Advertisement

Polymer Welding Techniques and Its Evolution

  • S. Arungalai VendanEmail author
  • M. Natesh
  • Akhil Garg
  • Liang Gao
Chapter

Abstract

The physics underlying the polymer joining is autohesion. The formation of stable bonds between two surfaces of specimens in contact is known as autohesion process. Restriction to the peeling of the welded parts at the primary contact surface is offered by the bonds formed. Autohesion method is initially reported in the year of 1935–7 (Dodin MG: The Journal of Adhesion 12 (2):99–111, 1981)[1].

References

  1. 1.
    Dodin, M.G. 1981. Welding mechanisms of plastics: A review. The Journal of Adhesion 12 (2): 99–111.CrossRefGoogle Scholar
  2. 2.
    Reitz, Wayne E., and Rebecca M. Oman. 2000. How to join plastics. Advanced Materials and Processes 158 (3): 49–52.Google Scholar
  3. 3.
    Marczis, B., and T. Czigany. 2006. Interrelationships between welding parameters of hot-gas welded polypropylene. Polymer Engineering & Science 46 (9): 1173–1181.CrossRefGoogle Scholar
  4. 4.
    Balkan, Onur, Halil Demirer, Ayhan Ezdeşir, and Hüseyin Yıldırım. 2008. Effects of welding procedures on mechanical and morphological properties of hot gas butt welded PE, PP, and PVC sheets. Polymer Engineering & Science 48 (4): 732–746.CrossRefGoogle Scholar
  5. 5.
    Schmachtenberg, Ernst, and Carsten Tüchert. 2003. Long-term properties of butt-welded poly (propylene). Macromolecular Materials and Engineering 288 (4): 291–300.CrossRefGoogle Scholar
  6. 6.
    Ageorges, Christophe, and Lin Ye. 2001. Simulation of impulse resistance welding for thermoplastic matrix composites. Applied Composite Materials 8 (2): 133–147.CrossRefGoogle Scholar
  7. 7.
    Amanat, Negin, Natalie L. James, and David R. McKenzie. 2010. Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices. Medical Engineering & Physics 32 (7): 690–699.CrossRefGoogle Scholar
  8. 8.
    Grewell, D., and A. Benatar. 2007. Welding of plastics: Fundamentals and new developments. International Polymer Processing 22 (1): 43–60.CrossRefGoogle Scholar
  9. 9.
    Grewell, D., et al. 2003. Plastic and composite welding handbook. Munich: Hanser Publishers.Google Scholar
  10. 10.
    Tadmor, Z., and C. Cogos. 2006. Principles of polymer processing, 2nd ed. Wiley Inc.Google Scholar
  11. 11.
    Ratner, B.D. 2004. Biomaterials science: An introduction to materials in medicine, 2nd ed. Elsevier Inc.Google Scholar
  12. 12.
    Stokes, Vijay K. 1989. Joining methods for plastics and plastic composites: An overview. Polymer Engineering & Science 29 (19): 1310–1324.CrossRefGoogle Scholar
  13. 13.
    Bahadir, Senem Kursun, Fatma Kalaoğlu, and Simona Jevšnik. 2015. The use of hot air welding technologies for manufacturing e-textile trasmission lines. Fibers and Polymers 16 (6): 1384–1394.CrossRefGoogle Scholar
  14. 14.
    Diedrich, G., and B. Kempe. 1980. Welding of pipes and fittings made from different grades of HDPE. Kunststoffe-German Plastics 70 (2): 87–89.Google Scholar
  15. 15.
    Abram, J., D.W. Clegg, and D.V. Quayle. 1982. The strength of welds in uPVC. Plastics and Rubber International 7 (2): 58–60.Google Scholar
  16. 16.
    Hausdörfer, D., H. Herrmann, and W. Muth. 1976. Multi-layer hot-gas welding of thick-walled rigid polyethylene mouldings. German Plastics 66 (1): 4–6.Google Scholar
  17. 17.
    Atkinson, J.R., and B.E. Turner. 1989. Repairability of plastic automobile bumpers by hot gas welding. Polymer Engineering Science 29 (19): 1368–1375.CrossRefGoogle Scholar
  18. 18.
    Stokes, Vijay K. 2000. A phenomenological study of the hot-tool welding of thermoplastics Part 2. Unfilled and glass-filled poly (butylene terephthalate). Polymer 41 (11): 4317–4343.CrossRefGoogle Scholar
  19. 19.
