Advertisement

The Use of Scalability of Calculations to Engineering Simulation of Solidification

  • Elzbieta GawronskaEmail author
  • Robert Dyja
  • Andrzej Grosser
  • Piotr Jeruszka
  • Norbert Sczygiol
Conference paper

Abstract

The paper focuses on the use of scalability of available development tools to engineering simulation of solidification in the mold. An essential aspect of the considerations are the ways parallelization of computations taking into account the contact between the two materials. The implementation uses a TalyFEM and PETSc library. A problem solved with finite element method (FEM) can be parallelized in two ways: the parallelization on the mathematical formulas level and the division of tasks into smaller subtasks—assignment of nodes and elements into specific computational units. Both methods can be used in the TalyFEM library if the input files loading module is modified. We have designed our own parallel input module (finite element mesh) providing a division of loaded nodes and elements into individual computational units. Our solutions enable the full potential of parallel computing available in the TalyFEM library using the MPI protocol. This implemented software can be run on any computer system with distributed memory.

Keywords

Distributed memory FEM Parallel computing Relative speed up Solidification Strong scalability 

References

  1. 1.
    S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, PETSc 2.0 User Manual. Argonne National Laboratory (2014), http://www.mcs.anl.gov/petsc/
  2. 2.
    R. Dyja, E. Gawronska, A. Grosser, P. Jeruszka, N. Sczygiol, Estimate the impact of different heat capacity approximation methods on the numerical results during computer simulation of solidification. Eng. Lett. 24(2), 237–245 (2016)Google Scholar
  3. 3.
    E. Gawronska, R. Dyja, A. Grosser, P. Jeruszka, N. Sczygiol, Scalable engineering calculations on the example of two component alloy solidification, in Proceedings of the World Congress on Engineering 2017. Lecture Notes in Engineering and Computer Science, 5–7 July 2017, London, U.K. (2017), pp. 226–231Google Scholar
  4. 4.
    H.K. Kodali, B. Ganapathysubramanian, A computational framework to investigate charge transport in heterogeneous organic photovoltaic devices. Comput. Methods Appl. Mech. Eng. 247–248, 113–129 (2012).  https://doi.org/10.1016/j.cma.2012.08.012MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Mendakiewicz, Identification of solidification process parameters. Comput. Assist. Mech. Eng. Sci. 17(1), 59–73 (2010)MathSciNetGoogle Scholar
  6. 6.
    Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRefGoogle Scholar
  7. 7.
    N. Sczygiol, Modelowanie numeryczne zjawisk termomechanicznych w krzepncym odlewie i formie odlewniczej. Politechnika Czstochowska (in Polish) (2000)Google Scholar
  8. 8.
    University of Tennessee, Knoxville, MPI: a message passing interface (2016), http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
  9. 9.
    O. Wodo, B. Ganapathysubramanian, Computationally efficient solution to the cahnhilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem. J. Comput. Phys. 230(15), 6037–6060 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    W.L. Wood, Practical Time-Stepping Schemes (Clarendon Press, Oxford University Press, Oxford [England], New York) (1990)Google Scholar
  11. 11.
    O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, 5th edn. (Butterworth, Oxford, 2000)zbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Elzbieta Gawronska
    • 1
    Email author
  • Robert Dyja
    • 1
  • Andrzej Grosser
    • 1
  • Piotr Jeruszka
    • 1
  • Norbert Sczygiol
    • 1
  1. 1.Czestochowa University of TechnologyCzęstochowaPoland

Personalised recommendations