A Useful Extension of the Inverse Exponential Distribution

  • Pelumi E. OguntundeEmail author
  • Adebowale O. Adejumo
  • Mundher A. Khaleel
  • Enahoro A. Owoloko
  • Hilary I. Okagbue
  • Abiodun A. Opanuga
Conference paper


This chapter explores the three-parameter Weibull Inverse Exponential distribution. The various and basic structural properties of the distribution are defined and established. Applications to real life datasets were provided and the unknown model parameters were estimated using the maximum likelihood estimation method. The results show that the Weibull Inverse Exponential distribution is a viable alternative to its counterpart distribution(s) based on the selection criteria used.


Distribution Generalized model Inverse exponential Mathematical statistics Statistical properties Weibull generalized family of distributions 



This work was supported by Covenant University, Nigeria.


  1. 1.
    M. Bourguignon, R.B. Silva, G.M. Cordeiro, The Weibull-G family of probability distributions. J. Data Sci. 12, 53–68 (2014)MathSciNetGoogle Scholar
  2. 2.
    A.Z. Keller, A.R. Kamath, Reliability analysis of CNC machine tools. Reliab. Eng. 3, 449–473 (1982)CrossRefGoogle Scholar
  3. 3.
    N. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications. Commun. Stat.: Theory Methods 31, 497–512 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    G.M. Cordeiro, M. de Castro, A new family of generalized distributions. J. Stat. Comuput. Simul. 81, 883–898 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    E.A. Owoloko, P.E. Oguntunde, A.O. Adejumo, Performance rating of the transmuted exponential distribution: an analytical approach. SpringerPlus 4, 818 pp. (2015)Google Scholar
  6. 6.
    P.E. Oguntunde, A.O. Adejumo, H.I. Okagbue, M.K. Rastogi, Statistical properties and applications of a new Lindley exponential distribution. Gazi Univ. J. Sci. 29(4), 831–838 (2016)Google Scholar
  7. 7.
    P.E. Oguntunde, M.A. Khaleel, M.T. Ahmed, A.O. Adejumo, O A. Odetunmibi, A new generalization of the Lomax distribution with increasing, decreasing and constant failure rate. Modell. Simul. Eng. 2017, Article ID 6043169, 6 pp. (2017)Google Scholar
  8. 8.
    P.E. Oguntunde, A.O. Adejumo, E.A. Owoloko, The Weibull-inverted exponential distribution: a generalization of the inverse exponential distribution. In: Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering 2017, WCE 2010, 5–7 July 2017, London, U.K., pp. 16–19Google Scholar
  9. 9.
    F. Merovci, I. Elbatal, Weibull rayleigh distribution: theory and applications. Appl. Math. Inf. Sci. 9(4), 2127–2137 (2015)MathSciNetGoogle Scholar
  10. 10.
    P.E. Oguntunde, O.S. Balogun, H.I. Okagbue, S.A. Bishop, The Weibull-exponential distribution: its properties and applications. J. Appl. Sci. 15(11), 1305–1311Google Scholar
  11. 11.
    M.H. Tahir, G.M. Cordeiro, M. Mansoor, Z. Zubair, The Weibull-Lomax distribution: properties and applications. Hacettepe J. Math. Stat. 44(2), 461–480 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    N.A. Ibrahim, M.A. Khaleel, F. Merovci, A. Kilicman, M. Shitan, Weibull Burr X distribution: properties and application. Pak. J. Stat. 33(5), 315–336 (2017)MathSciNetGoogle Scholar
  13. 13.
    P.E. Oguntunde, A.O. Adejumo, E.A. Owoloko, Exponential inverse exponential (EIE) distribution with applications to lifetime data. Asian J. Sci. Res. 10, 169–177 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Efron, Logistic regression, survival analysis and the Kaplan-Meier curve. J. Am. Stat. Assoc. 83(402), 414–425 (1988)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Shanker, H. Fasshaye, S. Selvaraj, On modeling lifetimes data using exponential and Lindley distributions. Biometr. Biostat. Int. J. 2(5), 00042 (2015)Google Scholar
  16. 16.
    E.T. Lee, J.W. Wang, Statistical Methods for Survival Data Analysis, 3rd edn. (Wiley, New York, USA, 2003)CrossRefGoogle Scholar
  17. 17.
    P.E. Oguntunde, A.O. Adejumo, K.A. Adepoju, Assessing the flexibility of the exponentiated generalized exponential distribution. Pac. J. Sci. Technol. 17(1), 49–57 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pelumi E. Oguntunde
    • 1
    Email author
  • Adebowale O. Adejumo
    • 1
    • 2
  • Mundher A. Khaleel
    • 3
  • Enahoro A. Owoloko
    • 1
  • Hilary I. Okagbue
    • 1
  • Abiodun A. Opanuga
    • 1
  1. 1.Department of MathematicsCovenant UniversityOtaNigeria
  2. 2.Department of StatisticsUniversity of IlorinIlorinNigeria
  3. 3.Faculty of Computer Science and Mathematics, Department of MathematicsUniversity of TikritTikritIraq

Personalised recommendations