    Stokes, Vijay K. 2001. A phenomenological study of the hot-tool welding of thermoplastics Part 3. Polyetherimide. Polymer 42 (2): 775–792.CrossRefGoogle Scholar
  20. 20.
    Kim, H.C., D.G. Ahn, S.H. Lee, and D.Y. Yang. 2005. A study on thermal characteristics of non-contact hot-tool for rapid feature detailing (RFD) process. International Journal of Machine Tools and Manufacture 45 (3): 345–353.CrossRefGoogle Scholar
  21. 21.
    Hou, M., L. Ye, and Y.W. Mai. 1999. An experimental study of resistance welding of carbon fiber fabric reinforced polyetherimide (CF Fabric/PEI) composite material. Applied Composite Materials 6: 35–49.CrossRefGoogle Scholar
  22. 22.
    Harras, Bilal, Kenneth Chesley Cole, and Toan Vu-Khanh. 1996. Optimization of the ultrasonic welding of PEEK-carbon composites. Journal of Reinforced Plastics and Composites 15 (2): 174–182.CrossRefGoogle Scholar
  23. 23.
    Bucknall, C.B., I.C. Drinkwater, and G.R. Smith. 1980. Hot plate welding of plastics: Factors affecting weld strength. Polymer Engineering & Science 20 (6): 432–440.CrossRefGoogle Scholar
  24. 24.
    Taşkıran, E., S. Sayer, Ç. Özes, Ç. Yeni, and A. Ülker. 2015. Effect of process parameters and talc ratio on hot plate welding of polypropylene. Materialwissenschaft und Werkstofftechnik 46 (8): 860–872.CrossRefGoogle Scholar
  25. 25.
    Liu, S.J., and H.F. Cheng. 2010. The influence of interface geometry on the joint strengths of hot plate welded composites. Journal of Reinforced Plastics and Composites 29 (4): 497–509.CrossRefGoogle Scholar
  26. 26.
    Ülker, A., N. Öztoprak, S. Sayer, and C. Yeni 2017. Optimization of welding parameters of hot plate welded PC/ABS blends by using the Taguchi experimental design method. Journal of Elastomers & Plastics 0095244317740735.Google Scholar
  27. 27.
    Hessel, J., and E. Mauer. 1985. The appearance of fractures in welded joints made of plastics following bending tests. Welding and Cutting 37 (5): 76–77.Google Scholar
  28. 28.
    John, P., J. Hessel, and E. Gaube. 1985. A new development in the extrusion welding sector. German Plastics 75 (1): 7–8.Google Scholar
  29. 29.
    Bonten, C., and E. Schmachtenberg. 2001. A new hypothesis to describe the mechanisms acting in a welded joint of semicrystalline thermoplastics. Polymer Engineering & Science 41 (3): 475–483.CrossRefGoogle Scholar
  30. 30.
    Sims, J., P.A. Ellwood, and H.J. Taylor. 1993. Pollutants from laser cutting and hot gas welding of plastics. Annals of Occupational Hygiene 37 (6): 665–672.Google Scholar
  31. 31.
    Marczis, B., and T. Czigany. 2006. Investigation of the heat affected zone of hot-gas welded PP joints. International Polymer Processing 21 (2): 141–148.CrossRefGoogle Scholar
  32. 32.
    Stokes, Vijay K. 1998. Experiments on the hot-tool welding of three dissimilar thermoplastics. Polymer 39 (12): 2469–2477.CrossRefGoogle Scholar
  33. 33.
    Stokes, Vijay K. 1999. A phenomenological study of the hot-tool welding of thermoplastics. Part 1: Polycarbonate. Polymer 40 (23): 6235–6263.CrossRefGoogle Scholar
  34. 34.
    Xiao, X.R., S.V. Hoa, K.N. Street. 1994. Repair of thermoplastic resin composites by fusion bonding. In Composites bonding, vol. 1227, 30–44. ASTM STP.Google Scholar
  35. 35.
    Panneerselvam, K., S. Aravindan, and A. Noorul Haq. 2012. Study on resistance welding of glass fiber reinforced thermoplastic composites. Materials & Design 41: 453–459.CrossRefGoogle Scholar
  36. 36.
    Shi, H., I. Fernandez Villegas, and H.E.N. Bersee. 2013. Strength and failure modes in resistance welded thermoplastic composite joints: Effect of fibre–matrix adhesion and fibre orientation. Composites Part A: Applied Science and Manufacturing 55: 1–10.CrossRefGoogle Scholar
  37. 37.
