Skip to main content

Association of Circulating Oxidized Lipids with Cardiovascular Outcomes

  • Chapter
  • First Online:
Lipidomics in Health & Disease

Part of the book series: Translational Bioinformatics ((TRBIO,volume 14))

Abstract

Multiple studies established the causal relationship between elevated levels of low density lipoproteins (LDL) and their oxidized modifications, oxidized LDL, and atherosclerosis. However, while it is generally recognized that LDL oxidation occurs mainly in the sub-endothelial space within the vascular wall, the role of circulating oxLDL in the development of the disease remains a matter of debate. There is also significant confusion in the field regarding the levels of oxLDL that occur in vivo, partly because of the complex and heterogeneous nature of the oxLDL particle and the discrepancies between the methods used for its detection. In this chapter, therefore, we first present different analytical methods used to evaluate the level, the state of oxidation and the lipid composition of oxLDL, which represents the basis of the lipidomics analysis of the circulating LDL. This is followed by presenting the current state of knowledge about the levels of circulating oxLDL and its two major components, oxidized phospholipids, oxPCs and oxysterols in human plasma and their association with the cardiovascular outcomes across multiple studies and cohorts of patients. Taken together, these studies present strong evidence for the circulating oxLDL and specific oxysterols to constitute independent risk factors for the development of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arca M, et al. Increased plasma levels of oxysterols, in vivo markers of oxidative stress, in patients with familial combined hyperlipidemia: reduction during atorvastatin and fenofibrate therapy. Free Radic Biol Med. 2007;42(5):698–705.

    Article  CAS  PubMed  Google Scholar 

  • Ayee MA, et al. Molecular-scale biophysical modulation of an endothelial membrane by oxidized phospholipids. Biophys J. 2017;112(2):325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babaev VR, et al. Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-A. Arterioscler Thromb Vasc Biol. 2000;20(12):2593–9.

    Article  CAS  PubMed  Google Scholar 

  • Bertoia ML, et al. Oxidation-specific biomarkers and risk of peripheral artery disease. J Am Coll Cardiol. 2013;61(21):2169–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birukova AA, et al. Afadin controls p120-catenin-ZO-1 interactions leading to endothelial barrier enhancement by oxidized phospholipids. J Cell Physiol. 2012;227(5):1883–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birukova AA, et al. Fragmented oxidation products define barrier disruptive endothelial cell response to OxPAPC. Transl Res. 2013;161(6):495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochkov VN, et al. Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature. 2002;419(6902):77–81.

    Article  CAS  PubMed  Google Scholar 

  • Bonacci G, et al. Conjugated linoleic acid is a preferential substrate for fatty acid nitration. J Biol Chem. 2012;287(53):44071–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks CJW, et al. Profile analysis of oxygenated sterols in plasma and serum. Biochem Soc Trans. 1983;11:700–1.

    Article  CAS  Google Scholar 

  • Byfield FJ, et al. OxLDL increases endothelial stiffness, force generation and network formation. J Lipid Res. 2006;47:715–23.

    Article  CAS  PubMed  Google Scholar 

  • Carantoni M, et al. Relationship between insulin resistance and partially oxidized LDL particles in healthy, nondiabetic volunteers. Arterioscler Thromb Vasc Biol. 1998;18(5):762–7.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, et al. Identification of a biologically active component in minimally oxidized low density lipoprotein (MM-LDL) responsible for aortic smooth muscle cell proliferation. Glycoconj J. 2004;20(5):331–8.

    Article  CAS  PubMed  Google Scholar 

  • Chen NG, et al. The relationship between plasma glucose and insulin responses to oral glucose, LDL oxidation, and soluble intercellular adhesion molecule-1 in healthy volunteers. Atherosclerosis. 2000;152(1):203–8.

    Article  CAS  PubMed  Google Scholar 

  • Chiang JY. Bile acid metabolism and signaling. Compr Physiol. 2013;3(3):1191–212.

    PubMed  PubMed Central  Google Scholar 

  • Domingues MR, Reis A, Domingues P. Mass spectrometry analysis of oxidized phospholipids. Chem Phys Lipids. 2008;156(1–2):1–12.

    Article  CAS  PubMed  Google Scholar 

  • Dzeletovic S, et al. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem. 1995;225(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  • Ehara S, et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation. 2001;103(15):1955–60.

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, et al. Inhibition of LDL oxidation by antioxidants. EXS. 1992a;62:145–57.

    PubMed  CAS  Google Scholar 

  • Esterbauer H, et al. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992b;13(4):341–90.

    Article  CAS  PubMed  Google Scholar 

  • Febbraio M, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest. 2000;105(8):1049–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraley AE, et al. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes: results from the MIRACL (Myocardial Ischemia Reduction With Aggressive Cholesterol Lowering) trial. J Am Coll Cardiol. 2009;53(23):2186–96.

    Article  CAS  PubMed  Google Scholar 

  • Freyschuss A, et al. Vitamin C reduces cholesterol-induced microcirculatory changes in rabbits. Arterioscler Thromb Vasc Biol. 1997;17(6):1178–84.

    Article  CAS  PubMed  Google Scholar 

  • Girard A, Sandulesco G. Sur une nouvelle série de réactifs du groupe carbonyle, leur utilisation à l’extraction des substances cétoniques et à la caractérisation microchimique des aldéhydes et cétones. Helv Chim Acta. 1936;19:1095.

    Article  CAS  Google Scholar 

  • Griffiths WJ, et al. New methods for analysis of oxysterols and related compounds by LC-MS. J Steroid Biochem Mol Biol. 2016;162:4–26.

    Article  CAS  PubMed  Google Scholar 

  • Harats D, et al. Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2000;20(9):2100–5.

    Article  CAS  PubMed  Google Scholar 

  • Hevonoja T, et al. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta (BBA) – Mol Cell Biol Lipids. 2000;1488(3):189–210.

    Article  CAS  Google Scholar 

  • Hodis HN, Crawford DW, Sevanian A. Cholesterol feeding increases plasma and aortic tissue cholesterol oxide levels in parallel: further evidence for the role of cholesterol oxidation in atherosclerosis. Atherosclerosis. 1991;89(2–3):117–26.

    Article  CAS  PubMed  Google Scholar 

  • Holvoet, P., Oxidized LDL:Role in cardiovascular risk and disease. In: Kovala, PP, editor. Cholesterol in atherosclerosis and coronary arery disease. 2005. p. 29–44.

    Google Scholar 

  • Holvoet P, et al. Correlation between oxidized low density lipoproteins and von Willebrand factor in chronic renal failure. Thromb Haemost. 1996;76(5):663–9.

    Article  CAS  PubMed  Google Scholar 

  • Holvoet P, et al. Oxidized low density lipoproteins in patients with transplant-associated coronary artery disease. Arterioscler Thromb Vasc Biol. 1998a;18(1):100–7.

    Article  CAS  PubMed  Google Scholar 

  • Holvoet P, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation. 1998b;98(15):1487–94.

    Article  CAS  PubMed  Google Scholar 

  • Holvoet P, et al. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2001;21(5):844–8.

    Article  CAS  PubMed  Google Scholar 

  • Holvoet P, et al. The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes. 2004;53(4):1068–73.

    Article  CAS  PubMed  Google Scholar 

  • Honda A, et al. Highly sensitive quantification of key regulatory oxysterols in biological samples by LC-ESI-MS/MS. J Lipid Res. 2009;50(2):350–7.

    Article  CAS  PubMed  Google Scholar 

  • Hörkkö S, et al. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid–protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Investig. 1999;103(1):117–28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huo Y, et al. Critical role of macrophage 12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2004;110(14):2024–31.

    Article  CAS  PubMed  Google Scholar 

  • Imazu M, et al. Plasma levels of oxidized low density lipoprotein are associated with stable angina pectoris and modalities of acute coronary syndrome. Int Heart J. 2008;49(5):515–24.

