Advertisement

Pore-Scale Modeling of Non-Newtonian Fluid Flow Through Micro-CT Images of Rocks

  • Moussa TembelyEmail author
  • Ali M. AlSumaiti
  • Khurshed Rahimov
  • Mohamed S. Jouini
Conference paper

Abstract

Most of the pore-scale models are concerned with Newtonian fluid flow due to its simplicity and the challenge posed by non-Newtonian fluid. In this paper, we report a non-Newtonian numerical simulation of the flow properties at pore-scale by direct modeling of the 3D micro-CT images using a Finite Volume Method (FVM). To describe the fluid rheology, a concentration-dependent power-law viscosity model, in line with the experimental measurements of the fluid rheology, is proposed. The model is first applied to a single-phase flow of Newtonian fluids in 2 benchmark rocks samples, a sandstone and a carbonate. The implemented FVM technique shows a good agreement with the Lattice Boltzmann Method (LBM). Subsequently, adopting a non-Newtonian fluid, the numerical simulation is used to perform a sensitivity study on different fluid rheological properties and operating conditions. The normalized effective mobility variation due to the change in polymer concentration leads to a master curve while the flow rate displays a contrast between carbonate and sandstone rocks.

Keywords

Digital rock physics Finite volume method Lattice boltzmann method Non-newtonian fluid Polymer flooding Pore-scale modeling Porous media 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from ADNOC under the Digital Rock Physics (DRP) project.

References

  1. 1.
    H. Andrä, N. Combaret, J. Dvorkin, E. Glatt, J. Han, M. Kabel, Y. Keehm, F. Krzikalla, M. Lee, C. Madonna, M. Marsh, T. Mukerji, E. Saenger, R. Sain, N. Saxena, S. Ricker, A. Wiegmann, X. Zhan, Digital rock physics benchmarks-part I: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013)CrossRefGoogle Scholar
  2. 2.
    H. Andrä, N. Combaret, J. Dvorkin, E. Glatt, J. Han, M. Kabel, Y. Keehm, F. Krzikalla, M. Lee, C. Madonna, M. Marsh, T. Mukerji, E. Saenger, R. Sain, N. Saxena, S. Ricker, A. Wiegmann, X. Zhan, Digital rock physics benchmarks-part II: computing effective properties. Comput. Geosci. 50, 33–43 (2013).  https://doi.org/10.1016/j.cageo.2012.09.008CrossRefGoogle Scholar
  3. 3.
    M.J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, C. Pentland, Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013) (35th Year Anniversary Issue).  https://doi.org/10.1016/j.advwatres.2012.03.003, http://www.sciencedirect.com/science/article/pii/S0309170812000528
  4. 4.
    T. Chevalier, C. Chevalier, Clain, X., Dupla, J., Canou, J., Rodts, S., Coussot, P.: Darcys law for yield stress fluid flowing through a porous medium. J. Non-Newton. Fluid Mech. 195 (Supplement C), 57–66 (2013).  https://doi.org/10.1016/j.jnnfm.2012.12.005, http://www.sciencedirect.com/science/article/pii/S0377025712002753
  5. 5.
    V. Di Federico, S. Longo, S.E. King, L. Chiapponi, D. Petrolo, V. Ciriello, Gravity-driven flow of herschelbulkley fluid in a fracture and in a 2D porous medium. J. Fluid Mech. 821, 5984 (2017).  https://doi.org/10.1017/jfm.2017.234CrossRefzbMATHGoogle Scholar
  6. 6.
    R. Guibert, M. Nazarova, P. Horgue, G. Hamon, P. Creux, G. Debenest, Computational permeability determination from pore-scale imaging: sample size, mesh and method sensitivities. Transp. Porous Media 107(3), 641–656 (2015).  https://doi.org/10.1007/s11242-015-0458-0
  7. 7.
    M.S. Jouini, N. Keskes, Numerical estimation of rock properties and textural facies classification of core samples using x-ray computed tomography images. Appl. Math. Modelling 41, 562–581 (2017).  https://doi.org/10.1016/j.apm.2016.09.021, http://www.sciencedirect.com/science/article/pii/S0307904X16304917
  8. 8.
    M.S. Jouini, S. Vega, A. Al-Ratrout, Numerical estimation of carbonate rock properties using multiscale images. Geophys. Prospect. 63(2), 405–421 (2015).  https://doi.org/10.1111/1365-2478.12156
  9. 9.
    A. Lavrov, Radial flow of non-newtonian power-law fluid in a rough-walled fracture: Effect of fluid rheology. Transp. Porous Media 105(3), 559–570 (2014).  https://doi.org/10.1007/s11242-014-0384-6
  10. 10.
    S. Longo, V. DiFederico, Unsteady flow of shear-thinning fluids in porous media with pressure-dependent properties. Transp. Porous Media 110(3), 429–447 (2015).  https://doi.org/10.1007/s11242-015-0565-y
  11. 11.
    M. Mackley, S. Butler, S. Huxley, N. Reis, A. Barbosa, M. Tembely, The observation and evaluation of extensional filament deformation and breakup profiles for non newtonian fluids using a high strain rate double piston apparatus. J. Non-Newton. Fluid Mech. 239, 13–27 (2017).  https://doi.org/10.1016/j.jnnfm.2016.11.009, http://www.sciencedirect.com/science/article/pii/S0377025716301483
  12. 12.
    C. Madonna, B.S. Almqvist, E.H. Saenger, Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-ct imaging. Geophys. J. Int. 189(3), 1475–1482 (2012).  https://doi.org/10.1111/j.1365-246X.2012.05437.x
  13. 13.
    P. Mostaghimi, M.J. Blunt, B. Bijeljic, Computations of absolute permeability on micro-ct images. Math. Geosci. 45(1), 103–125 (2013).  https://doi.org/10.1007/s11004-012-9431-4
  14. 14.
    T. Moussa, A.M. AlSumaiti, K. Rahimov, M.S. Jouini, Numerical simulation of non-newtonian fluid flow through a rock scanned with high resolution X-ray micro-CT, in Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 2017, 5–7 July 2017, London, UK, pp. 958–960Google Scholar
  15. 15.
    Quadri, S.M.R., Shoaib, M., AlSumaiti, A.M., Alhassan, S.: Screening of polymers for EOR in high temperature, high salinity and carbonate reservoir conditions, in International Petroleum Technology Conference, 6-9 Dec 2015, Doha, Qatar.  https://doi.org/10.2523/IPTC-18436-MS
  16. 16.
    T. Sochi, Non-newtonian flow in porous media. Polymer 51(22), 5007–5023 (2010).  https://doi.org/10.1016/j.polymer.2010.07.047, http://www.sciencedirect.com/science/article/pii/S0032386110006750
  17. 17.
    M. Tembely, D. Vadillo, M.R. Mackley, A. Soucemarianadin, The matching of a one-dimensional numerical simulation and experiment results for low viscosity newtonian and non-newtonian fluids during fast filament stretching and subsequent break-up. J. Rheol. 56(1), 159–183 (2012).  https://doi.org/10.1122/1.3669647

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Moussa Tembely
    • 1
    Email author
  • Ali M. AlSumaiti
    • 1
  • Khurshed Rahimov
    • 1
  • Mohamed S. Jouini
    • 1
  1. 1.Petroleum Institute, Khalifa University of Science and TechnologyAbu DhabiUAE

Personalised recommendations