Skip to main content

Methods for Identification of Protein-RNA Interaction

  • Chapter
  • First Online:
Non-coding RNAs in Complex Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1094))

Abstract

The importance of RNA-protein interactions in regulation of mRNA and non-coding RNA function is increasingly appreciated. With the development of next generation high-throughput sequencing technologies, a variety of methods have been proposed to comprehensively identify RNA-protein interactions. In this chapter, we discussed the traditional and state-of-the-art technologies that were used to study RNA-protein interaction, including experimental and computational methods. To help highlight the biological significance of RNA-protein interaction in complex diseases, online resources on RNA-protein interactions were briefly discussed. Finally, we discussed the interaction among noncoding RNAs (such as long noncoding RNAs and microRNAs) and proteins, as well as the dysregulation of RNA-protein interaction in complex diseases. These summarization will ultimately provide a more complete picture for understanding of the function of RNA-protein interactions, including how these interaction assembled and how they modulate cellular function in complex diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferre F, Colantoni A, Helmer-Citterich M (2016) Revealing protein-lncRNA interaction. Brief Bioinform 17:106–116

    Article  CAS  PubMed  Google Scholar 

  2. Faoro C, Ataide SF (2014) Ribonomic approaches to study the RNA-binding proteome. FEBS Lett 588:3649–3664

    Article  CAS  PubMed  Google Scholar 

  3. McHugh CA, Russell P, Guttman M (2014) Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol 15:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1:302–307

    Article  CAS  PubMed  Google Scholar 

  5. Zhao J, Ohsumi TK, Kung JT et al (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40:939–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hafner M, Landthaler M, Burger L et al (2010) PAR-CliP – a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp 41:1–5

    Google Scholar 

  8. Konig J, Zarnack K, Rot G et al (2011) iCLIP – transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J Vis Exp 50:1–7

    Google Scholar 

  9. Ray D, Kazan H, Chan ET et al (2009) Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol 27:667–670

    Article  CAS  PubMed  Google Scholar 

  10. Zielinski J, Kilk K, Peritz T et al (2006) In vivo identification of ribonucleoprotein-RNA interactions. Proc Natl Acad Sci U S A 103:1557–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simon MD (2013) Capture hybridization analysis of RNA targets (CHART). Curr Protoc Mol Biol. Chapter 21:25.1–25.16

    Google Scholar 

  12. Chu C, Quinn J, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). J Vis Exp 61:1–6

    Google Scholar 

  13. Liu DG, Sun L (2005) Direct isolation of specific RNA-interacting proteins using a novel affinity medium. Nucleic Acids Res 33:e132

    Article  PubMed  PubMed Central  Google Scholar 

  14. Girard P, Pecreaux J, Lenoir G, Falson P, Rigaud JL, Bassereau P (2004) A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophys J 87:419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kazan H, Ray D, Chan ET, Hughes TR, Morris Q (2010) RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLoS Comput Biol 6:e1000832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bellucci M, Agostini F, Masin M, Tartaglia GG (2011) Predicting protein associations with long noncoding RNAs. Nat Methods 8:444–445

    Article  CAS  PubMed  Google Scholar 

  17. Muppirala UK, Honavar VG, Dobbs D (2011) Predicting RNA-protein interactions using only sequence information. BMC Bioinformatics 12:489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Chen X, Liu ZP et al (2013) De novo prediction of RNA-protein interactions from sequence information. Mol BioSyst 9:133–142

    Article  CAS  PubMed  Google Scholar 

  19. Lu Q, Ren S, Lu M et al (2013) Computational prediction of associations between long non-coding RNAs and proteins. BMC Genomics 14:651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Livi CM, Blanzieri E (2014) Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures. BMC Bioinformatics 15:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suresh V, Liu L, Adjeroh D, Zhou X (2015) RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information. Nucleic Acids Res 43:1370–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng Z, Zhou S, Guan J (2015) Computationally predicting protein-RNA interactions using only positive and unlabeled examples. J Bioinforma Comput Biol 13:1541005

    Article  CAS  Google Scholar 

  23. Nawrocki EP, Burge SW, Bateman A et al (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43:D130–D137

    Article  CAS  PubMed  Google Scholar 

  24. Grillo G, Turi A, Licciulli F et al (2010) UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 38:D75–D80

    Article  CAS  PubMed  Google Scholar 

  25. Fallmann J, Sedlyarov V, Tanzer A, Kovarik P, Hofacker IL (2016) AREsite2: an enhanced database for the comprehensive investigation of AU/GU/U-rich elements. Nucleic Acids Res 44:D90–D95

    Article  CAS  PubMed  Google Scholar 

  26. Khorshid M, Rodak C, Zavolan M (2011) CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res 39:D245–D252

    Article  CAS  PubMed  Google Scholar 

  27. Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR (2011) RBPDB: a database of RNA-binding specificities. Nucleic Acids Res 39:D301–D308

    Article  CAS  PubMed  Google Scholar 

  28. Anders G, Mackowiak SD, Jens M et al (2012) doRiNA: a database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 40:D180–D186

    Article  CAS  PubMed  Google Scholar 

  29. Blin K, Dieterich C, Wurmus R, Rajewsky N, Landthaler M, Akalin A (2015) DoRiNA 2.0 – upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 43:D160–D167

    Article  CAS  PubMed  Google Scholar 

  30. Ray D, Kazan H, Cook KB et al (2013) A compendium of RNA-binding motifs for decoding gene regulation. Nature 499:172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chai Y, Liu J, Zhang Z, Liu L (2016) HuR-regulated lncRNA NEAT1 stability in tumorigenesis and progression of ovarian cancer. Cancer Med 5:1588–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu CZ, Jiang C, Wu Q, Liu L, Yan X, Shi R (2016) A feed-forward regulatory loop between HuR and the long noncoding RNA HOTAIR promotes head and neck squamous cell carcinoma progression and metastasis. Cell Physiol Biochem 40:1039–1051

    Article  CAS  PubMed  Google Scholar 

  33. Zhang L, Yang Z, Trottier J, Barbier O, Wang L (2017) Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology 65:604–615

    Article  CAS  PubMed  Google Scholar 

  34. Jiang P, Coller H (2012) Functional interactions between microRNAs and RNA binding proteins. Microrna 1:70–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leibovich L, Mandel-Gutfreund Y, Yakhini Z (2010) A structural-based statistical approach suggests a cooperative activity of PUM1 and miR-410 in human 3′-untranslated regions. Silence 1:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kedde M, Strasser MJ, Boldajipour B et al (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–1286

    Article  CAS  PubMed  Google Scholar 

  38. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  CAS  PubMed  Google Scholar 

  39. Mortensen RD, Serra M, Steitz JA, Vasudevan S (2011) Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs). Proc Natl Acad Sci U S A 108:8281–8286

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Wang, Z., Jin, X., Li, L., Pan, T. (2018). Methods for Identification of Protein-RNA Interaction. In: Li, X., Xu, J., Xiao, Y., Ning, S., Zhang, Y. (eds) Non-coding RNAs in Complex Diseases. Advances in Experimental Medicine and Biology, vol 1094. Springer, Singapore. https://doi.org/10.1007/978-981-13-0719-5_12

Download citation

Publish with us

Policies and ethics