Advertisement

Homogenization of Electromagnetic Fields Propagation in a Composite

  • Helene CanotEmail author
  • Emmanuel Frenod
Conference paper

Abstract

In this paper we study the two-scale behavior of the electromagnetic field in 3D in a composite material. It is the continuation of the paper (Canot and Frenod Method of homogenization for the study of the propagation of electromagnetic waves in a composite 2017) [7] in which we obtain existence and uniqueness results for the problem, we performed an estimate that allows us to approach homogenization. Techniques of asymptotic expansion and two-scale convergence are used to obtain the homogenized problem. We justify the two-scale expansion numerically in the second part of the paper.

Keywords

Asymptotic Expansion Electromagnetism Finite element Harmonic Maxwell Equations Homogenization Simulations Two-scale Convergence 

References

  1. 1.
    Y. Amirat, K. Hamdache , A. Ziani, Homogénéisation d’équations hyperboliques du premier ordre et application aux écoulements missibles en milieux poreux. Ann. Inst. H. Poincaré 6(5), 397–417 (1989)Google Scholar
  2. 2.
    G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992), http://link.aip.org/link/?SJM/23/1482/1.  https://doi.org/10.1137/0523084
  3. 3.
    G. Allaire, M. Briand, Multiscale convergence and reiterated homogenization. Proc. Roy. Soc. Edinb. F126, 297–342 (1996)CrossRefGoogle Scholar
  4. 4.
    Y. Amirat, V. Shelukhin, Homogenization of time-harmonic Maxwell equations and the frequency dispersion effect. J. Maths. Pures. Appl. 95, 420–443 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Back, E. Frenod, Geometric Two-Scale Convergence on Manifold and Applications to the Vlasov Equation. Discrete and Continuous Dynamical Systems - Serie S. Special Issue on Numerical Methods based on Homogenization and Two-Scale Convergence. 8, 223–241 (2015)Google Scholar
  6. 6.
    A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, in Studies in Mathematics and its Applications, vol. 5 (North Holland, 1978)Google Scholar
  7. 7.
    H. Canot, E. Frenod, Method of homogenization for the study of the propagation of electromagnetic waves in a composite. Part 1: Modeling, Scaling, Existence and Uniqueness Results (2017)Google Scholar
  8. 8.
    H. Canot, E. Frenod, Modeling electromagnetism in and near composite material using two-scale behavior of the time-harmonic Maxwell equations (2016), https://hal.archives-ouvertes.fr/hal-01409522
  9. 9.
    D. Cionarescu, P. Donato, An Introduction To Homogenization (Oxford University Press, 1999)Google Scholar
  10. 10.
    N. Crouseilles, E. Frenod, S. Hirstoaga, A. Mouton, Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field. Math. Models Methods Appl. Sci. 23(8), 1527–1559 (2012) (collaboration = CALVI ; IPSO).  https://doi.org/10.1142/S0218202513500152, http://hal.archives-ouvertes.fr/hal-00638617/PDF/TSAPSVlas_corr.pdf
  11. 11.
    S. Guenneau, F. Zolla, A. Nicolet. Homogenization of 3D finite photonic crystals with heterogeneous permittivity and permeability. Waves Random Complex Media 653–697 (2007)Google Scholar
  12. 12.
    F. Hecht, O. Pironneau, A. Le Hyaric, FreeFem++ manual (2004)Google Scholar
  13. 13.
    H. Canot, E. Frenod, Method of homogenization for the study of the propagation of electromagnetic waves in a composite part 2: homogenization, in Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering, 5–7 July 2017, London, UK (2017), pp. 11–15Google Scholar
  14. 14.
    M. Neuss-Radu, Some extensions of two-scale convergence. omptes rendus de l’Academie des sciences. Serie 1 322(9), 899–904 (1996)Google Scholar
  15. 15.
    G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM 20(3), 608–623 (1989), http://link.aip.org/link/?SJM/20/608/1.  https://doi.org/10.1137/0520043?
  16. 16.
    G. Nguetseng, Asymptotic analysis for a stiff variational problem arising in mechanics SIAM J. Math. Anal. 21(6) 1394–1414 (1990), http://link.aip.org/link/?SJM/21/1394/1.  https://doi.org/10.1137/0521078
  17. 17.
    O. Ouchetto, S. Zouhdi, A. Bossavit et al., Effective constitutive parameters of periodic composites, in 2005 European Microwave Conference (IEEE, 2005), p. 2Google Scholar
  18. 18.
    H.E. Pak, Geometric two-scale convergence on forms and its applications to Maxwell’s equations, in 2005 European Proceedings of the Royal Society of Edinburgh vol. 135A, pp. 133–147Google Scholar
  19. 19.
    N. Wellander, Homogenization of the Maxwell equations: case I. Linear Theory Appl. Math. 46(2), 29–51 (2001)MathSciNetzbMATHGoogle Scholar
  20. 20.
    N. Wellander, Homogenization of the Maxwell equations: case II. Nonlinear Cond. Appl. Math. 47(3), 255–283 (2002)MathSciNetzbMATHGoogle Scholar
  21. 21.
    N. Wellander, B. Kristensson, Homogenization of the Maxwell equations at fixed frequency. Technical Report, vol. LUTEDX/TEAT-7103/1-37 (2002)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Helene Canot and Emmanuel Frenod are in the Department of Mathematics of University of Bretagne Sud (LMBA)Centre Yves Coppens, Bat. B, 1er et.VannesFrance

Personalised recommendations