    Truckenmüller, Roman, Ralf Ahrens, Yue Cheng, Günther Fischer, and Volker Saile. 2006. An ultrasonic welding based process for building up a new class of inert fluidic microsensors and-actuators from polymers. Sensors and Actuators, A: Physical 132 (1): 385–392.CrossRefGoogle Scholar
  38. 38.
    Sims, J., P.A. Ellwood, and H.J. Taylor. 1993. Pollutants from laser cutting and hot gas welding of plastics. The Annals of Occupational Hygiene 37 (6): 665–672.Google Scholar
  39. 39.
    Atkinson, J.R., and B.E. Turner. 1989. Repairability of plastic automobile bumpers by hot gas welding. Polymer Engineering & Science 29 (19): 1368–1375.CrossRefGoogle Scholar
  40. 40.
    Haque, M.S., M. Kumar, and A. Khan. 2015. Hot gas welding of plastic: Fundamentals & importance. Indian Journal of Science and Technology 8(4).Google Scholar
  41. 41.
    Greenawalt, E.L. 1985. Form, fill and seal machine with hot gas and thermal impulse sealing. Dow Chemical Co., U.S. Patent 4,512,138.Google Scholar
  42. 42.
    Toss, R., Toss Ramon. 2000. Process and device for hot gas welding of plastic sheets with electrically heated tubular gas flow conduit. U.S. Patent 6,134,387.Google Scholar
  43. 43.
    Hou, Meng, Mingbo Yang, Andrew Beehag, Yiu-Wing Mai, and Lin Ye. 1999. Resistance welding of carbon fibre reinforced thermoplastic composite using alternative heating element. Composite Structures 47 (1): 667–672.CrossRefGoogle Scholar
  44. 44.
    Colak, Ziya Seyhan, Fazil Onder Sonmez, and Vahan Kalenderoglu. 2002. Process Modeling and optimization of resistance welding for thermoplastic composites. Journal of Composite Materials 36 (6): 721–744.CrossRefGoogle Scholar
  45. 45.
    Chen, M., G. Zak, and P.J. Bates. 2015. Absorption coefficient measurement in laser transmission welding of thermoplastics. International Polymer Processing 30 (1): 38–43.CrossRefGoogle Scholar
  46. 46.
    Bates, P.J., T.B. Okoro, and M. Chen. 2015. Thermal degradation of PC and PA6 during laser transmission welding. Welding in the World 59 (3): 381–390.CrossRefGoogle Scholar
  47. 47.
    Gao, Jicheng, Chao Li, Unisha Shilpakar, and Yifu Shen. 2015. Improvements of mechanical properties in dissimilar joints of HDPE and ABS via carbon nanotubes during friction stir welding process. Materials and Design 86: 289–296.CrossRefGoogle Scholar
  48. 48.
    Abbasi, M., B. Bagheri, and R. Keivani. 2015. Thermal analysis of friction stir welding process and investigation into affective parameters using simulation. Journal of Mechanical Science and Technology 29 (2): 861–866.CrossRefGoogle Scholar
  49. 49.
    Rahmat, S.M., M. Hamdi, F. Yusof, and R. Moshwan. 2014. Preliminary study on the feasibility of friction stir welding in 7075 aluminium alloy and polycarbonate sheet. Materials Research Innovations 18 (S6): S6–515.CrossRefGoogle Scholar
  50. 50.
    Rahbarpour, R., T. Azdast, H. Rahbarpour, and S.M. Shishavan. 2014. Feasibility study of friction stir welding of wood-plastic composites. Science and Technology of Welding and Joining 19 (8): 673–681.CrossRefGoogle Scholar
  51. 51.
    Pirizadeh, Mehdi, Taher Azdast, Samrand Rash Ahmadi, Sajjad Mamaghani Shishavan, and Arvin Bagheri. 2014. Friction stir welding of thermoplastics using a newly designed tool. Materials & Design 54: 342–347.CrossRefGoogle Scholar
  52. 52.
    Bilici, M.K., and A.I. Yükler. 2012. Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets. Materials and Design 33: 145–152.CrossRefGoogle Scholar
  53. 53.
    Panneerselvam, K., and K. Lenin. 2014. Joining of Nylon 6 plate by friction stir welding process using threaded pin profile. Materials and Design 53: 302–307.CrossRefGoogle Scholar
  54. 54.
