

  49. Davis BJ, Erlanson DA (2013) Learning from our mistakes: the ‘unknown knowns’ in fragment screening. Bioorg Med Chem Lett 23(10):2844–2852

    Article  CAS  PubMed  Google Scholar 

  50. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681

    Article  CAS  PubMed  Google Scholar 

  51. He MM, Smith AS, Oslob JD, Flanagan WM, Braisted AC, Whitty A, Cancilla MT, Wang J, Lugovskoy AA, Yoburn JC, Fung AD, Farrington G, Eldredge JK, Day ES, Cruz LA, Cachero TG, Miller SK, Friedman JE, Choong IC, Cunningham BC (2005) Small-molecule inhibition of TNF-α. Science 310(5750):1022–1025

    Article  CAS  PubMed  Google Scholar 

  52. Geppert T, Bauer S, Hiss JA, Conrad E, Reutlinger M, Schneider P, Weisel M, Pfeiffer B, Altmann K-H, Waibler Z, Schneider G (2012) Immunosuppressive small molecule discovered by structure-based virtual screening for inhibitors of protein–protein interactions. Angew Chem Int Ed 51(1):258–261

    Article  CAS  Google Scholar 

  53. Petros AM, Dinges J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK, Nettesheim DG, Rosenberg SH, Shen W, Thomas S, Wang X, Zanze I, Zhang H, Fesik SW (2006) Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J Med Chem 49(2):656–663

    Article  CAS  PubMed  Google Scholar 

  54. Wendt MD, Shen W, Kunzer A, McClellan WJ, Bruncko M, Oost TK, Ding H, Joseph MK, Zhang H, Nimmer PM, Ng S-C, Shoemaker AR, Petros AM, Oleksijew A, Marsh K, Bauch J, Oltersdorf T, Belli BA, Martineau D, Fesik SW, Rosenberg SH, Elmore SW (2006) Discovery and structure-activity relationship of antagonists of B-cell lymphoma 2 family proteins with chemopotentiation activity in vitro and in vivo. J Med Chem 49(3):1165–1181

    Article  CAS  PubMed  Google Scholar 

  55. Bruncko M, Oost TK, Belli BA, Ding H, Joseph MK, Kunzer A, Martineau D, McClellan WJ, Mitten M, Ng S-C, Nimmer PM, Oltersdorf T, Park C-M, Petros AM, Shoemaker AR, Song X, Wang X, Wendt MD, Zhang H, Fesik SW, Rosenberg SH, Elmore SW (2007) Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J Med Chem 50(4):641–662

    Article  CAS  PubMed  Google Scholar 

  56. Park C-M, Bruncko M, Adickes J, Bauch J, Ding H, Kunzer A, Marsh KC, Nimmer P, Shoemaker AR, Song X, Tahir SK, Tse C, Wang X, Wendt MD, Yang X, Zhang H, Fesik SW, Rosenberg SH, Elmore SW (2008) Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J Med Chem 51(21):6902–6915

    Article  CAS  PubMed  Google Scholar 

  57. Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9(10):430–431

    Article  PubMed  Google Scholar 

  58. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48(7):2518–2525

    Article  CAS  PubMed  Google Scholar 

  59. Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, Salzberg AC, Huang ES (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25(1):71–75

    Article  CAS  PubMed  Google Scholar 

  60. Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53(15):5858–5867

    Article  CAS  PubMed  Google Scholar 

  61. Pettit FK, Bowie JU (1999) Protein surface roughness and small molecular binding sites. J Mol Biol 285(4):1377–1382

    Article  CAS  PubMed  Google Scholar 

  62. Soga S, Shirai H, Kobori M, Hirayama N (2007) Use of amino acid composition to predict ligand-binding sites. J Chem Inf Model 47(2):400–406

    Article  CAS  PubMed  Google Scholar 

  63. Li Y, Liu Z, Han L, Li C, Wang R (2013) Mining the characteristic interaction patterns on protein–protein binding interfaces. J Chem Inf Model 53(9):2437–2447

    Article  CAS  PubMed  Google Scholar 

  64. Metz A, Pfleger C, Kopitz H, Pfeiffer-Marek S, Baringhaus K-H, Gohlke H (2012) Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein–protein interface. J Chem Inf Model 52(1):120–133

    Article  CAS  PubMed  Google Scholar 

  65. Eyrisch S, Helms V (2007) Transient pockets on protein surfaces involved in protein–protein interaction. J Med Chem 50(15):3457–3464

    Article  CAS  PubMed  Google Scholar 

  66. Johnson DK, Karanicolas J (2013) Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Comput Biol 9(3):e1002951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kozakov D, Hall DR, Chuang G-Y, Cencic R, Brenke R, Grove LE, Beglov D, Pelletier J, Whitty A, Vajda S (2011) Structural conservation of druggable hot spots in protein–protein interfaces. Proc Natl Acad Sci USA 108(33):13528–13533

    Article  PubMed  Google Scholar 

  68. Ding K, Lu Y, Nikolovska-Coleska Z, Qiu S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller PP, Tomita Y, Parrish DA, Deschamps JR, Wang S (2005) Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 127(29):10130–10131

    Article  CAS  PubMed  Google Scholar 

  69. Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K, Roller PP, Wang S (2006) Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2–p53 interaction. J Med Chem 49(12):3432–3435

    Article  CAS  PubMed  Google Scholar 

  70. Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105(10):3933–3938

    Article  PubMed  Google Scholar 

  71. Zhao Y, Liu L, Sun W, Lu J, McEachern D, Li X, Yu S, Bernard D, Ochsenbein P, Ferey V, Carry J-C, Deschamps JR, Sun D, Wang S (2013) Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors. J Am Chem Soc 135(19):7223–7234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao Y, Yu S, Sun W, Liu L, Lu J, McEachern D, Shargary S, Bernard D, Li X, Zhao T, Zou P, Sun D, Wang S (2013) A potent small-molecule inhibitor of the MDM2–p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J Med Chem 56(13):5553–5561

    Article  CAS  PubMed  Google Scholar 

  73. Czarna A, Beck B, Srivastava S, Popowicz GM, Wolf S, Huang Y, Bista M, Holak TA, Dömling A (2010) Robust generation of lead compounds for protein–protein interactions by computational and MCR chemistry: p53/Hdm2 antagonists. Angew Chem Int Ed 49(31):5352–5356

    Article  CAS  Google Scholar 

  74. Popowicz GM, Czarna A, Wolf S, Wang K, Wang W, Dömling A, Holak TA (2010) Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 9(6):1104–1111

    Article  CAS  PubMed  Google Scholar 

  75. Koes D, Khoury K, Huang Y, Wang W, Bista M, Popowicz GM, Wolf S, Holak TA, Dömling A, Camacho CJ (2012) Enabling large-scale design, synthesis and validation of small molecule protein–protein antagonists. PLoS ONE 7(3):e32839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang Y, Wolf S, Beck B, Köhler L-M, Khoury K, Popowicz GM, Goda SK, Subklewe M, Twarda A, Holak TA, Dömling A (2014) Discovery of highly potent p53-MDM2 antagonists and structural basis for anti-acute myeloid leukemia activities. ACS Chem Biol 9(3):802–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang Y, Wolf S, Koes D, Popowicz GM, Camacho CJ, Holak TA, Dömling A (2012) Exhaustive fluorine scanning toward potent p53–Mdm2 antagonists. ChemMedChem 7(1):49–52

    Article  CAS  PubMed  Google Scholar 

  78. Bista M, Wolf S, Khoury K, Kowalska K, Huang Y, Wrona E, Arciniega M, Popowicz GM, Holak TA, Dömling A (2013) Transient protein states in designing inhibitors of the MDM2–p53 interaction. Structure 21(12):2143–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, Noblin DJ, Jorgensen WL, Ciulli A, Crews CM (2012) Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J Am Chem Soc 134(10):4465–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Van Molle I, Thomann A, Buckley DL, So EC, Lang S, Crews CM, Ciulli A (2012) Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1α protein–protein interface. Chem Biol 19(10):1300–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jorgensen WL (2009) Efficient drug lead discovery and optimization. Acc Chem Res 42(6):724–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Buckley DL, Gustafson JL, Van Molle I, Roth AG, Tae HS, Gareiss PC, Jorgensen WL, Ciulli A, Crews CM (2012) Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. Angew Chem Int Ed 51(46):11463–11467

