Skip to main content

Optimization of Cellulolytic Enzyme Systems for Lignocellulose Hydrolysis

  • Chapter
  • First Online:
Fungal Cellulolytic Enzymes

Abstract

The use of cellulase to degrade cellulose during the production of fuel ethanol is of crucial importance for solving energy and environmental problems and has attracted the attention of scientists from all over the world since the 1960s. However, the composition of the cellulase system is complex and key problems remain, such as low degradation efficiency, high production costs, and a still unclear catalytic mechanism, which seriously hinder the use of cellulase. In this chapter, the source and composition of cellulase enzymes and the mechanism of cellulose degradation are discussed. The concept of the minimal or “core” cellulase is introduced, and the engineering of the cellulase system is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alzari PM, Souchon H, Dominguez R (1996) The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Structure 4(3):265

    Article  PubMed  CAS  Google Scholar 

  • Arrizubieta MJ, Polaina J (2000) Increased thermal resistance and modification of the catalytic properties of a beta-glucosidase by random mutagenesis and recombination. J Biol Chem 275(37):28843–28848

    Google Scholar 

  • Baker JO, Ehrman CI, Adney WS et al (1998) Hydrolysis of cellulose using ternary mixtures of purified cellulases. Appl Biochem Biotechnol 70–72:395–403

    Article  PubMed  Google Scholar 

  • Baker JO, McCarley JR, Lovett R et al (2005) Catalytically enhanced endocellulase Cel5A from Acidothermus cellulolyticus. Appl Biochem Biotechnol 121–124:129–148

    Article  PubMed  Google Scholar 

  • Bissaro B, Røhr ÅK, Müller G et al (2017) Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat Chem Biol 13:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Bodenheimer AM, Meilleur F (2016) Crystal structures of wild-type Trichoderma reesei Cel7A catalytic domain in open and closed states. FEBS Lett 590:4429–4438

    Article  PubMed  CAS  Google Scholar 

  • Chen XA, Ishida N, Todaka N et al (2010) Promotion of efficient Saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Appl Environ Microbiol 76(8):2556–2561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chino M, Leone L, Maglio O et al (2017) A de novo heterodimeric due ferri protein minimizes the release of reactive intermediates in dioxygendependent oxidation. Angew Chem Int Ed Eng 56:15580–15583

    Google Scholar 

  • Corrêa TL, dos Santos LV, Pereira GA (2016) AA9 and AA10: from enigmatic to essential enzymes. Appl Microbiol Biotechnol 100(1):9–16

    Article  PubMed  CAS  Google Scholar 

  • Dang B, Wu H, Mulligan VK et al (2017) De novo design of covalently constrained mesosize protein scaffolds with unique tertiary structures. Proc Natl Acad Sci U S A 114(41):10852–10857

    Google Scholar 

  • Davies GJ (1995) Structures and mechanism of glycosyl hydrolases. Struct Lond 3(9):852–859

    Google Scholar 

  • Eibinger M, Ganner T, Bubner P et al (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289(52):35929–35938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Georgelis N, Nikolaidis N, Cosgrove DJ (2015) Bacterial expansins and related proteins from the world of microbes. Appl Microbiol Biotechnol 99(9):3807–3823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris PV, Welner D, McFarland KC et al (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316. 3305

    Article  PubMed  CAS  Google Scholar 

  • Hemsworth GR, Taylor EJ, Kim RQ et al (2013) The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc 135:6069–6077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Igarashi K, Koivula A, Wada M et al (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem. 25 284(52):36186–36190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue H, Decker SR, Taylor LE 2nd et al (2014) Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass. Biotechnol Biofuels 7(1):151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jäger G, Girfoglio M, Dollo F et al (2011) How recombinant swollenin from Kluyveromyces lactis affects cellulosicsubstrates and accelerates their hydrolysis. Biotechnol Biofuels 4(1):33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joglekar AV, Srinivasan MC, Manchanda AC et al (1983) Studies on cellulase production by a Penicillium funiculosum strain in an instrumented fermenter. Enzym Microb Technol 5(1):22–24

    Article  CAS  Google Scholar 

  • Kang K, Wang S, Lai G et al (2013) Characterization of a novel swollenin from Penicillium oxalicum, in facilitating enzymatic saccharification of cellulose. BMC Biotechnol 13(1):1–9