    Ondruška, Michal, Marián Drienovský, Roman Čička, Milan Marônek, and Antonín Náplava. 2014. Optimizing the welding of plastics with the use of differential scanning calorimetry and thermogravimetric analysis. Acta Polytechnica 54 (3): 221–224.CrossRefGoogle Scholar
  55. 55.
    Vacogne, C., and R. Wise. 2011. Joining of high performance carbon fibre/PEEK composites. Science and Technology of Welding and Joining 16 (4): 369–376.CrossRefGoogle Scholar
  56. 56.
    Dubé, M., P. Hubert, A. Yousefpour, and J. Denault. 2007. Resistance welding of thermoplastic composites skin/stringer joints. Composites Part A Applied Science and Manufacturing 38 (12): 2541–2552.CrossRefGoogle Scholar
  57. 57.
    Spancken, D., J. Decker, S. Ruotsalainen, P. Laakso, and A. Büter. 2015. Fatigue design of thermoplastic laser welds. Welding in the World 59 (1): 65–70.CrossRefGoogle Scholar
  58. 58.
    Rauschenberger, J., D. Vogler, C. Raab, and U. Gubler. 2015. Diffractive beam shaping for enhanced laser polymer welding. In SPIE LASE, 935110–935110. International Society for Optics and Photonics.Google Scholar
  59. 59.
    Zhong, Xue Jiao, Cai Lian Fan, Hui Xia Liu, Pin Li, and Xiao Wang. 2015. Light scattering of HDPE and LDPE in laser transmission welding. In Key engineering materials, vol. 667, 95–101. Trans Tech Publications.Google Scholar
  60. 60.
    Amanat, Negin, Cedric Chaminade, John Grace, David R. McKenzie, and Natalie L. James. 2010. Transmission laser welding of amorphous and semi-crystalline poly-ether–ether–ketone for applications in the medical device industry. Materials and Design 31 (10): 4823–4830.CrossRefGoogle Scholar
  61. 61.
    Speka, Maryna, Simone Matteï, Michel Pilloz, and Mariana Ilie. 2008. The infrared thermography control of the laser welding of amorphous polymers. NDT and E International 41 (3): 178–183.CrossRefGoogle Scholar
  62. 62.
    Volpe, Annalisa, Francesca Di Niso, Caterina Gaudiuso, Andrea De Rosa, Rebeca Martìnez Vàzquez, Antonio Ancona, Pietro Mario Lugarà, and Roberto Osellame. 2015. Femtosecond fiber laser welding of PMMA. In SPIE LASE, 935106–935106. International Society for Optics and Photonics.Google Scholar
  63. 63.
    Jakobsen, Tom B., Roderic C. Don, and John W. Gillespie. 1989. Two dimensional thermal analysis of resistance welded thermoplastic composites. Polymer Engineering & Science 29 (23): 1722–1729.CrossRefGoogle Scholar
  64. 64.
    Pitchumani, R., S. Ranganathan, R.C. Don, J.W. Gillespie, and M.A. Lamontia. 1996. Analysis of transport phenomena governing interfacial bonding and void dynamics during thermoplastic tow-placement. International Journal of Heat and Mass Transfer 39 (9): 1883–1897.CrossRefGoogle Scholar
  65. 65.
    Xiao, X.R., S.V. Hoa, and K.N. Street. 1992. Processing and modelling of resistance welding of APC-2 composite. Journal of Composite Materials 26 (7): 1031–1049.CrossRefGoogle Scholar
  66. 66.
    Wang, C.Y., P.J. Bates, and G. Zak. 2009. Optical properties characterization of thermoplastics used in laser transmission welding: Transmittance and reflectance. In Proceedings of the SPE ANTEC, 1278–1282.Google Scholar
  67. 67.
    Aden, M., A.M. Roesner, and A. Olowinsky. 2010. Optical characterization of polycarbonate: Influence of additives on optical properties. Journal of Polymer Science Part B: Polymer Physics 48: 451–455.CrossRefGoogle Scholar
  68. 68.
    Coelho, J.M.P., M.A. Abreu, F.C. Rodrigues. 2004. Methodologies for determining thermoplastic films optical parameters at 10.6 mm laser wavelength. Polymer Testing 23: 307–312.CrossRefGoogle Scholar
  69. 69.
    Kagan, V.A., R.G. Bray, and W.P. Kuhn. 2002. Laser transmission welding of semi-crystalline thermoplastics—Part I: Optical characterization of nylon based plastics. Journal of Reinforced Plastics and Composites 21 (12): 1101–1122.CrossRefGoogle Scholar
  70. 70.
    Rhew, M., A. Mokhtarzadeh, A. Benatar. 2003. Diode laser characterization and measurement of optical properties of polycarbonate and high-density polyethylene. In Proceedings of the SPE ANTEC, 1056–1060.Google Scholar
  71. 71.
    Dosser, L., K. Hix, K. Hartke, R. Vaia, and M. Li. 2004. Transmission welding of carbon nanocomposites with direct-diode and Nd:YAG solid state lasers. Proceedings of SPIE 5339: 465–474.CrossRefGoogle Scholar
  72. 72.
    Chen, M.L., G. Zak, and P.J. Bates. 2011. Effect of carbon black on light transmission in laser welding of thermoplastics. Journal of Materials Processing Technology 211: 43–47.CrossRefGoogle Scholar
  73. 73.
    Azhikannickal, E., P.J. Bates, G. Zak. 2012. Laser light transmission through thermoplastics as a function of thickness and laser incidence angle: Experimental and modelling. ASME Journal of Manufacturing Science and Engineering 134: 061007-1–6.CrossRefGoogle Scholar
  74. 74.
    Azhikannickal, E., P.J. Bates, and G. Zak. 2012. Thermal imaging technique to characterize laser light reflection from thermoplastics. Optics & Laser Technology 44: 1456–1462.CrossRefGoogle Scholar
  75. 75.
    Xu, Xin Feng, Philip J. Bates, and Gene Zak. 2015. Effect of glass fiber and crystallinity on light transmission during laser transmission welding of thermoplastics. Optics & Laser Technology 69: 133–139.CrossRefGoogle Scholar
  76. 76.
    Voisiat, B., D. Gaponov, P. Gečys, L. Lavoute, M. Silva, A. Hideur, N. Ducros, and G. Račiukaitis. 2015. Material processing with ultra-short pulse lasers working in 2 μm wavelength range. In SPIE LASE, 935014–935014. International Society for Optics and Photonics.Google Scholar
  77. 77.
    Visco, A.M., G. Galtieri, L. Torrisi, and C. Scolaro. 2015. Properties of single and double lap polymeric joints welded by a diode laser. International Journal of Polymer Analysis and Characterization.Google Scholar
  78. 78.
    Van der Straeten, Kira, Christoph Engelmann, Alexander Olowinsky, and Arnold Gillner. 2015. Laser transmission welding of long glass fiber reinforced thermoplastics. In SPIE LASE, 93560H–93560H. International Society for Optics and Photonics.Google Scholar
  79. 79.
    Tamrin, K.F., Y. Nukman, and N.A. Sheikh. 2015. Laser spot welding of thermoplastic and ceramic: An experimental investigation. Materials and Manufacturing Processes.CrossRefGoogle Scholar
  80. 80.
    Ruotsalainen, Saara, Petri Laakso, and Veli Kujanpää. 2015. Laser welding of transparent polymers by using quasi-simultaneous beam off-setting scanning technique. Physics Procedia 78: 272–284.CrossRefGoogle Scholar
  81. 81.
    Rodríguez-Vidal, E., C. Sanz, C. Soriano, J. Leunda, and G. Verhaeghe. 2015. Effect of metal micro-structuring on the mechanical behavior of polymer-metal laser T-joints. Journal of Materials Processing Technology.Google Scholar
  82. 82.
    Rauschenberger, J., A. Cenigaonaindia, J. Keseberg, D. Vogler, U. Gubler, and Fernando Liébana. 2015. Laser hybrid joining of plastic and metal components for lightweight components. In SPIE LASE, 93560B–93560B. International Society for Optics and Photonics.Google Scholar
  83. 83.
    Wang, C.Y., P.J. Bates, and G. Zak. 2010. Optical properties characterization of thermoplastics used in laser transmission welding: Scattering and absorbance. Advanced Materials Research 97–101: 3836–3841.CrossRefGoogle Scholar
  84. 84.
    Geiger, M., T. Frick, and M. Schmidt. 2009. Optical properties of plastics and their role for the modelling of the laser transmission welding process. Production Engineering Research and Development 3 (1): 49–55.CrossRefGoogle Scholar
  85. 85.
    Lu, H.M., and A. Benatar. 1991. Sequential ultrasonic welding of PEEK/Graphite composite parts. In Proceedings of the annual technical conference ANTEC. Montreal.Google Scholar
  86. 86.
