Skip to main content

Development of Highly Efficient, Low-Cost Lignocellulolytic Enzyme Systems in a Penicillium: From Strain Screening to Systems Biology

  • Chapter
  • First Online:
Fungal Cellulolytic Enzymes

Abstract

Some Penicillium species have been reported to produce enzyme systems with good performances in lignocellulose degradation. Penicillium oxalicum (formerly classified as P. decumbens) strains, which produce more balanced native lignocellulolytic enzyme systems than Trichoderma reesei, have been studied for more than 30 years. The original P. oxalicum isolate 114 was obtained from decayed straw-covered soil in 1979 and has been improved through a series of mutagenesis and screening over the years. The whole genome sequence of the P. oxalicum was finished in 2009. Comparative and functional genomics studies between P. oxalicum mutant JU-A10-T and wild-type strain 114-2 were performed to decipher how strain improvement has significantly improved the production of the lignocellulolytic enzyme system. Further, the transcriptomes and secretomes of the P. oxalicum were determined. The applications of genomic, transcriptomic, and proteomic analysis methods make it possible in evaluation of the native enzyme system, discovery of novel auxiliary proteins, understanding of regulatory mechanisms by key transcription factors, and exploration of the cellular network controlling lignocellulolytic enzyme synthesis. A single-gene disruptant library for 470 transcription factors was constructed, and several activators and repressors were identified to play essential roles in regulating lignocellulolytic enzyme production. Redesigning the regulatory pathway substantially improves lignocellulolytic enzyme production up to the industrial level by combinational manipulation of three key genes to amplify the induction along with derepression. By combining systems biology tools, engineered fungal strains are expected to produce high levels of optimized lignocellulolytic enzyme systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJ, Culley D et al (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21:885–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrianopoulos A, Timberlake WE (1994) The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol 14:2503–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  • Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC et al (2005) LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 4:1574–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butchko RA, Brown DW, Busman M, Tudzynski B, Wiemann P (2012) Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genet Biol 49:602–612

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Timberlake WE (1993) Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics 133:29–38

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen M, Qin Y, Liu Z, Liu K, Wang F, Qu Y (2010) Isolation and characterization of a b-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzym Microb Technol 46:444–449

    Article  CAS  Google Scholar 

  • Chen M, Qin Y, Cao Q, Liu G, Li J, Li Z, Zhao J, Qu Y (2013) Promotion of extracellular lignocellulolytic enzymes production by restraining the intracellular β-glucosidase in Penicillium decumbens. Bioresour Technol 137:33–40

    Article  CAS  PubMed  Google Scholar 

  • Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL (2012) Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci USA 109:7397–7402

    Article  PubMed  PubMed Central  Google Scholar 

  • Coradetti ST, Xiong Y, Glass NL (2013) Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiologyopen 2:595–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dernt C, Gudynaite-Savitch L, Calixte S, White T et al (2013) Mutation of the Xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains. Biotechnol Biofuels 6:62

    Article  CAS  Google Scholar 

  • Eissenberg JC, James TC, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SC (1990) Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci USA 87:9923–9927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierro F, Gutierrez S, Diez B, Martin JF (1993) Resolution of four large chromosomes in penicillin-producing filamentous fungi: the penicillin gene cluster is located on chromosome II (9.6 Mb) in Penicillium notatum and chromosome I (10.4 Mb) in Penicillium chrysogenum. Mol Gen Genet 241:573–578

    Article  CAS  PubMed  Google Scholar 

  • Fowler T, Brown RD Jr (1992) The bgl1 gene encoding extracellular betaglucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Mol Microbiol 6:3225–3235

    Article  CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Xia C, Xu J, Li Z, Yu L, Liu G, Song X, Qu Y (2017) Constitutive expression of chimeric transcription factors enables cellulase synthesis under non-inducing conditions in Penicillium oxalicum. Biotechnol J. https://doi.org/10.1002/biot.201700119

  • Gonzalez-Vogel A, Eyzaguirre J, Oleas G, Callegari E, Navarrete M (2011) Proteomic analysis in non-denaturing condition of the secretome reveals the presence of multienzyme complexes in Penicillium purpurogenum. Appl Microbiol Biotechnol 89:145–155

    Article  CAS  PubMed  Google Scholar 

  • Gusakov AV, Sinitsyn AP (2012) Cellulases from Penicillium species for producing fuels from biomass. Biofuels 3:463–477

    Article  CAS  Google Scholar 

  • Haldar S, Saini A, Nanda JS, Saini S, Singh J (2011) Role of Swi6/HP1 self-association-mediated recruitment of Clr4/Suv39 in establishment and maintenance of heterochromatin in fission yeast. J Biol Chem 286:9308–9320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herpoel-Gimbert I, Margeot A, Dolla A, Jan G, Molle D, Lignon S et al (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiragami K, Festenstein R (2005) Heterochromatin protein 1: a pervasive controlling influence. Cell Mol Life Sci 62:2711–2726

    Article  CAS  PubMed  Google Scholar 

  • Honda S, Selker EU (2008) Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa. Mol Cell Biol 28:6044–6055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iizuka M, Smith MM (2003) Functional consequences of histone modifications. Curr Opin Genet Dev 13:154–160

    Article  CAS  PubMed  Google Scholar 

  • Ilmen M, Thrane C, Penttila M (1996) The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251:451–460

    PubMed  CAS  Google Scholar 

  • Khavari PA, Peterson CL, Tamkun JW, Mendel DB, Crabtree GR (1993) BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366:170–174

    Article  CAS  PubMed  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    Article  CAS  PubMed  Google Scholar 

  • Kosalková K, García-Estrada C, Ullán RV, Godio RP, Feltrer R, Teijeira F et al (2009) The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91:214–225

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurasawa T, Yachi M, Suto M, Kamagata Y, Takao S, Tomita F (1992) Induction of cellulase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum. Appl Environ Microbiol 58(1):106–110

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li ZH, Du CM, Zhong YH, Wang TH (2010) Development of a highly efficient gene targeting system allowing rapid genetic manipulations in Penicillium decumbens. Appl Microbiol Biotechnol 87:1065–1076

    Google Scholar 

  • Li Z, Yao G, Wu R, Gao L, Kan Q, Liu M, Yang P, Liu G, Qin Y, Song X, Zhong Y, Fang X, Qu Y (2015) Synergistic and dose-controlled regulation of cellulase gene expression in Penicillium oxalicum. PLoS Genet 11(9):e1005509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Lin X, Yue J, Li X, Fang X et al (2010) High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour Technol 101:4952–4958

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Zhang L, Qin Y, Zou G, Li Z, Yan X et al (2013a) Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep 3:1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C, Xun L, Zhao GP, Zhou Z, Qu Y (2013b) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 8(2):e55185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Qin Y, Li Z, Qu Y (2013c) Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Biotechnol Adv 31(6):962–975

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer P, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R et al (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  CAS  PubMed  Google Scholar 

  • Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ et al (2008) Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol 74:6554–6562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  CAS  PubMed  Google Scholar 

  • Masayuki M, Osamu Y, Katsuya G (2008) Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res 15:173–183

    Article  CAS  Google Scholar 

  • Mello-de-Sousa TM, Rassinger A, Pucher ME, dos Santos Castro L, Persinoti GF, Silva-Rocha R et al (2015) The impact of chromatin remodelling on cellulase expression in Trichoderma reesei. BMC Genomics 16:588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakari-Setälä T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M (2009) Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol 75:4853–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda K, Kobayashi A, Ohashi S, Sano M (2011) Aspergillus oryzae laeA regulates kojic acid synthesis genes. Biosci Biotechnol Biochem 75:1832–1834

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Yu JH (2012) Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol 15:669–677

    Article  CAS  PubMed  Google Scholar 

  • Phillips CM, Iavarone AT, Marletta MA (2011) Quantitative proteomic approach for cellulose degradation by Neurospora crassa. J Proteome Res 10:4177–4185

    Article  CAS  PubMed  Google Scholar 

  • Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sándor E, Hartl L, Karaffa L, Druzhinina IS, Seiboth B, Le Crom S, Kubicek CP (2011) The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12:269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Bao L, Gao M, Chen M, Lei Y, Liu G, Qu Y (2013) Penicillium deumbens BrlA extensively regulates secondary metabolism and functionally associates with the expression of cellulase genes. Appl Microbiol Biotechnol 97:10453–10467

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Gao P, Wang Z (1984) Screening of catabolite repression-resistant mutants of cellulase producing Penicillium spp. Acta Mycol Sin 3:238–243

    Google Scholar 

  • Reyes-Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A, Gallmetzer A et al (2010) Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol Microbiol 76:1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ries L, Belshaw NJ, Ilmén M, Penttilä ME, Alapuranen M, Archer DB (2014) The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Appl Microbiol Biotechnol 98:749–762

    Article  CAS  PubMed  Google Scholar 

  • Sahare P, Singh R, Laxman RS, Rao M (2012) Effect of alkali pretreatment on the structural properties and enzymatic hydrolysis of corn cob. Appl Biochem Biotechnol 168:1806–1819

    Article  CAS  PubMed  Google Scholar 

  • Saloheimo M, Kuja-Panula J, Ylosmaki E, Ward M, Penttilä M (2002) Enzymatic properties and intracellular localization of the novel Trichoderma reesei b glucosidase BGLII (Cel1A). Appl Environ Microbiol 68(9):4546–4553

    Google Scholar 

  • Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG et al (2012) The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol 84:1150–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Soni R, Nazir A, Oberoi HS, Chadha BS (2011) Evaluation of glycosyl hydrolases in the secretome of Aspergillus fumigatus and saccharification of alkali-treated rice straw. Appl Biochem Biotechnol 163:577–591

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Glass NL (2011) Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS One 6:e25654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Tian C, Diamond S, Glass NL (2012) Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryot Cell 11:482–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabka MG, Herpoel-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzym Microb Technol 39:897–902

    Article  CAS  Google Scholar 

  • vanKuyk PA, Benen JA, Wosten HA, Visser J, de Vries RP (2012) A broader role for AmyR in Aspergillus niger: regulation of the utilisation of D-glucose or Dgalactose containing oligo- and polysaccharides. Appl Microbiol Biotechnol 93:285–293

    Article  CAS  PubMed  Google Scholar 

  • Voss TC, Hager GL (2014) Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet 15:69–81

    Article  CAS  PubMed  Google Scholar 

  • Watanabe J et al (2011) Loss of Aspergillus oryzae amyR function indirectly affects hemicellulolytic and cellulolytic enzyme production. J Biosci Bioeng 111:408–413

    Article  CAS  PubMed  Google Scholar 

  • Xin Q, Gong Y, Lv X, Chen G, Liu W (2013) Trichoderma reesei histone acetyltransferase Gcn5 regulates fungal growth, conidiation, and cellulase gene expression. Curr Microbiol 67:580–589

    Article  CAS  PubMed  Google Scholar 

  • Yao G, Li Z, Gao L, Wu R, Kan Q, Liu G, Qu Y (2015) Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnol Biofuels 8:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao G, Li Z, Wu R, Qin Y, Liu G, Qu Y (2016) Penicillium oxalicum PoFlbC regulates fungal asexual development and is important for cellulase gene expression. Fungal Genet Biol 86:91–102

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Qu Y, Qin Y (2016) Expression and chromatin structures of cellulolytic enzyme gene regulated by heterochromatin protein 1. Biotechnol Biofuels 9:206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Xu J, Kou Y, Lv X, Zhang X, Zhao G, Zhang W, Chen G, Liu W (2012) Differential involvement of b-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryot Cell 11:1371–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Znameroski EA, Coradetti ST, Roche CM, Tsai JC, Iavarone AT, Cate JH et al (2012) Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proc Natl Acad Sci USA 109:6012–6017

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqi Qin or Yinbo Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qin, Y., Liu, G., Li, Z., Qu, Y. (2018). Development of Highly Efficient, Low-Cost Lignocellulolytic Enzyme Systems in a Penicillium: From Strain Screening to Systems Biology. In: Fang, X., Qu, Y. (eds) Fungal Cellulolytic Enzymes. Springer, Singapore. https://doi.org/10.1007/978-981-13-0749-2_4

Download citation

Publish with us

Policies and ethics