Skip to main content

Genomic-Scale Prioritization of Disease-Related Non-coding RNAs

  • Chapter
  • First Online:
Non-coding RNAs in Complex Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1094))

  • 999 Accesses

Abstract

The recent explosion in the number and diversity of non-coding RNAs (ncRNAs) identified by the large-scale technologies brings new challenges to the biomedical researchers – What are all these non-coding RNAs, how did they work, and most importantly, what is the relationship between them and complex diseases? Although some ncRNAs have been clearly characterized as risk biomarkers through biological experiments, there are still a limit number of known disease associated ncRNAs. Thus, bioinformatics methods have been widely used to predict candidate ncRNAs and disease associations. In this chapter, we will discuss several bioinformatics methods which have been developed to predict novel non-coding biomarkers. With such methods and tools, the prioritization and identification of complex-implicated ncRNAs is becoming a reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ning S, Gao Y, Wang P, Li X, Zhi H, Zhang Y, Liu Y, Zhang J, Guo M, Han D, Li X (2016) Construction of a lncRNA-mediated feed-forward loop network reveals global topological features and prognostic motifs in human cancers. Oncotarget 7:45937–45947

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  5. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282:24731–24742

    Article  CAS  PubMed  Google Scholar 

  6. Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, Tsao MS, Penn LZ (2006) The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res 66:5330–5337

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2014) HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42:D1070–D1074

    Article  CAS  PubMed  Google Scholar 

  8. Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41:D983–D986

    Article  CAS  PubMed  Google Scholar 

  9. Ning S, Zhang J, Wang P, Zhi H, Wang J, Liu Y, Gao Y, Guo M, Yue M, Wang L, Li X (2016) Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res 44:D980–D985

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Z, Bai J, Wu A, Wang Y, Zhang J, Wang Z, Li Y, Xu J Li X (2015) Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data. Database (Oxford); 2015:1–7

    Google Scholar 

  11. Aranda B, Blankenburg H, Kerrien S, Brinkman FS, Ceol A, Chautard E, Dana JM, De Las Rivas J, Dumousseau M, Galeota E, Gaulton A, Goll J, Hancock RE, Isserlin R, Jimenez RC, Kerssemakers J, Khadake J, Lynn DJ, Michaut M, O’Kelly G, Ono K, Orchard S, Prieto C, Razick S, Rigina O, Salwinski L, Simonovic M, Velankar S, Winter A, Wu G, Bader GD, Cesareni G, Donaldson IM, Eisenberg D, Kleywegt GJ, Overington J, Ricard-Blum S, Tyers M, Albrecht M, Hermjakob H (2011) PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat Methods 8:528–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang P, Ning S, Zhang Y, Li R, Ye J, Zhao Z, Zhi H, Wang T, Guo Z, Li X (2015) Identification of lncRNA-associated competing triplets reveals global patterns and prognostic markers for cancer. Nucleic Acids Res 43:3478–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo Q, Cheng Y, Liang T, He Y, Ren C, Sun L, Zhang G (2015) Comprehensive analysis of lncRNA-mRNA co-expression patterns identifies immune-associated lncRNA biomarkers in ovarian cancer malignant progression. Sci Rep 5:17683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo X, Gao L, Liao Q, Xiao H, Ma X, Yang X, Luo H, Zhao G, Bu D, Jiao F, Shao Q, Chen R, Zhao Y (2013) Long non-coding RNAs function annotation: a global prediction method based on bi-colored networks. Nucleic Acids Res 41:e35

    Article  CAS  PubMed  Google Scholar 

  15. Yang X, Gao L, Guo X, Shi X, Wu H, Song F, Wang B (2014) A network based method for analysis of lncRNA-disease associations and prediction of lncRNAs implicated in diseases. PLoS One 9:e87797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doncheva NT, Kacprowski T, Albrecht M (2012) Recent approaches to the prioritization of candidate disease genes. Wiley Interdiscip Rev Syst Biol Med 4:429–442

    Article  CAS  PubMed  Google Scholar 

  17. Wang P, Guo Q, Gao Y, Zhi H, Zhang Y, Liu Y, Zhang J, Yue M, Guo M, Ning S, Zhang G, Li X (2017) Improved method for prioritization of disease associated lncRNAs based on ceRNA theory and functional genomics data. Oncotarget 8:4642–4655

    PubMed  Google Scholar 

  18. Zhou M, Wang X, Li J, Hao D, Wang Z, Shi H, Han L, Zhou H, Sun J (2015) Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network. Mol BioSyst 11:760–769

    Article  CAS  PubMed  Google Scholar 

  19. Jiang Q, Hao Y, Wang G, Juan L, Zhang T, Teng M, Liu Y, Wang Y (2010) Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol 4(Suppl 1):S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu C, Qi R, Ping Y, Li J, Zhao H, Wang L, Du MY, Xiao Y, Li X (2017) Systemically identifying and prioritizing risk lncRNAs through integration of pan-cancer phenotype associations. Oncotarget 8:12041–12051

    PubMed  PubMed Central  Google Scholar 

  21. van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27:3036–3043

    Article  CAS  PubMed  Google Scholar 

  22. Tranchevent LC, Barriot R, Yu S, Van Vooren S, Van Loo P, Coessens B, De Moor B, Aerts S, Moreau Y (2008) ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res 36:W377–W384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiao Y, Guan J, Ping Y, Xu C, Huang T, Zhao H, Fan H, Li Y, Lv Y, Zhao T, Dong Y, Ren H, Li X (2012) Prioritizing cancer-related key miRNA-target interactions by integrative genomics. Nucleic Acids Res 40:7653–7665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B, Carmeliet P, Moreau Y (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24:537–544

    Article  CAS  PubMed  Google Scholar 

  25. Sifrim A, Popovic D, Tranchevent LC, Ardeshirdavani A, Sakai R, Konings P, Vermeesch JR, Aerts J, De Moor B, Moreau Y (2013) eXtasy: variant prioritization by genomic data fusion. Nat Methods 10:1083–1084

    Article  CAS  PubMed  Google Scholar 

  26. Wang P, Ning S, Wang Q, Li R, Ye J, Zhao Z, Li Y, Huang T, Li X (2013) mirTarPri: improved prioritization of microRNA targets through incorporation of functional genomics data. PLoS One 8:e53685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, P., Li, X. (2018). Genomic-Scale Prioritization of Disease-Related Non-coding RNAs. In: Li, X., Xu, J., Xiao, Y., Ning, S., Zhang, Y. (eds) Non-coding RNAs in Complex Diseases. Advances in Experimental Medicine and Biology, vol 1094. Springer, Singapore. https://doi.org/10.1007/978-981-13-0719-5_4

Download citation

Publish with us

Policies and ethics