    Woizeschke, Peer, Eugen Mosgowoi, and Frank Vollertsen. 2015. Decreasing pore formation in multiple-sheet laser joining with interfacial polymeric contaminations. Welding in the World 1–10.Google Scholar
  87. 87.
    Visco, A.M., V. Brancato, L. Torrisi, and M. Cutroneo. 2014. Employment of Carbon Nanomaterials for Welding Polyethylene Joints with a Nd: YAG Laser. International Journal of Polymer Analysis and Characterization 19 (6): 489–499.CrossRefGoogle Scholar
  88. 88.
    Tan, Xianghu, Jing Zhang, Jiguo Shan, Shanglu Yang, and Jialie Ren. 2015. Characteristics and formation mechanism of porosities in CFRP during laser joining of CFRP and steel. Composites Part B Engineering 70: 35–43.CrossRefGoogle Scholar
  89. 89.
    Jiang, Xin, Soni Chandrasekar, and Changhai Wang. 2015. A laser microwelding method for assembly of polymer based microfluidic devices. Optics and Lasers in Engineering 66: 98–104.CrossRefGoogle Scholar
  90. 90.
    Cosson, Benoit, Mylène Deléglise, and Wolfgang Knapp. 2015. Numerical analysis of thermoplastic composites laser welding using ray tracing method. Composites Part B: Engineering 68: 85–91.CrossRefGoogle Scholar
  91. 91.
    Berger, Stefan, Florian Oefele, and Michael Schmidt. 2015. Laser transmission welding of carbon fiber reinforced thermoplastic using filler material—A fundamental study. Journal of Laser Applications 27 (S2): S29009.CrossRefGoogle Scholar
  92. 92.
    Asséko, André Chateau Akué, Benoît Cosson, Fabrice Schmidt, Yannick Le Maoult, and Eric Lafranche. 2015. Laser transmission welding of composites-Part A: Thermo-physical and optical characterization of materials. Infrared Physics & Technology.Google Scholar
  93. 93.
    Acherjee, Bappa, Arunanshu S. Kuar, Souren Mitra, and Dipten Misra. 2015. Empirical modeling and multi-response optimization of laser transmission welding of polycarbonate to ABS. Lasers in Manufacturing and Materials Processing 1–21.Google Scholar
  94. 94.
    Wang, Xiao, Hao Chen, and Huixia Liu. 2014. Investigation of the relationships of process parameters, molten pool geometry and shear strength in laser transmission welding of polyethylene terephthalate and polypropylene. Materials & Design 55: 343–352.CrossRefGoogle Scholar
  95. 95.
    Rodríguez-Vidal, E., I. Quintana, and C. Gadea. 2014. Laser transmission welding of ABS: Effect of CNTs concentration and process parameters on material integrity and weld formation. Optics & Laser Technology 57: 194–201.CrossRefGoogle Scholar
  96. 96.
    Acherjee, Bappa, Arunanshu S. Kuar, Souren Mitra, and Dipten Misra. 2014. Laser transmission welding of polycarbonates: Experiments, modeling, and sensitivity analysis. The International Journal of Advanced Manufacturing Technology 78 (5–8): 853–861.Google Scholar
  97. 97.
    Yusof, Farazila, Miyashita Yukio, Mutoh Yoshiharu, and Mohd Hamdi Abdul Shukor. 2012. Effect of anodizing on pulsed Nd: YAG laser joining of polyethylene terephthalate (PET) and aluminium alloy (A5052). Materials and Design 37: 410–415.CrossRefGoogle Scholar
  98. 98.
    Rodríguez-Vidal, Eva, Iban Quintana, Jon Etxarri, Urko Azkorbebeitia, Deitze Otaduy, Francisco González, and Fernando Moreno. 2012. Optical design and development of a fiber coupled high-power diode laser system for laser transmission welding of plastics. Optical Engineering 51 (12): 124301–124301.CrossRefGoogle Scholar
  99. 99.
    Acherjee, Bappa, Subrata Mondal, Bipan Tudu, and Dipten Misra. 2011. Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics. Applied Soft Computing 11 (2): 2548–2555.CrossRefGoogle Scholar
  100. 100.
    Acherjee, Bappa, Arunanshu S. Kuar, Souren Mitra, and Dipten Misra. 2011. Application of grey-based Taguchi method for simultaneous optimization of multiple quality characteristics in laser transmission welding process of thermoplastics. The International Journal of Advanced Manufacturing Technology 56 (9–12): 995–1006.CrossRefGoogle Scholar
  101. 101.
    Khodabakhshi, F., M. Haghshenas, S. Sahraeinejad, J. Chen, B. Shalchi, J. Li, and A.P. Gerlich. 2014. Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high density polyethylene. Materials Characterization 98: 73–82.CrossRefGoogle Scholar
  102. 102.
    Gao, Jicheng, Yifu Shen, Jingqing Zhang, and Haisheng Xu. 2014. Submerged friction stir weld of polyethylene sheets. Journal of Applied Polymer Science 131 (22).Google Scholar
  103. 103.
    De Saracibar, C. Agelet, Michele Chiumenti, Miguel Cervera, N. Dialami, and Anthony Seret. 2014. Computational modeling and sub-grid scale stabilization of incompressibility and convection in the numerical simulation of friction stir welding processes. Archives of Computational Methods in Engineering 21 (1): 3–37.MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Azarsa, Ehsan, and Amir Mostafapour. 2014. Experimental investigation on flexural behavior of friction stir welded high density polyethylene sheets. Journal of Manufacturing Processes 16 (1): 149–155.CrossRefGoogle Scholar
  105. 105.
    Ahmadi, H., N.B. Mostafa Arab, and F. Ashenai Ghasemi. 2014. Optimization of process parameters for friction stir lap welding of carbon fibre reinforced thermoplastic composites by Taguchi method. Journal of Mechanical Science and Technology 28 (1): 279–284.CrossRefGoogle Scholar
  106. 106.
    Benatar, A., and T.G. Gutowski. 1986. Methods for fusion bonding thermoplastic composites. SAMPE Quart 18 (1): 35–42.Google Scholar
  107. 107.
    Dialami, Narges, Michele Chiumenti, Miguel Cervera, and Carlos Agelet de Saracibar. 2013. An apropos kinematic framework for the numerical modeling of friction stir welding. Computers & Structures 117: 48–57.zbMATHCrossRefGoogle Scholar
  108. 108.
    Dashatan, Saeid Hoseinpour, Taher Azdast, Samrand Rash Ahmadi, and Arvin Bagheri. 2013. Friction stir spot welding of dissimilar polymethyl methacrylate and acrylonitrile butadiene styrene sheets. Materials & Design 45: 135–141.CrossRefGoogle Scholar
  109. 109.
    Bagheri, Arvin, Taher Azdast, and Ali Doniavi. 2013. An experimental study on mechanical properties of friction stir welded ABS sheets. Materials and Design 43: 402–409.CrossRefGoogle Scholar
  110. 110.
    Yusof, F., Y. Miyashita, N. Seo, Y. Mutoh, and R. Moshwan. 2012. Utilising friction spot joining for dissimilar joint between aluminium alloy (A5052) and polyethylene terephthalate. Science and Technology of Welding and Joining 17 (7): 544–549.CrossRefGoogle Scholar
  111. 111.
    Ratanathavorn, Wallop. 2012. Hybrid joining of aluminum to thermoplastics with friction stir welding.Google Scholar
  112. 112.
    Kiss, Z., and T. Czigány. 2012. Effect of welding parameters on the heat affected zone and the mechanical properties of friction stir welded poly (ethylene-terephthalate-glycol). Journal of Applied Polymer Science 125 (3): 2231–2238.CrossRefGoogle Scholar
  113. 113.
    Kiss, Zoltan, and Tibor Czigany. 2012. Microscopic analysis of the morphology of seams in friction stir welded polypropylene. Express Polymer Letters 6 (1): 54–62.CrossRefGoogle Scholar
  114. 114.
    Bozkurt, Yahya. 2012. The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets. Materials and Design 35: 440–445.CrossRefGoogle Scholar
  115. 115.
    Bilici, Mustafa Kemal, and Ahmet Irfan Yükler. 2012. Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets. Materials & Design 33: 145–152.CrossRefGoogle Scholar
  116. 116.
    Bilici, Mustafa K. 2012. Effect of tool geometry on friction stir spot welding of polypropylene sheets. Express Polymer Letters 6 (10): 805–813.CrossRefGoogle Scholar
  117. 117.
    Azarsa, Ehsan, Amir Mostafapour Asl, and Vahid Tavakolkhah. 2012. Effect of process parameters and tool coating on mechanical properties and microstructure of heat assisted friction stir welded polyethylene sheets. In Advanced materials research, vol. 445, 765–770.CrossRefGoogle Scholar
  118. 118.
