Advertisement

Semi-analytical Methods for Higher Order Boundary Value Problems

  • A. A. OpanugaEmail author
  • H. I. Okagbue
  • O. O. Agboola
  • S. A. Bishop
  • P. E. Oguntunde
Conference paper

Abstract

This work considers the solution of higher order boundary value problems using Homotopy perturbation method (HPM) and modified Adomian decomposition method (MADM). HPM is applied without any transformation or calculation of Adomian polynomials. The differential equations are transformed into an infinite number of simple problems without necessarily using the perturbation techniques. Two numerical examples are solved to illustrate the method and the results are compared with the exact and MADM solutions. The accuracy, simplicity and rapid convergence of HPM in handling the boundary value problems reveals its advantage over MADM.

Keywords

Boundary value problems Exact solution Numerical solution MADM HPM Recursive relations 

Notes

Acknowledgements

Authors are grateful to Covenant University for the financial support and the anonymous reviewers for their constructive comments.

References

  1. 1.
    S.O. Adesanya, E.S. Babadipe, S.A. Arekete, A new result on Adomian decomposition method for solving Bratu’s problem. Math. Theory Model. 3(2), 116–120 (2013)Google Scholar
  2. 2.
    A.A. Opanuga, O.O. Agboola, H.I. Okagbue, Approximate solution of multipoint boundary value problems. J. Eng. Appl. Sci. 10(4), 85–89 (2015)Google Scholar
  3. 3.
    A.A. Opanuga, J.A. Gbadeyan, S.A. Iyase, H.I. Okagbue, Effect of thermal radiation on the entropy generation of hydromagnetic flow through porous channel. Pac J. Sci. Technol. 17(2), 59–68 (2016)Google Scholar
  4. 4.
    A.A. Opanuga, E.A. Owoloko, O.O. Agboola, H.I. Okagbue, Application of homotopy perturbation and modified Adomian decomposition methods for higher order boundary value problems, in Proceedings of the World Congress on Engineering 2017 (WCE 2017). Lecture Notes in Engineering and Computer Science, 5–7 July 2017, London, U.K., pp. 130–134Google Scholar
  5. 5.
    A.A. Opanuga, H.I. Okagbue, E.A. Owoloko, O.O. Agboola, Modified Adomian decomposition method for thirteenth order boundary value problems. Gazi Univ. J. Sci. 30(4), 454–461 (2017)Google Scholar
  6. 6.
    O.O. Agboola, A.A. Opanuga, J.A. Gbadeyan, Solution of third order ordinary differential equations using differential transform method. Glob. J. Pure Appl. Math. 11(4), 2511–2517 (2015)Google Scholar
  7. 7.
    A.A. Opanuga, O.O. Agboola, H.I. Okagbue, G.J. Oghonyon, Solution of differential equations by three semi-analytical techniques. Int. J. Appl. Eng. Res. 10(18), 39168–39174 (2015)Google Scholar
  8. 8.
    A. Lamnii, A.H. Mraoui, D. Sbibih, A. Tijini, A. Zidna, Spline solution of some linear boundary value problems. Appl. Math. E-Notes 8, 171–178 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    G. Akram, S.S. Siddiqi, Nonic spline solutions of eighth order boundary value problems. Appl. Math. Comput. 182, 829–845 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    S.T. Mohyud-Din, M.A. Noor, K.I. Noor, Exp-Function method for solving higher-order boundary value problems. Bull. Inst. Math. Academia Sinica (New Series) 4(2), 219–234 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    G.R. Liua, T.Y. Wub, Differential quadrature solutions of eighth-order boundary-value differential equations. J. Comput. Appl. Math. 145, 223–235 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    S.S. Siddiqi, G. Akram, M. Iftikhar, Solution of seventh order boundary value problems by variational iteration technique. Appl. Math. Sci. 6(94), 4663–4672 (2012)MathSciNetzbMATHGoogle Scholar
  13. 13.
    A.A. Opanuga, E.A. Owoloko, H.I. Okagbue, O.O. Agboola, Finite difference method and Laplace transform for boundary value problems, in Proceedings of The World Congress on Engineering 2017 (WCE 2017). Lecture Notes in Engineering and Computer Science, 5–7 July, 2017, London, U.K., pp. 65–69Google Scholar
  14. 14.
    A.J. Mohamad-Jawad, Solving second order non-linear boundary value problems by four numerical methods. Eng. Tech. J. 28(2), 12 (2010)Google Scholar
  15. 15.
    T.A. Anake, D.O. Awoyemi, A.O. Adesanya, One-step implicit hybrid block method for the direct solution of general second order ordinary differential equations. IAENG Int. J. Appl. Math. 42(4), 224–228 (2012)MathSciNetGoogle Scholar
  16. 16.
    J.H. He, A coupling method of Homotopy technique and perturbation technique for nonlinear problems. Int. J. Non-Linear Mech. 35(1), 37–43 (2000)CrossRefGoogle Scholar
  17. 17.
    J.H. He, Application of homotopy perturbation method to nonlinear wave equations. Chaos, Solitons Fractal 26, 695–700 (2005)CrossRefGoogle Scholar
  18. 18.
    S.O. Edeki, G.O. Akinlabi, M.E. Adeosun, Analytical solutions of the Navier-Stokes model by He’s polynomials, in Proceedings of the World Congress on Engineering 2016. Lecture Notes in Engineering and Computer Science, 29 June–1 July, 2016, London, U.K., pp. 16–19Google Scholar
  19. 19.
    M. El-Shahed, Application of He’s homotopy perturbation method to Volterra’s integro-differential equation. Int. J. Nonlinear Sci. Numer. Simul. 6(2), 163–168 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Biazar, F. Badpeima, F. Azimi, Application of the Homotopy perturbation method to ZakharovKuznetsov equations. Comput. Math Appl. 58, 2391–2394 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Biazar, H. Ghazvini, Homotopy perturbation method for solving hyperbolic partial differential equations. Comput. Math. Appl. 56, 453–458 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    M.T. Darvishi, F. Khani, Application of He’s homotopy perturbation method to stiff systems of ordinary differential equations. Zeitschrift fuer Naturforschung 63(1–2), 19–23 (2008)Google Scholar
  23. 23.
    H. Aminikhaha, M. Hemmatnezhad, An effective modification of the Homotopy perturbation method for stiff systems of ordinary differential equations. Appl. Math. Lett. 24, 1502–1508 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    C. Chun, R. Sakthivel, Homotopy perturbation technique for solving two-point boundary value problems-comparison with other methods. Comput. Phys. Commun. 181, 1021–1024 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    S.T. Mohyud-Din, M.A. Noor, Homotopy perturbation method and Padé approximants for solving Flierl-Petviashivili equation. Appl. Math. 3(2), 224–234 (2008)MathSciNetzbMATHGoogle Scholar
  26. 26.
    D.D. Ganji, A. Sadighi, Application of Homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations. J. Comput. Appl. Math. 207(1), 24–34 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    A.M. Wazwaz, Approximate solutions to boundary value problems of higher order by the modified Adomian decomposition method. Comput. Math. Appl. 40, 679–691 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • A. A. Opanuga
    • 1
    Email author
  • H. I. Okagbue
    • 1
  • O. O. Agboola
    • 1
  • S. A. Bishop
    • 1
  • P. E. Oguntunde
    • 1
  1. 1.Department of MathematicsCovenant UniversityOtaNigeria

Personalised recommendations