Skip to main content

Aberrant Epigenetic Modifications of Non-coding RNAs in Human Disease

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1094))

Abstract

Non-coding RNAs, especially lncRNAs, have emerged as key components in histone modification. The alterations in the epigenetic modifications of lncRNAs underlie some human disorders ranging from neurodegeneration to cancer. To characterize the epigenetic modifications of lncRNAs, we first constructed the histone modification maps of various epigenetic markers across different cell lines. Then, we developed a method to identify epigenetically regulated lncRNAs and their response genes by integrating large scale epigenetic and transcriptional profiles. Our results showed that epigenetic alterations at the promoters of lncRNAs can influence their expression and the negative response genes of most epigenetically regulated lncRNAs were enriched for PRC2-binding genes. At last, we inferred some lncRNAs with aberrant epigenetic modifications in glioblastoma and Alzheimer’s disease, and proved that theses lncRNAs may contribute to the initiation of human diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Washietl S, Kellis M, Garber M (2014) Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res 24:616–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  5. Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439

    Article  CAS  PubMed  Google Scholar 

  6. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    Article  CAS  PubMed  Google Scholar 

  7. Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35

    Article  CAS  PubMed  Google Scholar 

  8. Spizzo R, Almeida MI, Colombatti A et al (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31:4577–4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1:391–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee JT (2009) Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev 23:1831–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chu C, Qu K, Zhong FL et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kino T, Hurt DE, Ichijo T et al (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8

    PubMed  PubMed Central  Google Scholar 

  14. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    Article  CAS  PubMed  Google Scholar 

  15. Wu SC, Kallin EM, Zhang Y (2010) Role of H3K27 methylation in the regulation of lncRNA expression. Cell Res 20:1109–1116

    Article  CAS  PubMed  Google Scholar 

  16. Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9:e1003569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sati S, Ghosh S, Jain V et al (2012) Genome-wide analysis reveals distinct patterns of epigenetic features in long non-coding RNA loci. Nucleic Acids Res 40:10018–10031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hon GC, Hawkins RD, Caballero OL et al (2012) Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res 22:246–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  24. Lundberg E, Fagerberg L, Klevebring D et al (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol 6:450

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kugel JF, Goodrich JA (2012) Non-coding RNAs: key regulators of mammalian transcription. Trends Biochem Sci 37:144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao Q, Liu C, Yuan X et al (2011) Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res 39:3864–3878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vaquerizas JM, Kummerfeld SK, Teichmann SA et al (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10:252–263

    Article  CAS  PubMed  Google Scholar 

  28. Loewer S, Cabili MN, Guttman M et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42:1113–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martens-Uzunova ES, Bottcher R, Croce CM et al (2014) Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol 65:1140–1151

    Article  CAS  PubMed  Google Scholar 

  30. French PJ, Peeters J, Horsman S et al (2007) Identification of differentially regulated splice variants and novel exons in glial brain tumors using exon expression arrays. Cancer Res 67:5635–5642

    Article  CAS  PubMed  Google Scholar 

  31. Managadze D, Rogozin IB, Chernikova D et al (2011) Negative correlation between expression level and evolutionary rate of long intergenic non-coding RNAs. Genome Biol Evol 3:1390–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang X, Sun S, Pu JK et al (2012) Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol Dis 48:1–8

    Article  CAS  PubMed  Google Scholar 

  33. Qureshi IA, Mehler MF (2013) Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurother: J Am Soc Exp Neurother 10:632–646

    Article  CAS  Google Scholar 

  34. Zhang B, Gaiteri C, Bodea LG et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153:707–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rogers J, Lue LF (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer’s disease. Neurochem Int 39:333–340

    Article  CAS  PubMed  Google Scholar 

  36. Airavaara M, Pletnikova O, Doyle ME et al (2011) Identification of novel GDNF isoforms and cis-antisense GDNFOS gene and their regulation in human middle temporal gyrus of Alzheimer disease. J Biol Chem 286:45093–45102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schug J, McKenna LB, Walton G et al (2013) Dynamic recruitment of microRNAs to their mRNA targets in the regenerating liver. BMC Genomics 14:264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zuchner S, Gilbert JR, Martin ER et al (2008) Linkage and association study of late-onset Alzheimer disease families linked to 9p21.3. Ann Hum Genet 72:725–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, Y., Xu, J., Yin, W. (2018). Aberrant Epigenetic Modifications of Non-coding RNAs in Human Disease. In: Li, X., Xu, J., Xiao, Y., Ning, S., Zhang, Y. (eds) Non-coding RNAs in Complex Diseases. Advances in Experimental Medicine and Biology, vol 1094. Springer, Singapore. https://doi.org/10.1007/978-981-13-0719-5_7

Download citation

Publish with us

Policies and ethics