    Ahmadi, Hedi, Nasrollah Bani Mostafa Arab, and Faramarz Ashenai Ghasemi. 2012. Application of Taguchi method to optimize friction stir welding parameters for polypropylene composite lap joints. Archives Des Sciences 65 (7).Google Scholar
  119. 119.
    Zhang, De Fen, Fei Long, Xiao Wen Chen, Xiang Qian Wen, and Hong Song Luo. 2011. Review on research status of friction stir welding technology. In Advanced Materials Research, vol. 335, 379–382.CrossRefGoogle Scholar
  120. 120.
    Saeedy, S., and M.K. Besharati Givi. 2011. Investigation of the effects of critical process parameters of friction stir welding of polyethylene. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 09544054JEM1989.Google Scholar
  121. 121.
    Rai, R., A. De, H.K.D.H. Bhadeshia, and T. DebRoy. 2011. Review: Friction stir welding tools. Science and Technology of Welding and Joining 16 (4): 325–342.CrossRefGoogle Scholar
  122. 122.
    Payganeh, G. H., N.B. Mostafa Arab, Y. Dadgar Asl, F.A. Ghasemi, and M. Saeidi Boroujeni. 2011. Effects of friction stir welding process parameters on appearance and strength of polypropylene composite welds. International Journal of Physical Sciences 6 (19): 4595–4601.Google Scholar
  123. 123.
    Mert, S., and A. Arici. 2011. Design of optimal joining for friction stir spot welding of polypropylene sheets. Science and Technology of Welding and Joining 16 (6): 522–527.CrossRefGoogle Scholar
  124. 124.
    Amancio-Filho, S.T., C. Bueno, J.F. Dos Santos, N. Huber, and E. Hage. 2011. On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures. Materials Science and Engineering A 528 (10): 3841–3848.CrossRefGoogle Scholar
  125. 125.
    Bilici, Mustafa K. 2012. Effect of tool geometry on friction stir spot welding of polypropylene sheets. Express Polym Lett 6 (10): 805–813.CrossRefGoogle Scholar
  126. 126.
    Sadeghian, Nasser, and Mohammad Kazem Besharati Givi. 2015. Experimental optimization of the mechanical properties of friction stir welded acrylonitrile butadiene styrene sheets. Materials and Design 67: 145–153.CrossRefGoogle Scholar
  127. 127.
    Gonçalves, J., J.F. dos Santos, L.B. Canto, and S.T. Amancio-Filho. 2015. Friction spot welding of carbon fiber-reinforced polyamide 66 laminate. Materials Letters 159: 506–509.CrossRefGoogle Scholar
  128. 128.
    Vijendra, Bandari, and Abhay Sharma. 2015. Induction heated tool assisted friction-stir welding (i-FSW): A novel hybrid process for joining of thermoplastics. Journal of Manufacturing Processes 20: 234–244.CrossRefGoogle Scholar
  129. 129.
    Hoseinlaghab, Sadegh, Seyed Sajad Mirjavadi, Nasser Sadeghian, Iraj Jalili, M. Azarbarmas, and Mohammad Kazem Besharati Givi. 2015. Influences of welding parameters on the quality and creep properties of friction stir welded polyethylene plates. Materials & Design 67: 369–378.CrossRefGoogle Scholar
  130. 130.
    Liu, F.C., J. Liao, and K. Nakata. 2014. Joining of metal to plastic using friction lap welding. Materials and Design 54: 236–244.CrossRefGoogle Scholar
  131. 131.
    Lambiase, F., A. Paoletti, and A. Di Ilio. 2015. Mechanical behaviour of friction stir spot welds of polycarbonate sheets. The International Journal of Advanced Manufacturing Technology 1–14.Google Scholar
  132. 132.
    Mendes, N., A. Loureiro, C. Martins, P. Neto, and J.N. Pires. 2014. Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. Materials and Design 64: 81–90.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. Arungalai Vendan
    • 1
    Email author
  • M. Natesh
    • 2
  • Akhil Garg
    • 3
  • Liang Gao
    • 4
  1. 1.VIT UniversityVelloreIndia
  2. 2.VIT UniversityVelloreIndia
  3. 3.Intelligent Manufacturing Key Laboratory of Ministry of EducationShantou UniversityShantouChina
  4. 4.State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations