Skip to main content

Determination of Cellulase Activities and Model for Lignocellulose Saccharification

  • Chapter
  • First Online:
  • 761 Accesses

Abstract

The hydrolytic ability of cellulase enzymes being used in the current lignocellulosic “biorefinery” industry has stimulated a huge motivation to make an efficient cellulase preparation. Increasing work has shown how important the role that some basic conceptions and cognitions can play in close relation with an effective enzymatic hydrolysis. To shed light on the lignocellulose hydrolysis behavior in this review, hydrolytic performance of cellulase enzyme on various cellulosic substrates existing in form of carboxymethylcellulose (CMC), Avicel, dissolving pulp, filter paper, and natural lignocellulose was reviewed. A development of defining the enzyme activity of cellulase preparation, including specific enzyme and total enzyme mixture, was considered. Finally, the prediction of activity and dynamics of cellulase enzymes was outlooked.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Banerjee G, Scott JS, Craig J, Walton D, Casler MD (2010) Improving enzymes for biomass conversion: a basic research perspective. BioEnergy Res 3(1):82–92

    Article  Google Scholar 

  • Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848

    Article  CAS  PubMed  Google Scholar 

  • Berlin A, Gilkes N, Kilburn D, Bura R, Markov A, Skomarovsky A, Okunev O, Gusakov A, MaximenkoV GD (2005) Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates – evidence for the role of accessory enzymes. Enzyme Microb Technol 37(2):175–184

    Article  CAS  Google Scholar 

  • Berlin A, Gilkes N, Kilburn D, Maximenko V, Bura R, Markov A, Skomarovsky A, Gusakov A, Sinitsyn OO (2006) Evaluation of cellulase preparations for hydrolysis of hardwood substrates. Appl Biochem Biotechnol 130(1–3):528–545

    Article  Google Scholar 

  • Berlin A, Maximenko V, Gilkes N, Saddler JN (2010) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97(2):287–296

    Article  CAS  Google Scholar 

  • Breuil C, Saddler JN (1985) Comparison of the 3,5-dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity. Enzyme Microb Technol 7(7):327–332

    Article  CAS  Google Scholar 

  • Camassola M, Dillon JPA (2012) Cellulase determination: modifications to make the filter paper assay easy, fast, practical and efficient. J Anal Bioanal Tech 01(S1):25

    Article  Google Scholar 

  • Chen H, Li H, Liu L (2011) The inhomogeneity of corn stover and its effects on bioconversion. Biomass Bioenergy 35(5):1940–1945

    Article  CAS  Google Scholar 

  • Chien TT, Ricardo MR, Sin G, Meye AS (2014) A dynamic model for cellulosic biomass hydrolysis: a comprehensive analysis and validation of hydrolysis and product inhibition mechanisms. Appl Biochem Biotechnol 172(6):2815–2837

    Article  CAS  Google Scholar 

  • Chundawat SP, Balan V, Dale BE (2008) High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass. Biotechnol Bioeng 99(6):1281–1294

    Article  CAS  PubMed  Google Scholar 

  • Cowardkelly G, Aiellomazzari C, Kim S, Granda C, Holtzapple M (2003) Suggested improvements to the standard filter paper assay used to measure cellulase activity. Biotechnol Bioeng 82(6):745–749

    Article  CAS  Google Scholar 

  • Demartini JD, Pattathil S, Miller JS, Li JH, Hahn MG, Wyman CE (2013) Investigating plant cell wall components that affect biomass recalcitrance in poplar and switch grass. Energy Environ Sci 6(3):898–909

    Google Scholar 

  • Eveleigh DE, Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Biofuels 2(6):21

    Google Scholar 

  • Galbe M, Zacchi G, Maniatis K, Chiaramonti D (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46(6):70–78

    Article  CAS  Google Scholar 

  • Geddes CC, Nieves IU, Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22(3):312–319

    Article  CAS  PubMed  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  • Gowen CM, Fong SS (2011) Applications of systems biology towards microbial fuel production. Trends Microbiol 19(10):516–524

    Article  CAS  PubMed  Google Scholar 

  • Griggs AJ, Stickel JJ, Lischeske JJ (2012) A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics II: Cooperative enzymatic action, solution kinetics, and inhibition. Biotechnol Bioeng 109(3):676–685

    Article  CAS  PubMed  Google Scholar 

  • Han YJ, Chen HZ (2007) Synergism between corn stover protein and cellulase. Enzyme Microb Technol 41(5):638–645

    Article  CAS  Google Scholar 

  • Himmel ME, Abbas CA, Baker JO, Bayer EA, Bomble YJ, Brunecky R, Chen X, Felby C, Jeoh T, Kumar R (2017) Undefined cellulase formulations hinder scientific reproducibility. Biotechnol Biofuels 10(1):283

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4(1):36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Arantes V, Pribowo A, Saddler JN (2013) The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol Biofuels 6(1):112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Arantes V, Pribowo A, Gourlay K, Saddler JN (2014) Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy Environ Sci 7(7):2308–2315

    Article  CAS  Google Scholar 

  • Jimenez-Flores R, Fake G, Carroll J, Hood E, Howard J (2010) A novel method for evaluating the release of fermentable sugars from cellulosic biomass. Enzyme Microb Technol 47(5):206–211

    Article  CAS  Google Scholar 

  • Joglekar AV, Karanth NG, Srinivasan MC (1983) Significance of β-D-glucosidase in the measurement of exo-β-D-glucanase activity of cellulolytic fungi. Enzyme Microb Technol 5(1):25–29

    Article  CAS  Google Scholar 

  • Kabel MA, Van der Marel MJ, Klip G, Voragen AG, Schols HA (2006) Standard assays do not predict the efficiency of commercial cellulase preparations towards plant materials. Biotechnol Bioeng 93(1):56–63

    Article  CAS  PubMed  Google Scholar 

  • Kadam KL, Rydholm EC, McMillan JD (2004) Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnol Prog 20(3):698–705

    Article  CAS  PubMed  Google Scholar 

  • Khamseh AAG, Miccio M (2010) Comparison through mathematical modeling of batch, fed-batch and CSTR performance in enzymatic hydrolysis of citrus peel wastes. J Biotechnol 150(6):144

    Article  Google Scholar 

  • King BC, Donnelly MK, Bergstrom GC, Walker LP, Gibson DM (2009) An optimized microplate assay system for quantitative evaluation of plant cell wall–degrading enzyme activity of fungal culture extracts. Biotechnol Bioeng 102(4):1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Kostylev M, Wilson D (2013) Two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion. Biochemistry 52(33):5656–5664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao W, Liu Y, Wen Z, Frear C, Chen S (2008) Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure. Biotechnol Bioeng 101(3):441–451

    Article  CAS  PubMed  Google Scholar 

  • Phitsuwan P, Sakka K, Ratanakhanokchai K (2013) Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and process ability. Biomass Bioenergy 58(5):390–405

    Article  CAS  Google Scholar 

  • Pryor S, Nahar N (2010) Deficiency of cellulase activity measurements for enzyme evaluation. Appl Biochem Biotechnol 162(6):1737–1750

    Article  CAS  PubMed  Google Scholar 

  • Quinlan RJ, Sweeney MD, Lo LL, Otten H, Poulsen JC, Johansen KS, Krogh KB, Jørgensen CI, Tovborg M, Anthonsen A (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108(37):15079–15084

    Article  PubMed  Google Scholar 

  • Resch MG, Donohoe BS, Baker JO, Decker SR, Bayer EA, Beckham GT, Himmel ME (2013) Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ Sci 6(6):1858–1867

    Article  CAS  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841–845

    Article  CAS  Google Scholar 

  • Sharrock KR (1988) Cellulase assay methods: a review. J Biochem Biophys Methods 17(2):81–105

    Article  CAS  PubMed  Google Scholar 

  • Silveira MHL, Rau M, Bon EPDS, Andreaus J (2012) A simple and fast method for the determination of endo- and exo-cellulase activity in cellulase preparations using filter paper. Enzyme Microb Technol 51(5):280–285

    Article  CAS  Google Scholar 

  • Wang Z, Feng H (2010) Fractal kinetic analysis of the enzymatic saccharification of cellulose under different conditions. Bioresour Technol 101(20):7995–8000

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Han L, Liu S, Zhao X, Yang J, Loh SK, Sun X, Zhang C, Fang X (2015) A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance. Biotechnol J 10(9):1424–1433

    Article  CAS  PubMed  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 13(2):293–297

    Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20(3):295–299

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Storms R, Tsang A (2004) Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng 88(7):832–837

    Article  CAS  PubMed  Google Scholar 

  • Zhang YHP, Lynd LR (2006) A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol Bioeng 94(5):888–898

    Article  CAS  PubMed  Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: Screening and selection strategies. Biotechnol Adv 24(5):452–481

    Google Scholar 

  • Zhang YHP, Hong J, Ye X (2009) Cellulase assays. Methods Mol Biol 581:213–231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The work was funded by the National Natural Science Foundation of China (21776114; 21176106) and China Postdoctoral Science Foundation (2016T90419). Part of the work was also supported by State Key Laboratory of Microbial Technology (M2016-12) and the Jiangsu Province “Six Talent Peak” (XNY-010). We also give the thanks to the Priority Academic Program Development of Jiangsu Higher Education Institutions, the 111 Project (No. 111-2-06), and the Jiangsu province “Collaborative Innovation Center for Advanced Industrial Fermentation” industry development program.

This chapter was modified in part from the paper published by our group in Enzyme and Microbial Technology (Sun et al., 2015; 79: 42–48). The related contents are reused with permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fubao Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, F. et al. (2018). Determination of Cellulase Activities and Model for Lignocellulose Saccharification. In: Fang, X., Qu, Y. (eds) Fungal Cellulolytic Enzymes. Springer, Singapore. https://doi.org/10.1007/978-981-13-0749-2_12

Download citation

Publish with us

Policies and ethics