    Article  CAS  Google Scholar 

  • Karkehabadi S, Hansson H, Kim S et al (2008) The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 a resolution. J Mol Biol 383:144–154

    Article  PubMed  CAS  Google Scholar 

  • Karlsson J, Saloheimo M, Siika-Aho M et al (2001) Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur J Biochem 268:6498–6507

    Article  PubMed  CAS  Google Scholar 

  • Kaper T, Brouns SJ, Geerling AC et al (2002) DNA family shuffling of hyperthermostable beta-glycosidases. Biochem J 368(2):461–470

    Google Scholar 

  • Kim ES, Lee HJ, Bang WG et al (2009) Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol Bioeng 102(5):1342–1353

    Article  PubMed  CAS  Google Scholar 

  • Kim IJ, Seo N, An HJ et al (2017) Type-dependent action modes of TtAA9E and TaAA9A acting on cellulose and differently pretreated lignocellulosic substrates. Biotechnol Biofuels 10:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koseki T, Mese Y, Fushinobu S et al (2008) Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Appl Microbiol Biotechnol 77:1279–1285

    Article  PubMed  CAS  Google Scholar 

  • Kraulis J, Clore GM, Nilges M et al (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28(18):7241–7257

    Article  PubMed  CAS  Google Scholar 

  • Kurniasih SD, Alfi A, Natalia D et al (2014) Construction of individual, fused, and co-expressed proteins of endoglucanase and beta-glucosidase for hydrolyzing sugarcane bagasse. Microbiol Res 169(9–10):725–732

    Article  PubMed  CAS  Google Scholar 

  • Langston JA, Shaghasi T, Abbate E et al (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77(19):7007–7015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee RL, Paul J (2002) Microbial cellulase utilization: fundamentals and biotechnonlgy. Microbiol Mol Biol Rev 9:5062577

    Google Scholar 

  • Lee CY, Yu KO, Kim SW et al (2010) Enhancement of the thermostability and activity of mesophilic Clostridium cellulovorans EngD by in vitro DNA recombination with Clostridium thermocellum CelE. J Biosci Bioeng 109(4):331–336

    Article  PubMed  CAS  Google Scholar 

  • Leggio LL, Weiner D, De Maria L (2012) A structural overview of GH61 proteins-fungal cellulose degrading polysaccharide monooxygenases. Comput Struct Biotechnol J 2:e201209019

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima AO, Davis DF, Swiatek G et al (2009) Evaluation of GFP tag as a screening reporter in directed evolution of a hyperthermophilic betaglucosidase. Mol Biotechnol 42(2):205–215

    Google Scholar 

  • Lin L, Fu C, Huang W (2016) Improving the activity of the endoglucanase, Cel8M from Escherichia coli by error-prone PCR. Enzym Microb Technol 86:52–58

    Article  CAS  Google Scholar 

  • Liu M, Xie W, Xu H et al (2014) Directed evolution of an exoglucanase facilitated by a co-expressed beta-glucosidase and construction of a whole engineered cellulase system in Escherichia coli. Biotechnol Lett 36(9):1801–1807

    Article  PubMed  CAS  Google Scholar 

  • Ma F, Xie Y, Luo M et al (2016) Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum. Synth Syst Biotechnol 1(3):195–206

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarter JP, Withers SG (1997) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892

    Article  Google Scholar 

  • McCarthy JK, Uzelac A, Davis DF et al (2004) Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. J Biol Chem 279(12):11495–11502

    Google Scholar 

  • Moses V, Hatherley R, Tastan Bishop Ö (2016) Bioinformatic characterization of type-specific sequence and structural features in auxiliary activity family 9 proteins. Biotechnol Biofuels 9(1):239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillips CM, Beeson WT, Cate JH et al (2011) Cellobiose dehydrogenase and cooper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406

    Article  PubMed  CAS  Google Scholar 

  • Puseenam A, Tanapongpipat S, Roongsawang N (2015) Co-expression of endoxylanase and endoglucanase in Scheffersomyces stipitis and its application in ethanol production. Appl Biochem Biotechnol 177(8):1690–1700

    Google Scholar 

  • Reetz MT (2004) Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. Proc Natl Acad Sci USA 101(16):5716–5722

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Robert S, Robert AM, Ralph R (1984) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Appl Environ Microbiol 48(1):88–93

    Google Scholar 

  • Ruiz DM, Turowski VR, Murakami MT (2016) Effects of the linker region on the structure and function of modular GH5 cellulases. Sci Rep 6:28504

    Article  PubMed  PubMed Central  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S et al (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17):4202–4211

    Article  PubMed  CAS  Google Scholar 

  • Santos CA, Ferreirafilho JA, O’Donovan A et al (2017) Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation. Microb Cell Factories 16(1):83

    Article  Google Scholar 

  • Shepherd TR, Du L, Liljeruhm J et al (2017) De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Res 45(18):10895–10905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki H, Vuong TV, Gong Y et al (2014) Sequence diversity and gene expression analyses of expansin-related proteins in the white-rot basidiomycete, Phanerochaete carnosa. Fungal Gen Biol 72:115–123

    Article  CAS  Google Scholar 

  • Tang Z, Jin W, Sun R et al (2018) Improved thermostability and enzyme activity of a recombinant phyA mutant phytase from Aspergillus niger N25 by directed evolution and site-directed mutagenesis. Enzym Microb Technol 108:74–81

    Article  CAS  Google Scholar 

  • Tavagnacco L, Mason PE, Schnupf U et al (2011) Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei. Carbohydr Res 346(6):839–846

    Article  PubMed  CAS  Google Scholar 

  • Vaaje-Kolstad G, Houston DR, Riemen AH et al (2005) Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem 280:11313–11319

    Article  PubMed  CAS  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    Article  PubMed  CAS  Google Scholar 

  • Verma D, Jin S, Kanagaraj A et al (2013) Expression of fungal cutinase and swollenin in tobacco chloroplasts reveals novel enzyme functions and/or substrates. PLoS One 8(2):e57187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voutilainen SP, Murray PG, Tuohy MG et al (2010) Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel 23(2):69–79

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Liu C, Ma Y et al (2014) Improved production of two expansin-like proteins in Pichia pastoris and investigation of their functional properties. Biochem Eng J 84:16–27

    Article  CAS  Google Scholar 

  • Wang R, Yang J, Zhang G et al (2017) Co-expression of beta-glucosidase and laccase in Trichoderma reesei by random insertion with enhanced filter paper activity. Mol Biotechnol 59(8):353–364

    Article  PubMed  CAS  Google Scholar 

  • Wood TM, Ccrae SI, Wilson CA (1988) Aerobic and anaerobic fungal cellulases, with special reference to their mode of attack on crystalline cellulose. Biochemistry and genetics of cellulose degradation. FEMS Symp 43:31–52

    CAS  Google Scholar 

  • Wu I, Arnold FH (2013) Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnol Bioeng 110(7):1874–1883

    Article  PubMed  CAS  Google Scholar 

  • Xu GY, Ong E, Gilkes NR et al (1995) Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry 34(21):6993–7009

    Article  PubMed  CAS  Google Scholar 

  • Yenenler A, Sezerman OU (2016) Design and characterizations of two novel cellulases through single-gene shuffling of Cel12A (EG3) gene from Trichoderma reseei. Protein Eng Des Sel 29(6):219–229

    Google Scholar 

  • Yi ZL, Wu ZL (2010) Mutations from a family-shuffling-library reveal amino acid residues responsible for the thermostability of endoglucanase CelA from Clostridium thermocellum. Biotechnol Lett 32(12):1869–1875

    Google Scholar 

  • Zhang J, Shi H, Xu L et al (2015) Site-directed mutagenesis of a hyperthermophilic endoglucanase Cel12B from Thermotoga maritima based on rational design. PLoS One 10(7):e0133824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao G, Du L, Zhu L (2011) A novel recombinant human interferon alpha2b with high antivirus activity by combinatorial mutagenesis. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 28(2):347–351

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 31570040), the Fundamental Research Funds of Shandong University (No. 2016JC031), and the 111 Project (B16030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, R. et al. (2018). Optimization of Cellulolytic Enzyme Systems for Lignocellulose Hydrolysis. In: Fang, X., Qu, Y. (eds) Fungal Cellulolytic Enzymes. Springer, Singapore. https://doi.org/10.1007/978-981-13-0749-2_10

Download citation

Publish with us

Policies and ethics