    Article  CAS  Google Scholar 

  83. Ji H, Stanton BZ, Igarashi J, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB (2008) Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors. J Am Chem Soc 130(12):3900–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ji H, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB (2009) Discovery of highly potent and selective inhibitors of neuronal nitric oxide synthase by fragment hopping. J Med Chem 52(3):779–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Teuscher KB, Ji H (2015) Protocol for fragment hopping. Methods Mol Biol 1289:57–73

    Article  CAS  PubMed  Google Scholar 

  86. Yu B, Huang Z, Zhang M, Dillard DR, Ji H (2013) Rational design of small-molecule inhibitors for β-catenin/T-cell factor protein–protein interactions by bioisostere replacement. ACS Chem Biol 8(3):524–529

    Article  CAS  PubMed  Google Scholar 

  87. Reynès C, Host H, Camproux A-C, Laconde G, Leroux F, Mazars A, Deprez B, Fahraeus R, Villoutreix BO, Sperandio O (2010) Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods. PLoS Comput Biol 6(3):e1000695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hamon V, Brunel JM, Combes S, Basse MJ, Roche P, Morelli X (2013) 2P2Ichem: focused chemical libraries dedicated to orthosteric modulation of protein–protein interactions. MedChemComm 4(5):797–809

    Article  CAS  Google Scholar 

  89. Smith MC, Gestwicki JE (2012) Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 14:e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cesa LC, Patury S, Komiyama T, Ahmad A, Zuiderweg ERP, Gestwicki JE (2013) Inhibitors of difficult protein-protein interactions identified by high-throughput screening of multiprotein complexes. ACS Chem Biol 8(9):1988–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. (a) Venkatesan K, Rual J-F, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh K-I, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet A-S, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabási A-L, Vidal M (2009) An empirical framework for binary interactome mapping. Nat Methods 6(1):83–90; (b) Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, Bisikirska B, Lefebvre C, Accili D, Hunter T, Maniatis T, Califano A, Honig B (2012) Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 490(7421):556–560

    Google Scholar 

  92. Yildirim MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M (2007) Drug-target network. Nat Biotechnol 25(10):1119–1126

    Article  CAS  PubMed  Google Scholar 

  93. Huang Z, Zhang M, Burton SD, Katsakhyan LN, Ji H (2014) Targeting the Tcf4 G13ANDE17 binding site to selectively disrupt β-catenin/T-cell factor protein–protein interactions. ACS Chem Biol 9(1):193–201

    Article  CAS  PubMed  Google Scholar 

  94. Levin KB, Dym O, Albeck S, Magdassi S, Keeble AH, Kleanthous C, Tawfik DS (2009) Following evolutionary paths to protein-protein interactions with high affinity and selectivity. Nat Struct Mol Biol 16(10):1049–1055

    Article  CAS  PubMed  Google Scholar 

  95. Meenan NA, Sharma A, Fleishman SJ, Macdonald CJ, Morel B, Boetzel R, Moore GR, Baker D, Kleanthous C (2010) The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction. Proc Natl Acad Sci USA 107(22):10080–10085

    Article  PubMed  Google Scholar 

  96. Kosloff M, Travis AM, Bosch DE, Siderovski DP, Arshavsky VY (2011) Integrating energy calculations with functional assays to decipher the specificity of G protein-RGS protein interactions. Nat Struct Mol Biol 18(7):846–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ji, H. (2018). Hot Spot-Based Design of Small-Molecule Inhibitors for Protein-Protein Interactions. In: Sheng, C., Georg, G. (eds) Targeting Protein-Protein Interactions by Small Molecules. Springer, Singapore. https://doi.org/10.1007/978-981-13-0773-7_3

Download citation

Publish with us

Policies and ethics