    Article  CAS  PubMed  Google Scholar 

  • Itabe H, et al. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. J Biol Chem. 1994;269(21):15274–9.

    PubMed  CAS  Google Scholar 

  • Itabe H, et al. Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. J Lipid Res. 1996;37(1):45–53.

    PubMed  CAS  Google Scholar 

  • Itabe H, Obama T, Kato R. The dynamics of oxidized LDL during atherogenesis. J Lipid. 2011;2011:9.

    Article  CAS  Google Scholar 

  • Iuliano L. Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids. 2011;164(6):457–68.

    Article  CAS  PubMed  Google Scholar 

  • Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515–40.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Ory DS, Han X. Characterization of oxysterols by electrospray ionization tandem mass spectrometry after one-step derivatization with dimethylglycine. Rapid Commun Mass Spectrom. 2007;21(2):141–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan VE, et al. Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids. 2014;179:64–9.

    Article  CAS  PubMed  Google Scholar 

  • Ke Y, et al. Anti-inflammatory effects of OxPAPC involve endothelial cell-mediated generation of LXA4. Circ Res. 2017;121(3):244–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroki S, et al. Serum 7 alpha-hydroxycholesterol as a new parameter of liver function in patients with chronic liver diseases. Hepatology. 1995;22(4 Pt 1):1182–7.

    PubMed  CAS  Google Scholar 

  • Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition and pathophysiology. Antioxid Redox Signal. 2010;13:39–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebisch G, et al. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta. 2006;1761(1):121–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Sjovall J, Griffiths WJ. Neurosteroids in rat brain: extraction, isolation, and analysis by nanoscale liquid chromatography-electrospray mass spectrometry. Anal Chem. 2003;75(21):5835–46.

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, et al. Inhibition of LPS- and CpG DNA-induced TNF-alpha response by oxidized phospholipids. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L808–16.

    Article  CAS  PubMed  Google Scholar 

  • Maciel E, et al. Evaluation of oxidation and glyco-oxidation of 1-palmitoyl-2-arachidonoyl-phosphatidylserine by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;929:76–83.

    Article  CAS  PubMed  Google Scholar 

  • Mehta JL, et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res. 2007;100(11):1634–42.

    Article  CAS  PubMed  Google Scholar 

  • Murphy RC. Steroids tandem mass spectrometry of lipids: molecular analysis of complex lipids. Cambridge: Royal Society of Chemistry; 2014. p. 233–73.

    Google Scholar 

  • Naruko T, et al. Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial infarction predict stent restenosis. Arterioscler Thromb Vasc Biol. 2006;26(4):877–83.

    Article  CAS  PubMed  Google Scholar 

  • Nonas S, et al. Oxidized phospholipids reduce ventilator-induced vascular leak and inflammation in vivo. Crit Care. 2008;12(1):R27.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donnell VB. Mass spectrometry analysis of oxidized phosphatidylcholine and phosphatidylethanolamine. Biochim Biophys Acta. 2011;1811(11):818–26.

    Article  CAS  PubMed  Google Scholar 

  • Oda H, et al. Esterified and total 7 alpha-hydroxycholesterol in human serum as an indicator for hepatic bile acid synthesis. J Lipid Res. 1990;31(12):2209–18.

    PubMed  CAS  Google Scholar 

  • Oh M-J, et al. Oxidized LDL signals through Rho-GTPase to induce endothelial cell stiffening and promote capillary formation. J Lipid Res. 2016;57(5):791–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palinski W, et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J Clin Invest. 1996;98(3):800–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parthasarathy S, et al. Lipid peroxidation and decomposition–conflicting roles in plaque vulnerability and stability. Biochim Biophys Acta. 2008;1781(5):221–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulfer M, Murphy RC. Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev. 2003;22(5):332–64.

    Article  CAS  PubMed  Google Scholar 

  • Reis A, Spickett CM. Chemistry of phospholipid oxidation. Biochim Biophys Acta. 2012;1818(10):2374–87.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi H, et al. Role of macrophage scavenger receptors in diet-induced atherosclerosis in mice. Lab Investig. 1998;78(4):423–34.

    PubMed  CAS  Google Scholar 

  • Schroepfer GJ Jr. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000;80(1):361–554.

    Article  CAS  PubMed  Google Scholar 

  • Shentu TP, et al. oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation. Am J Physiol Cell Physiol. 2010;299(2):C218–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidhu R, et al. A validated LC-MS/MS assay for quantification of 24(S)-hydroxycholesterol in plasma and cerebrospinal fluid. J Lipid Res. 2015;56(6):1222–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigurdardottir V, Fagerberg B, Hulthe J. Circulating oxidized low-density lipoprotein (LDL) is associated with risk factors of the metabolic syndrome and LDL size in clinically healthy 58-year-old men (AIR study). J Intern Med. 2002;252(5):440–7.

    Article  CAS  PubMed  Google Scholar 

  • Song J, et al. Association of plasma 7-ketocholesterol with cardiovascular outcomes and total mortality in patients with coronary artery disease. Circ Res. 2017;120(10):1622–31.

    Article  CAS  PubMed  Google Scholar 

  • Spickett CM, Pitt AR. Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid Redox Signal. 2015;22(18):1646–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg D, et al. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989;320:915–24.

    Article  CAS  PubMed  Google Scholar 

  • Subbanagounder G, et al. Determinants of bioactivity of oxidized phospholipids. Specific oxidized fatty acyl groups at the sn-2 position. Arterioscler Thromb Vasc Biol. 2000;20(10):2248–54.

    Article  CAS  PubMed  Google Scholar 

  • Tsimikas S, et al. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J Am Coll Cardiol. 2003;41(3):360–70.

    Article  CAS  PubMed  Google Scholar 

  • Tsimikas S, et al. Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: five-year prospective results from the Bruneck study. J Am Coll Cardiol. 2006;47(11):2219–28.

    Article  CAS  PubMed  Google Scholar 

  • Tsimikas S, et al. Oxidation-specific biomarkers, lipoprotein(a), and risk of fatal and nonfatal coronary events. J Am Coll Cardiol. 2010;56(12):946–55.

    Article  CAS  PubMed  Google Scholar 

  • Tyurina YY, et al. Characterization of cardiolipins and their oxidation products by LC-MS analysis. Chem Phys Lipids. 2014;179:3–10.

    Article  CAS  PubMed  Google Scholar 

  • Van Tits L, et al. Increased levels of low-density lipoprotein oxidation in patients with familial hypercholesterolemia and in end-stage renal disease patients on hemodialysis. Lab Investig. 2003;83(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  • van Tits LJ et al. Proportion of oxidized ldl relative to plasma apolipoprotein b does not change during statin therapy in patients with heterozygous familial hypercholesterolemia. Atherosclerosis. 2005. [Epub ahead of print].

    Google Scholar 

  • Watson AD, et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem. 1997;272(21):13597–607.

    Article  CAS  PubMed  Google Scholar 

  • Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88:1785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends Cardiovasc Med. 2001;11(3–4):93–102.

    Article  CAS  PubMed  Google Scholar 

  • Yan X, et al. Fatty acid epoxyisoprostane E2 stimulates an oxidative stress response in endothelial cells. Biochem Biophys Res Commun. 2014;444(1):69–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C et al. OxLDL-induced endothelial proliferation via Rho/ROCK/Akt/p27kip1 signaling: prevention by cholesterol loading. Am J Physiol Cell Physiol. 2017: p. ajpcell 00249 2016.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Gregory Kowalsky for helping with the preparation of the figures. This study is supported by NIH grants HL-073965 and HL-083298 to I.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Levitan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Levitan, I., Fancher, I.S., Berdyshev, E. (2018). Association of Circulating Oxidized Lipids with Cardiovascular Outcomes. In: Wang, X., Wu, D., Shen, H. (eds) Lipidomics in Health & Disease. Translational Bioinformatics, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-0620-4_9

Download citation

Publish with us

Policies and ethics