Skip to main content

Torque Enhancement of Three Phase Surface-Mounted Permanent Magnet Machine Using 3rd Order Harmonic

  • Chapter
  • First Online:
Third Harmonic Utilization in Permanent Magnet Machines

Abstract

This chapter presents a permanent magnet (PM) shaping technique with optimal 3rd harmonic to improve the output torque without deteriorating the torque ripple in surface-mounted PM (SPM) machines. The optimal value of 3rd harmonic injected into the sinusoidal PM shape for maximum torque improvement is analytically derived and confirmed by finite element (FE) analysis. Further, the influence of magnet edge thickness on the airgap field distribution is investigated and utilized to compensate the inter-pole flux leakage and curvature effect. It is found that the optimal 3rd harmonic is 1/6 of the fundamental one. For the SPM machines having rotors without shaping, Sine shaping, Sine shaping with 3rd harmonic injected, the electromagnetic performance including the back-EMF waveforms, cogging torque, average torque and torque ripple are compared. It is demonstrated that the average torque in the machine of a Sine shaping with an optimal 3rd harmonic injected can be improved by >9% while the torque ripple remains similar to that of the one with Sine shaping. Finally, the machines with both conventional (without shaping) and optimal 3rd harmonic PM rotors are prototyped and measured to validate the analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.Q. Zhu, D. Howe, Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc. IEEE 95(4), 746–765 (2007)

    Article  Google Scholar 

  2. A.M. El-Refaie, Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges. IEEE Trans. Ind. Electron. 57(1), 107–121 (2010)

    Article  Google Scholar 

  3. A.M. El-Refaie, Motors/generators for traction/propulsion applications: a review. IEEE Veh. Technol. Mag. 8(1), 90–99 (2013)

    Article  Google Scholar 

  4. W.P. Cao, B.C. Mecrow, G.J. Atkinson, J.W. Bennett, D.J. Atkinson, Overview of electric motor technologies used for more electric aircraft (MEA). IEEE Trans. Ind. Electron. 59(9), 3523–3531 (2012)

    Article  Google Scholar 

  5. T.M. Jahns, W.L. Soong, Pulsating torque minimization techniques for permanent magnet AC motor drives—a review. IEEE Trans. Ind. Electron. 43(2), 321–330 (1996)

    Article  Google Scholar 

  6. Z.Q. Zhu, D. Howe, Influence of design parameters on cogging torque in permanent magnet machines. IEEE Trans. Energy Convers. 15(4), 407–412 (2000)

    Article  Google Scholar 

  7. N. Bianchi, S. Bolognani, Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Trans. Ind. Appl. 38(5), 1259–1265 (2002)

    Article  Google Scholar 

  8. W. Schuisky, Berechnung Elektrischer Maschinen (Springer, New York, NY, USA, 1960), pp. 95–97

    Google Scholar 

  9. J. Pyrhönen, T. Jokinen, V. Hrabovcova, Design of rotating electrical machines (Wiley, Chichester, UK, 2008), p. 165

    Book  Google Scholar 

  10. A. Evans, Salient pole shoe shapes of interior permanent magnet synchronous machines, in Proceedings 19th International Conference Electrical Machine, Sept 2010, pp. 1–6

    Google Scholar 

  11. Y. Li, J.W. Xing, T.B. Wang, Y.P. Lu, Programmable design of magnet shape for permanent magnet synchronous motors with sinusoidal back EMF waveforms. IEEE Trans. Magn. 44(9), 2163–2167 (2008)

    Article  Google Scholar 

  12. P. Zheng, J. Zhao, J. Han, J. Wang, Z. Yao, R. Liu, Optimization of the magnetic pole shape of a permanent-magnet synchronous motor. IEEE Trans. Magn. 43(6), 2531–2533 (2007)

    Article  Google Scholar 

  13. N.R. Tavana, A. Shoulaie, Analysis and design of magnetic pole shape in linear permanent-magnet machine. IEEE Trans. Magn. 46(4), 1000–1006 (2010)

    Article  Google Scholar 

  14. S. Chaithongsuk, N. Takorabet, F. Meibody-Tabar, On the use of pulse width modulation method for the elimination of flux density harmonics in the air-gap of surface PM motors. IEEE Trans. Magn. 45(3), 1736–1739 (2009)

    Article  Google Scholar 

  15. A.H. Isfahani, S. Vaez-Zadeh, M.A. Rahman, Performance improvement of permanent magnet machines by modular poles. IET Electr. Power Appl. 3(4), 343–351 (2009)

    Article  Google Scholar 

  16. M.Y. Kim, Y.C. Kim, G.T. Kim, Design of slotless-type PMLSM for high power density using divided PM. IEEE Trans. Magn. 40(3), 746–749 (2004)

    Article  MathSciNet  Google Scholar 

  17. N.R. Tavana, A. Shoulaie, V. Dinavahi, Analytical modeling and design optimization of linear synchronous motor with stair-step-shaped magnetic poles for electromagnetic launch applications. IEEE Trans. Plasma Sci. 40(2), 519–527 (2012)

    Article  Google Scholar 

  18. M.S. Islam, S. Mir, T. Sebastian, S. Underwood, Experimental verification of design techniques of permanent-magnet synchronous motors for low-torque-ripple applications. IEEE Trans. Ind. Appl. 47(1), 88–95 (2011)

    Article  Google Scholar 

  19. G. Buja, G. Indri, Improvement of pulse width modulation techniques. Archiv Elektotech. 57(5), 281–289 (1975)

    Article  Google Scholar 

  20. J.A. Houldsworth, D.A. Grant, The use of harmonic distortion to increase the output voltage of a three-phase PWM inverter, in IEEE Transaction on Industry Application, Sept 1984, vol. IA-20, no. 5, pp. 1224–1228

    Google Scholar 

  21. P. Pejovic, Z. Janda, An improved current injection network for three-phase high-power-factor rectifiers that apply the third harmonic current injection. IEEE Trans. Ind. Electron. 47(2), 497–499 (2000)

    Article  Google Scholar 

  22. J.X. Shen, Z.Q. Zhu, D. Howe, Sensorless flux-weakening control of permanent-magnet brushless machines using third harmonic back EMF. IEEE Trans. Ind. Appl. 40(6), 1629–1636 (2004)

    Article  Google Scholar 

  23. L.B. Zheng, J.E. Fletcher, W.B. Williams, X.N. He, Dual-plane vector control of a five-phase induction machine for an improved flux pattern. IEEE Trans. Ind. Electron. 55(5), 1996–2005 (2008)

    Article  Google Scholar 

  24. L. Parsa, H.A. Toliyat, Five-phase permanent magnet motor drives. IEEE Trans. Ind. Appl. 41(1), 30–37 (2005)

    Article  Google Scholar 

  25. R.O.C. Lyra, T.A. Lipo, Torque density improvement in a sixphase induction motor with third harmonic current injection. IEEE Trans. Ind. Appl. 38(5), 1351–1360 (2002)

    Article  Google Scholar 

  26. Y. Li, J.B. Zou, Y.P. Lu, Optimum design of magnet shape in permanent-magnet synchronous motors. IEEE Trans. Magn. 39(6), 3523–3526 (2003)

    Article  Google Scholar 

  27. Z.Q. Zhu, K. Wang, G. Ombach, Optimal magnet shaping with third order harmonic for maximum torque in SPM machines, in Proceedings of 6th IET Conference Power Electronics, Machines Drives, PEMD, Bristol, UK, March 2012, pp. 1–6

    Google Scholar 

  28. K. Wang, Z.Q. Zhu, G. Ombach, W. Chlebosz, Optimal rotor shape with third harmonic for maximizing torque and minimizing torque ripple in IPM motors, in Proceedings of 20th ICEM, Marseille, France, Sept 2012, pp. 397–403

    Google Scholar 

  29. M. Freddy, L. Heinz, Parasitic effects in PM machines with concentrated windings. IEEE Trans. Ind. Appl. 43(5), 1223–1232 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, K., Zhu, ZQ. (2019). Torque Enhancement of Three Phase Surface-Mounted Permanent Magnet Machine Using 3rd Order Harmonic. In: Third Harmonic Utilization in Permanent Magnet Machines. Springer, Singapore. https://doi.org/10.1007/978-981-13-0629-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0629-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0628-0

  • Online ISBN: 978-981-13-0629-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics